説明

適応性ノイズコントロール

【課題】適応の速度および質も適応性ノイズコントロールのロバスト性も維持しながら、選択可能なキャンセレーションの特性を有する適応性ノイズコントロールを提供すること。
【解決手段】リスニング位置において、ノイズソースからリスニング位置まで発された音響ノイズ信号のパワーを低減するための適応性ノイズコントロールシステムおよび方法は開示される。補償は、周波数領域内にブロック的またはサンプル的に処理され得、時間領域のアナログ信号として音響的に発される。適合可能なゲイン因子は、時間または周波数領域で処理され得る。

【発明の詳細な説明】
【技術分野】
【0001】
(背景)
1.技術分野
本発明は、適応性ノイズコントロールおよびノイズキャンセリングに関し、そして、特に振幅と位相との両方におけるキャンセレーション性能をコントロールするためのシステムおよび方法に関する。
【背景技術】
【0002】
2.関連技術
擾乱ノイズ(「ノイズ」または「擾乱音声信号」とも呼ばれる)は、有用な音声信号とは対照的に、例えばリスナーによって聞かれたり、または知覚されたりすることを意図されない音である。モーター付きの乗り物において、擾乱ノイズは、エンジンおよび/またはエンジンと機械的に結合される部品(例えば、ファン)の機械的振動、乗り物全体および乗り物の周囲を通り抜ける風、および/または例えば、舗装された表面に接触するタイヤによって生成される音声信号を含み得る。特に、より低い周波数範囲に対して、ノイズコントロールシステムおよび方法は、相殺的干渉を用いて(すなわち、ノイズ信号を補償信号と重ね合わせることによって)リスニングルーム内に発されたノイズを除去するか、または少なくとも低減することが公知である。しかし、これらのシステムおよび方法の実行可能性は、十分な数の適切なセンサーおよびトランスデューサーと共に使われ得るコスト効率のよい高性能のデジタル信号プロセッサーの発展に頼る。
【0003】
普通、アクティブノイズ抑制システムまたは低減システムは、抑制されるべきノイズ信号と同じ振幅成分および同じ周波数成分有する補償音声信号を生成する「アクティブノイズコントロール」(ANC)システムとしても公知である。しかし、補償音声信号は、ノイズ信号に対して180°(180度)位相シフトを有する。その結果、ノイズ信号は、補償音声信号とノイズ信号との間の相殺的干渉のために、少なくともリスニングルーム内の特定の位置で除去または低減される。このコンテクストの「リスニングルーム」は、ANCがそのノイズ抑制効果を示す空間、例えば、乗り物の乗客コンパートメントである。
【0004】
最新式のアクティブノイズコントロールシステムは、デジタル信号処理およびデジタルフィルタリング技術をインプリメントする。典型的に、ノイズセンサー(例えば、マイクロフォンまたは非音響的センサー)は、ノイズソースによって生成された擾乱ノイズ信号を表す電気参照信号を提供するために使われる。参照信号は、フィルタされた参照信号を音響トランスデューサー(例えば、拡声器)に供給する適応性フィルタに与えられる。音響トランスデューサーは、リスニングルームの規定された部分(「リスニング位置」)内にノイズ信号の位相と逆の位相を有する補償音場を生成する。補償音場は、ノイズ信号と相互作用し、それによってリスニング位置内にノイズを除去し、または少なくとも弱める。リスニング環境および/またはリスニングルーム内の残差ノイズは、マイクロフォンを用いて感知され得る。結果として生じるマイクロフォン出力信号は、「エラー信号」として使われ、および適応性フィルタに提供され、エラー信号の基準(例えば、パワー)のような適応性フィルタのフィルタ係数が修正され、それによって、リスナーによって最終的に知覚された残差ノイズが最小化される。
【0005】
全部の適用可能なアルゴリズムは、適応システムの出力と感知されたエラー信号との間の加えられた物理的プラントのための補償を提供する。公知のアルゴリズムは、例えば、filtered−x−LMS(FXLMS)、filtered−error−LMS(FELMS)および修正型filtered−x−LMS(MFXLM)。
【0006】
音響トランスデューサー(すなわち、拡声器)からエラー信号センサー(すなわち、マイクロフォン)までの音響伝送パス(物理的プラント)を表すモデルは、FXLMS、FELMS、MFXLMS(または他の関連される)アルゴリズムを適用するために使われる。拡声器からマイクロフォンまでのこの音響伝送パスは、通常にANCシステムの「二次パス」と呼ばれ、その一方で、ノイズソースからマイクロフォンまでの音響伝送パスは、通常にANCシステムの「一次パス」と呼ばれる。二次パスの伝送機能を識別するための対応するプロセスは、「二次パスシステム識別」と呼ばれる。
【0007】
ANCシステムの二次パスシステムの伝送機能(すなわち、周波数応答)は、適応性フィルタの収束の挙動、および従ってそれの安定の挙動、および適応の速度にかなり影響を与え得る。二次パスシステムの周波数応答(すなわち、大きさ応答および/または位相応答)は、ANCシステムの作動の間の変化に従属し得る。変わる二次パス伝送機能は、アクティブノイズコントロールの性能、特にFXLMS、FELMSまたはMFXLMSアルゴリズムによって生成された適応の速度および質に負の影響を与え得る。負の影響は、実際の二次パス伝送機能が変化に従属され、およびアクティブノイズコントロールシステム内に使われるアプリオリな別された二次パス伝送機能にもはやマッチしないとき、引き起こされる。これらの効果の全部は、ANCシステムの達成可能な減衰効果を制限する。
【0008】
さらに、特定の応用において、周波数にわたるノイズ減衰のレベルおよび位相をコントロールすることは望ましい。
【発明の概要】
【発明が解決しようとする課題】
【0009】
適応の速度および質ならびに適応性ノイズコントロールのロバスト性を維持すると同時に、選択可能なキャンセレーション特性を有する適応性ノイズコントロールに対する一般的なニーズがある。
【課題を解決するための手段】
【0010】
本発明の1つの側面によると、適応性ノイズコントロールシステムは、リスニング位置において、ノイズソースからリスニング位置までに発された音響ノイズ信号のパワーを低減するために開示される。システムは、ノイズ信号を表す電気参照信号と、リスニング位置での音響信号を表す電気エラー信号とを受信し、電気出力信号を提供する適応性フィルタと、適応性フィルタの下流に接続され、および第1のゲイン因子を掛けられた電気出力信号を表す第1の電気補償信号と、第2のゲイン因子を掛けられ、および二次パスの推定の伝送関数によってフィルタされた電気出力信号を表す第2の電気補償信号とを提供する信号処理配列であって、第2のゲイン因子が、1に第1のゲイン因子を引かれた値と等しいであり、第2の補償信号が、補償のためにエラー信号に加えられる信号処理配列と、第1の電気補償信号を受信し、およびリスニング位置に第1の電気補償信号を表す音響補償信号を発する少なくとも1つ以上の音響トランスデューサーとを含む。
【0011】
本発明のもう1つの側面によると、適応性ノイズコントロール方法は、リスニング位置において、ノイズソースからリスニング位置まで発された音響ノイズ信号のパワーを低減するために開示される。方法は、音響ノイズ信号と関連された電気参照信号を提供すること、電気出力信号を提供するために、適応性フィルタを用いて電気参照信号をフィルタすること、第1の電気補償信号を提供するために、適応性フィルタの電気出力信号に適応性の第1のゲイン因子を掛けること、第2の電気補償信号を提供するために、適応性フィルタの電気出力信号をフィルタし、およびそれに第2のゲイン因子を掛けることであって、第2のゲイン因子が、1に第1のゲイン因子を引かれた値と等しいであること、音響トランスデューサーを用いて、リスニング位置へ第1の電気補償信号を発すること、リスニング位置で残差電気エラー信号を感知すること、補償されたエラー信号を提供するために、電気エラー信号に第2の電気補償信号を加えること、および補償されたエラー信号および参照信号の関数として、適応性フィルタのフィルタ係数を適応することを含む。
【0012】
上記課題を解決するために、本発明は、例えば、以下を提供する。
(項目1)
リスニング位置において、ノイズソースから該リスニング位置まで発された音響ノイズ信号のパワーを低減するための適応性ノイズコントロールシステムであって、該システムは、
該ノイズ信号を表す電気参照信号と、該リスニング位置での音響信号を表す電気エラー信号とを受信し、電気出力信号を提供する適応性フィルタと、
該適応性フィルタの下流に接続され、および第1のゲイン因子を掛けられた該電気出力信号を示す第1の電気補償信号と、第2のゲイン因子を掛けられ、かつフィルタされた該電気出力信号を示す第2の電気補償信号とを提供する信号処理配列であって、該第2のゲイン因子が、1から該第1のゲイン因子を引いた値と等しく、該第2の補償信号が、補償のために該エラー信号に加算される、該信号処理配列と、
該第1の電気補償信号を受信し、および該リスニング位置に該第1の電気補償信号を示す音響補償信号を発する少なくとも1つ以上の音響トランスデューサーと
を含む、システム。
(項目2)
上記ゲイン因子は、複素数である、上記項目のいずれかに記載の適応性ノイズコントロールシステム。
(項目3)
上記ゲイン因子は、ターゲットノイズ信号に従って該ゲイン因子を自動的に調整するように適応された配列によってコントロール可能である、上記項目のいずれかに記載の適応性ノイズコントロールシステム。
(項目4)
上記複素数のゲインを自動的に調整するための上記配列は、推定されたノイズ信号を上記ターゲットノイズ信号と比較することと、推定されたノイズ信号と該ターゲットノイズ信号との差を評価することと、該複素数のゲインを適応することとを行うように適応される、上記項目のいずれかに記載の適応性ノイズコントロールシステム。
(項目5)
上記複素数のゲインを自動的に調整するための上記配列は、該複素数のゲイン因子の実数値と掛けられた上記推定されたノイズ信号と上記ターゲットノイズ信号との差に複素数の回転子を適用することによって、該差を評価するように適応される、上記項目のいずれかに記載の適応性ノイズコントロールシステム。
(項目6)
上記複素数のゲインを自動的に調整するための上記配列は、上記推定されたノイズ信号と上記ターゲットノイズ信号との差を平均するように適応される、上記項目のいずれかに記載の適応性ノイズコントロールシステム。
(項目7)
上記複素数のゲインを自動的に調整するための上記配列は、上記推定されたノイズ信号の偏角と上記ターゲットノイズ信号の偏角とを比較するように適応される、上記項目のいずれかに記載の適応性ノイズコントロールシステム。
(項目8)
上記信号処理配列は、少なくとも上記エラー信号を周波数領域内で処理する、上記項目のいずれかに記載の適応性ノイズコントロールシステム。
(項目9)
リスニング位置において、ノイズソースから該リスニング位置まで発された音響ノイズ信号のパワーを低減するための適応性ノイズコントロール方法であって、該方法は、
該音響ノイズ信号と相関する電気参照信号を提供することと、
電気出力信号を提供するために、適応性フィルタを用いて該電気参照信号をフィルタすることと、
第1の電気補償信号を提供するために、該適応性フィルタの該電気出力信号にゲイン因子を掛けることと、
第2の電気補償信号を提供するために、該適応性フィルタの該電気出力信号をフィルタし、およびそれに該ゲイン因子の逆数を掛けることであって、該第2のゲイン因子が、1から該第1のゲイン因子を引いた値と等しい、ことと、
音響トランスデューサーを用いて、該リスニング位置へ該第1の電気補償信号を発することと、
該リスニング位置で残差電気エラー信号を感知することと、
補償されたエラー信号を提供するために、該電気エラー信号に該第2の電気補償信号を加えることと、
該補償されたエラー信号および該参照信号の関数として、該適応性フィルタのフィルタ係数を適応することと
を含む、方法。
(項目10)
上記ゲイン因子は、ターゲットノイズ信号に従って該ゲイン因子を自動的に調整することによってコントロールされる、上記項目のいずれかに記載の適応性ノイズコントロール方法。
(項目11)
推定されたノイズ信号は、上記ターゲットノイズ信号と比較され、該推定されたノイズ信号と該ターゲットノイズ信号との差が評価され、複素数のゲインは適応される、上記項目のいずれかに記載の適応性ノイズコントロール方法。
(項目12)
上記複素数のゲインを自動的に調整することための上記配列は、該複素数のゲイン因子の実数値を掛けられた上記推定されたノイズ信号と上記ターゲットノイズ信号との差に複素数の回転子を適用することによって、該差を評価するように適応される、上記項目のいずれかに記載の適応性ノイズコントロール方法。
(項目13)
上記推定されたノイズ信号と上記ターゲットノイズ信号との差は、平均される、上記項目のいずれかに記載の適応性ノイズコントロール方法。
(項目14)
上記推定されたノイズ信号の偏角と上記ターゲットノイズ信号の偏角とは、比較される、上記項目のいずれかに記載の適応性ノイズコントロール方法。
(項目15)
少なくとも上記エラー信号は、周波数領域内に処理される、上記項目のいずれかに記載の適応性ノイズコントロール方法。
【0013】
(摘要)
ノイズソースからリスニング位置まで発された音響ノイズ信号のパワーを低減するための適応性ノイズコントロールシステムおよび方法は開示され、音響ノイズ信号と関連された電気参照信号を提供すること、電気出力信号を提供するために、適応性フィルタを用いて電気参照信号をフィルタすること、第1の電気補償信号を提供するために、適応性フィルタの電気出力信号にゲイン因子を掛けること、第2の電気補償信号を提供するために、適応性フィルタの電気出力信号をフィルタし、およびそれにゲイン因子の逆数を掛けることであって、第2のゲイン因子が、1に第1のゲイン因子を引かれた値と等しいであること、音響トランスデューサーを用いて、リスニング位置へ第1の電気補償信号を発すること、リスニング位置で残差電気エラー信号を感知すること、補償されたエラー信号を提供するために、電気エラー信号に第2の電気補償信号を加えること、および補償されたエラー信号および参照信号の関数として、適応性フィルタのフィルタ係数を適応することを含む。
【図面の簡単な説明】
【0014】
(図面の記述)
図面内の構成要素は、必ずしも等縮尺ではなく、代わりに、強調は本発明の原理を説明するのに置かれる。加えて、図面において、同様な参照数字は、対応する部分に指定する。
【図1】図1は、時間領域において、コントロール可能な減衰を有する基礎の適応性ノイズコントロールシステムのブロックダイヤグラム説明図である。
【図2】図2は、図1に示される基礎の適応性ノイズコントロールシステムのより具体的な実施形態のブロックダイヤグラム説明図である。
【図3】図3は、図2に示されるようなシステムにおいて、時間領域のゲイン因子gにわたるdBの減衰E[z]/D[z]をグラフで説明する。
【図4】図4は、図2に示されるようなシステムにおいて、時間領域のゲイン因子gにわたるE[z]/D[z]の位相をグラフで説明する。
【図5】図5は、図2に示されるように周波数領域でインプリメントされ、および周波数依存の複素数のゲイン因子Gを有する適応性ノイズコントロールシステムのブロックダイヤグラム説明図である。
【図6】図6は、図5のシステムに対して代替的な構造を説明する。
【図7】図7は、図6に応じて、ユーザー選択可能な減衰およびE[z]/D[z]の位相関係をインプリメントするために、周波数にわたって複素数のゲインGを自動的に調整するように適応されるシステムを説明する。
【図8】図8は、図7に応じて、適応複素数のゲインGの追加の位相平均を有するシステムを説明する。
【発明を実施するための形態】
【0015】
(詳細な記述)
図1は、望ましくない妨害信号d[n]に少なくとも部分的を補償し、除去または修正する補償信号を生成するための基礎の適応性ノイズコントロールシステムの信号フローを説明する。生じ得る全部の擾乱ノイズを表す音響ノイズ信号x[n](ノイズ信号を参照する)は、ノイズソース3からリスニング位置4まで一次パス1を介して発される。音響ノイズ信号x[n]は、例えば、エンジンの機械振動、エンジンと機械的に結合されるファンのような部品の音、乗り物にわたっておよび周囲に通り抜ける風、および舗装された表面に接触するタイヤによって生成される音声信号を含み得る。簡単のために、このようなノイズソースの全部は、本明細書でノイズソース3によって表される。一次パス1は、例えば、ノイズソース3からリスニング位置、すなわち、妨害ノイズd[n]信号の抑制が達成されるべきリスニングルーム内の位置、すなわち、所望の「サイレンスのポイント」までの擾乱ノイズの伝播のために、音響ノイズ信号x[n]に遅延を押し与え得る。
【0016】
さらに、音響補償信号y’’[n]は、拡声器5のようなトランスデューサーから、二次パス2に沿って、リスニング位置4まで発され、遅延された補償信号y’[n]としてリスニング位置で現れる。リスニング位置4において、妨害ノイズ信号d[n]および遅延された補償信号y’[n]は、互いに干渉し、結果として本明細書でエラー信号e[n]と呼ばれる音響エラー信号を生じる。妨害ノイズ信号d[n]と遅延された補償信号y’[n]との相互作用は、加算器6による図1に説明される信号足し算のように記述され得る。音響エラー信号e[n]は、マイクロフォン7のようなもう1つのトランスデューサーによって、(簡単のために)音響エラー信号と同様に本明細書でもエラー信号e[n]と呼ばれる電気エラー信号に伝送される。なおマイクロフォン8のようなもう1つのトランスデューサーを用いて、音響ノイズ信号は、ノイズソース3でピックアップされ、電気ノイズ信号に変換される。しかし、他のセンサーは、使われ得、音響ノイズ信号に対応する信号を生成する。エラー信号e[n]と一緒のように、音響および電気ノイズ信号はともに、本明細書の以下にノイズ信号x[n]と簡単に呼ばれる。
【0017】
信号処理配列10は、時間領域において乗算器12内に(第1)ゲイン因子g(現在の場合において実数)を掛けられた補償信号y[n]である補償信号y’’[n]を生成するように、ノイズ信号x[n]およびエラー信号e[n]を受信、かつ処理する。信号処理配列10において、補償信号y[n]は、ノイズ信号x[n]および修正されたエラー信号e[n]を受信する適応性フィルタ11によって提供される。この修正されたエラー信号e[n]は、エラー信号e[n]と修正された補償信号y[n]との足し算をする加算器13によって提供される。この修正された補償信号y[n]は、時間領域において乗算器14内に(第2)ゲイン因子1−g(第2のゲイン因子が、1に第1のゲイン因子を引かれた値と等しいである)を掛けられ、および二次パス2をモデル化し、本明細書の以下に二次パス推定フィルタ15と呼ばれるフィルタによってフィルタされる補償信号y[n]である。乗算器14内の「1−g」による掛け算は、修正されたエラー信号e[n]が、従来のANCシステムにおいて、すなわち、乗算器12がバイパスされ、および乗算器14が省略される(g=1)とき、エラー信号e[n]と同じである効果に対して、乗算器12(フィルタ15によって確立された二次パスモデルと連結する)内の「g」による掛け算を補償する。従って、適応性フィルタに提供されたエラー信号は、従来のANCシステム内と同じである。
【0018】
図1で説明された配列において、ノイズ信号x[n](「参照ノイズ信号」とも呼ばれる)と関連される信号(例えば、補償信号y’’[n])は、補償拡声器(拡声器5)を駆動するために使われる。ノイズソース3からのノイズ入力x[n]に対する「システム応答」は、コントロールシステムを介して補償拡声器にフィードバックされる少なくとも1つのマイクロフォン出力信号(エラー信号e[n])によって表される。補償拡声器は、所望の位置で実際の妨害ノイズ信号d[n]を抑制するための「アンチノイズ」(補償信号y’[n])を生成する。適応性フィルタ11は、知られる適応アルゴリズム、例えば、LMS、NLMS、RLS等を用いて、最小二乗平均の方向において信号e[n]のサイズを低減するようにアップデータされる。システムの挙動へのゲイン因子「g」の影響は、図2を参照することと共により詳細に記述される。
【0019】
図2のブロックダイヤグラムは、図1に示される基礎の適応性ノイズコントロールシステムのより具体的な実施形態を説明する。図2に説明されたシステムは、一次パス1、二次パス2、および図1に示される完全の信号処理配列10、例えば、適切なソフトウェアインプリメンテーションを有するデジタル信号プロセッサーを含む。図1に示される信号処理配列10は、適応性フィルタ11、二次パス推定フィルタ15、加算器13、および乗算器12と14を含む。適応性フィルタ11は、図2により詳細に説明されるように、適応ユニット16と、適応ユニット16によってコントロールされたコントロール可能なフィルタ17とを含む。適応ユニット16およびフィルタ17は、参照ノイズ信号x[n]を受信するフィルタ18の出力信号を供給される。フィルタ17の出力信号は、適応ユニット16に修正されたエラー信号e’[n]を提供する加算器19内の近似された妨害ノイズ信号d^[n]に加えられる。係数Wはまた、フィルタ20内にコピーされ、フィルタ20が、従って、フィルタ17が行うように伝送関数W[z]を有する。参照ノイズ信号x[n]を受信し、および補償信号y’’’[n](y’’[n])を提供するための伝送関数S^[z](近似された二次パス)を有するフィルタ21に供給される補償信号y[n]を提供する。補償信号y’’’[n]は、信号d^[n]の出力として提供する加算器22のエラー信号e[n]から引かれる。この信号d^[n]は、妨害ノイズ信号d[n]の推定であり、等式S^[z]=S[z]が保つとき、妨害ノイズ信号d[n]と等しいである。周波数領域において、これは、以下に従って、方程式
D^(z)=D(z)+Y(z)・(g・S(z)+(1−g)・S^(z)−S^(z))
=D(z)+Y(z)・G(z)・(S(z)−S^(z))
によって簡単に証明され得る。
【0020】
一次パス1は、ノイズソース3とリスニング位置4との間の信号パスの伝送特性を表す伝送関数P(z)を有する。二次パス2は、拡声器5とリスニング位置4との間の信号パスの伝送特性を表す伝送関数S(z)を有する。フィルタ17と20は、適応ユニット16によって提供されるフィルタ係数W(=W、W、W、・・・W)の最適化されたセットによってコントロールされる伝送関数W(z)を有する。伝送関数S^(z)は、二次パス伝送関数S(z)の推定である。一次パス1および二次パス2は、リスニングルームの音響特性を表す「実際」のシステムであり、他の伝送関数が、信号処理配列11内にインプリメントされる。フィルタ20は、アクティブな信号パスの一部、すなわち、拡声器5によって発されるべき実際の信号が処理されるパスである。フィルタ17は、パッシブな信号パスの一部であり、すなわち、それは、一種の「背景」、「模型」または「シェード」フィルタ構造のフィルタ係数Wを最適化するためにだけ使われる。このシステムのシェード構造は、システムの安定性を扱うのに対して、実際に有利と見つけられるべき。
【0021】
図2に説明されるシステムにおいて、ノイズ信号x[n]は、適応性フィルタ11のための「参照信号」として使われる。ノイズ信号x[n]は、例えば、マイクロフォンのような音響センサーまたは積算回転計のような非音響的センサーによって測定される。非音響的センサーを使うとき、引き出された信号は、シンセサイザー、特別のフィルタ等によって後処理され得る。適応性フィルタ11は、乗算器12のゲインgを用いた掛け算の後、二次パス2を介して、リスニング位置に発される補償信号y[n]を提供し、補償信号y[n]が修正された補償信号y’[n]としてリスニング位置に現れる。この修正された補償信号y’[n]は、遅延され参照ノイズ信号x[n]の位相に対して、約180度の位相シフトを有し、従って一次パス1からの妨害ノイズ信号d[n]と相殺的に重ね合わせる。重ね合わせの「結果」は、エラー信号e[n]として使われる測定可能な残差信号である。エラー信号e[n]に二次パス推定フィルタ15によって提供された修正された補償信号y[n]を加える後、結果として生じる修正されたエラー信号e[n]は、適応性フィルタ11のための入力として供給し得る。
【0022】
より正確的に、伝送関数W[z]の成功した適応の後、フィルタ17と18の一連の連結から結果として生じる伝送関数W(z)・S(z)は、適応プロセスのための一次パス1の伝送関数P(z)に近づき、一次パス1の出力信号d[n]と二次パス2の出力信号y’[n]とが相殺的に重ね合わせ、それによって考慮されたリスニング位置の入力信号x[n]の影響を抑制する。エラー信号e’[n]と、推定の二次パス伝送関数信号S^[z]を用いてフィルタすることによって、参照ノイズ信号x[n]から引き出されたフィルタされた参照信号x^’[n]とは、適応ユニット16に供給される。適応ユニット16は、例えば、LMSアルゴリズムを用いて、伝送関数W(z)を有するフィルタ17(およびフィルタ20)のためのフィルタ係数Wを計算し、それにより、エラー信号|e’[n]|または|e[n]|の規準は、それぞれに、相対的に小さくなり、例えば、最小化されるようにする。この最小化の最大達成可能な性能は、他にも色々ある中で例えば、二次パスの特性、使われたモデルの二次パスの質、適応性タイプおよび実際のノイズ信号の種類および特性に依存する。特別な場合「g=1」において、e[n]=e[n]は、容易に証明され得、システムは、音響領域のその十分最大の減衰性能を示す。図2のシステムの適応性フィルタ11は、伝送関数W[z]を有する追加のフィルタ20と、推定の二次パス伝送関数S^[z]を有する追加のフィルタ21を含む。「実際」の二次パス2の上流の適応性フィルタ20のフィルタ特性と、シェードフィルタ17のフィルタ特性とは、同じであり、(LMS)適応ユニット16によってアップデータされる。フィルタ21は、補償信号y[n]を受信し、二次パス出力y’’’[n](y’’[n])の推定を提供する。二次パス出力の推定、修正された補償信号y’’’[n](y’’[n])は、マイクロフォン(簡単化のために図2に示されていない)によって提供されたエラー信号e[n]に加えられ、ノイズのキャンセレーションが望まれる位置、すなわち、リスニング位置4で処理される。結果として生じる合計は、一次パス出力d[n]の推定の信号d^[n]である。(パッシブな、すなわち、アクティブに適応されない)シェードフィルタ17の出力信号、補償信号y’’[n]は、フィルタ17と20のフィルタ係数Wをアップデータするように使われる修正されたエラー信号e’[n]を提供するために、推定の信号d^[n]に加えられる。フィルタ20は、参照ノイズx[n]を受信し、その一方で、シェードフィルタ17およびLMS適応ユニット16は、フィルタされた参照ノイズ信号x^’[n]を受信する。
【0023】
g=1を仮定して、フィルタ21を含むパスは、実際の発された音響補償信号y’’[n]をモデル化するようにだけ使われる。加算器22は、音響妨害ノイズ信号d^[n]の推定、すなわち、伝送関数S^[z]の質に依存する推定の妨害ノイズ信号d^[n]を出力する。フィルタ16、17および18は、フィルタ17が推定の妨害ノイズ信号d^[n]の逆数を出力するように、推定の妨害ノイズ信号d^[n]をモデル化するように求める。さらに、伝送関数W[z]は、(それぞれのフィルタ係数Wをコピーすることによって)フィルタ17からフィルタ20内にコピーされる。そこから結果として生じる減衰は、エラーが0に近似する(e[n]→0)ように最大である。そのゆえ、減衰は、図3から理解され得るようにg=1に最大である。乗算器14およびフィルタ15を含むパスは、1−g=0のために、g=1にアクティブではない。
【0024】
図2を参照すること共に、前述のようなシステムは、g=1の場合であるノイズの全部の低減が望まれるANCシステムのようによく動く。しかし、一定程度までノイズを弱めまたはブーストするのみ、またはノイズのスペクトル構造を修正する、または両方は望ましいであり得る状況である。例えば、モーター音が、ドライバーに、モーターがオンまたはオフであるか否か、または乗り物速度のおざっぱな印象をさえ与え得るモーターの1分当りの回転(RPM)の指針のような重要なフィードバック情報を提供するゆえに、乗り物のモーター音を0に低減することは価値がない。他の応用は、いわゆる乗り物またはモーターの音の調整、すなわち、特定の音、例えば、より快適な、スポーツの、またはエレガントな乗り物またはモーターの音を生成することであり得る。従って、ここで、g≠1を仮定します。
【0025】
図2のシステムにおいて、乗算器12は、このような音の調整を許可するために、一般的なANC構造に加えられる。補償信号y[n]を用いて乗算器12によって掛けられるゲイン因子gは、達成されるべきノイズ信号x[n]の全部の減衰に対応する。適応性フィルタ11を考慮して、乗算器14は、フィルタ21の上流に接続され、および補償信号y[n]に1−gを掛けることによって、このゲイン因子gを補償する。従って、適応性フィルタ11は、g=1を有するそれと同じ方法で操作される。しかし、ゲイン因子gは、ここで、
E[z]=g・W[z]・S[z]・X[z]+D[z]
(E[z]=W[z]・S[z]・X[z]+D[z]の代わりに)
を適用するように、リスニング位置4で生じる信号e[n]に影響し、そこで、g≠1、およびE[z]が対応する時間信号e[n]等のz−変換である。しかし、コントロールループの一部のような適応性フィルタ11はなお、エラー信号e’[n]を最小化するように求める、すなわち、e’[n]→0。しかし、ゲイン因子gによって導入されるコントロールループのオフセットがある。
【0026】
S^[z]=S[z]を有する二次パスの理想なモデルと、伝送関数W[z]とS[z]の一連の連結が伝送関数P[z]にマッチすること(W[z]・S[z]=−P[z])とを仮定し、W[z]の成功した適応(e’[n]→0)の後、結果として生じる比較的な減衰値は、
Y’[z]=g・W[z]・S[z]・X[z]=−g・P[z]・X[z]=−g・D[z]
a=E[z]/D[z]=(D[z]+Y’[z])/D[z]
=(D[z]−g・D[z])/D[z]=1−g
を用いて形成され得、そこで、E[z]、D[z]、X[z]、Y[z]およびY’[z]が、周波数領域において、時間領域信号e[n]、d[n]、x[n]、y[n]およびy[n]の周波数領域を表し、gが0≦g≦∞を有する実数値のゲインである。
【0027】
さらに、ゲイン因子がg=1であることと、システムが有限の減衰が達成可能な実際の状況下で操作されることとを仮定し、理論上の最大減衰因子amax(<1)は、絶対減衰a’が最大減衰因子amaxおよび相対的な減衰|a|の両方値の最大値、
a’=max(amax,|a|)
であるように生じる。任意の相対的な減衰因子aに対して、そこで、
a=E[z]/D[z]=(D[z]+Y’[z])/D[z]
=(D[z]−g・D[z])/D[z]=1−g
および、E[z]、D[z]、X[z]、Y[z]およびY’[z]がそれぞれ、周波数領域において、時間領域信号e[n]、d[n]、x[n]、y[n]およびy[n]の周波数領域を表し、以下の操作のモードが、
【0028】
【数1】

【0029】
を適用し得る。
【0030】
減衰は、線形スケールa’(<1)かまたは対数スケールa’ab(>0)かで説明される。
【0031】
図3は、例を通して、amax=0.1の理論上の最大減衰因子を有し、図2に示されるシステムのゲイン因子gにわたる減衰をグラフで説明する。図4は、また例を通して、ゲイン因子gにわたって、図2に示されるようなシステムの位相をグラフで説明する。図4から理解されるように、減衰a=1−gの位相は、1より大きなゲイン因子gに対して、逆にされ、それによって、位相φが、
【0032】
【数2】

【0033】
になる。
【0034】
図5は、図2に示されるシステムに基づき、ただし周波数にわたってノイズまたはスペクトル音の調整の等化を許可するために周波数依存の複素数のゲイン因子G(jω)を有するように適応される適応性ノイズコントロールシステムのブロックダイヤグラム説明図であり、その中、ここで、複素数の減衰因子A(jω)が、
A(jω)=1−G(jω)=E(jω)/D(jω)
である。
【0035】
周波数依存G、すなわち、G(jω)を使うとき、Gは、システムのループアップテーブルとして、例えば、G(jω)を表す周波数依存の複素数列の数として格納され得、そこで、ωstart=startを有するωstart<ω<ωstopであり、ωstopが停止値である。
【0036】
図2のシステムに反して、図5のシステムにおいて、全信号は、時間領域ではなく、周波数領域で処理される。従って、時間領域の信号x[n]、y[n]、e[n]、y^’[n]、d^[n]、x^’[n]およびe’[n]の代わりに、周波数領域の信号X(jω)、Y(jω)、E(jω)、Y^’(jω)、D^(jω)、X^’(jω)およびE’(jω)はそれぞれに使われる。フィルタ17、18、20、21および適応ユニット16は、図2のシステムのそれぞれのフィルタと同じ挙動を示すために、応じて適応される。
【0037】
図5に示されるように、計算ユニット23は、加算器6の出力と、図2のシステムのエラー信号e[n]を受信するために指定される加算器13の出力との間に接続される。さらなる計算ユニット24は、乗算器12および二次パス2の上流と連続して接続される。最終的に、なおさらなる計算ユニット25は、フィルタ18と20の入力の上流に接続され得る。代替的に、フィルタ18と20の上流に接続され、および、例えば、モーターの1秒当たりの回転を表す信号を有するノイズソース3によってコントロールされる発振器26は使われ得る。発振器26は、例えば、モーターの1秒当たりの回転を表す信号を基本としたノイズソースによって生成されるノイズをモデル化するシンセサイザーであり得る。
【0038】
ゲイン因子G(jω)の周波数にわたる専用の振幅および位相特性は、例えば、有限のインパルス応答(FIR)フィルタまたは無限のインパルス応答(IIR)フィルタを用いて、または特定の周波数ωで読み出すために離散的複素数の値を保つための周波数領域のルックアップテーブルによってインプリメントされ得る。前の概要のように、減衰因子A(jω)は、複素数の関数A(jω)=|A|・ejφAであり、その絶対値が、
|1−G(jω)|=|A(jω)|
であり、およびその位相が、
【0039】
【数3】

【0040】
であり、そこで、Im{}が虚数部であり、Re{}が減衰因子A(jω)の実数部であり、および整数kがAの複素数の平面の象限に依存する。
【0041】
信号Y(jω)のための複素数の回転子を使い、Y(jω)・G(jω)であり、および実数操作子Re{Y(jω)・G(jω)}または決算ユニット24による時間領域の(実際の)信号に戻す逆のFFTによって伝送され得る修正する信号は提供される。修正するパスは、それでも、周波数変数が規格化された周波数ω=2・π・(f/f)である1−G(jω)と共に操作される。
【0042】
図5に示されるシステムにおいて、時間領域のエラー信号e[n]は、計算ユニット23内の高速フーリエ変換(FFT)、ヘテロダイン(HET)操作またはいわゆるGoertzelアルゴリズムによって、周波数領域エラー信号E(jω)に伝送される。
【0043】
高速フーリエ変換は、離散的フーリエ変換(DFT)およびそれらの逆数を計算するための有効な方法である。簡単な複素数の演算から群論および整数論までの数学の広い範囲を含む多数の別個のFFTアルゴリズムである。DFTは、一連の値を異なる周波数成分に分解する。この操作は、多数の分野において有用であるが、有限から直接的にそれを計算するのは、しばしば、遅すぎて実用できない。FFTは、DFTを計算し、およびDFTの有限を直接的に評価することと同じ結果を正確に生成し、唯一の異なりは、FFTがずっとより速いである。逆数のDFTがDFTとほぼ同じ操作であるゆえに、任意のFFTアルゴリズムは、それに対して簡単に適応され得る。FFTを使うことによって、本明細書に示されるような信号処理は、ブロック処理で行われるべき。このことは、信号x[n]、y[n]およびe[n]の処理に追加の遅延を導入し、およびANCシステムの劣化された性能を導く。
【0044】
周波数領域において、時間領域の信号を変換するための代替的な方法は、それをヘテロダインするようである。ヘテロダインは、有用な周波数範囲内に関心の信号を置くために2つの周期の信号を混合し、または掛け算することによる新しい周波数の生成である。本例において、エラー信号e[n]または参照ノイズ信号x[n]は、関心の周波数が0Hzに向かってシフトされ、および結果として生じる複素数の信号E(jω)が信号処理配列10のさらなる処理のために使われるように、複素数の回転子X(jω)=ejωを用いて掛けられる。このことは、例えば、
E(jω)=(cos(ω・n)+j・sin(ω・n))・e[n]
の形で行われ得、そこで、nが、この例において、デジタル時間指数であり、およびωが関心の特定信号周波数位置である。ωが人が望む任意の周波数の値を有し得ることは注意されるべき。
【0045】
適応ユニット16内に行われるLMSアルゴリズムの操作を平均するために、0Hzより他の周波数で生じる可能なほしくないノイズは抑制される。ヘテロダイン操作は、FFTと対照的に、信号の遅延を示さない。
【0046】
時間領域の信号を周波数領域の信号に変換するための他の方法は、いわゆるGoertzelアルゴリズムである。Goertzelアルゴリズムは、信号の周波数成分を識別するためのデジタル信号処理技術である。一般的な高速フーリエ変換(FFT)アルゴリズムは、入ってくる信号のバンド幅にわたって一様に計算するが、Goertzelアルゴリズムは、特定、所定の周波数を調べる。
【0047】
参照信号は、発振器26、または本例のFFTまたはGoertzelアルゴリズムのどちらかを使用する計算ユニット25のどちらかによって提供される。しかし、ヘテロダインも使われ得る。26の出力は、
X(jω)=cos(ω・n)+j・sin(ω・n)
に従って生成され得、そこで、ωが関心の周波数を表し、およびnが離散的時間指数である。
【0048】
FFTアルゴリズムを使うとき、信号(データ)のブロック的処理が必要であることは注意されるべき、このことは、追加の遅延、および従ってより遅い適応を引き起こし得る。対照的に、サンプル的処理は、Goertzelアルゴリズム内のように使用され得る。より小さい遅延を提供する他のオプションは、例えば、サンプル的処理も許可するヘテロダイン式操作に関連して、発振器を使う。
【0049】
図6は、図5のシステムに対して、乗算器12と14が単一の乗算器26によって換えられ、フィルタ15および加算器13が省略される代替的な構造を説明する。図6のシステムにおいて、信号Y(jω)は、掛けるユニット26内に複素数のゲインG(jω)を用いて掛けられる。掛けるユニット26の出力信号は、計算ユニット24およびフィルタ21に供給され、フィルタ21の出力信号、信号Y’’’(jω)が、引き算器22内に計算ユニット23によって提供されるエラー信号E(jω)から引かれる。
【0050】
図1−6に示されるような全部のシステムは、ユーザーによる予めに減衰の特性またはA(jω)=|A|・ejφAを決定させる時間または周波数領域のgゲイン因子を有する。コントロールシステムのメモリに格納される複素数のフィルタまたはルックアップテーブルG(jω)は、所望の減衰A(jω)=1−G(jω)を得るように使われ得る。ルックアップテーブルは、一定であり、およびそのように、関係式E(jω)/D(jω)=A(jω)である。信号E(jω)によって表される音響エラーは、リスナーによって知覚される。妨害ノイズ信号D(jω)は、ANCシステムが完全にスイッチを切られる場合、知覚される信号である。システムのユーザーが、事前に決定されるべき位相情報がなしに減衰|A(jω)|のみを望む場合、ルックアップテーブルは、実数値と結合される0≦G<∞を有する値G(jω)=1−|A(jω)|のみを含む。この設定と共に、位相φは、図4を参照することと共に前文に説明されるようにふるまう。複素数の値A(jω)が選択される場合、その結果、G(jω)=1−A(jω)において、次にA(jω)の振幅および位相は共に、以下のように、
【0051】
【数4】

【0052】
決定される。従って、知覚された信号E(jω)の位相は、φ=φで妨害ノイズ信号D(jω)に関連する。
【0053】
この欠点を克服し、および最終的に知覚されたエラー信号E(jω)の選択可能な位相φを提供するシステムは、図7を参照することと共に記述される。
【0054】
図7は、図6に応じて、前のニーズを達成するように(複素数の)ゲインG(jω)を自動的に調整するための追加の配列31を有するシステムを説明する。この配列31において、複素数のゲインG(jω)は、3つの位相計算ユニット27,28、29および引き算器30を含むゲインコントロールユニットによって提供される。計算器ユニット27は、リスニング位置で周波数領域(=D(jω))の妨害ノイズ信号d[n]の推定である推定のエラー信号D^(jω)に偏角関数arg{}を適用し、計算ユニット28は、ターゲットエラー信号−E_d(jω)に偏角関数arg{}を適用する。Arg{}は、複素数で操作する関数(例えば、平面として想像される)であり、ポイントをオリジンとつなぐラインと正の実数軸との間に、ポイントの偏角として知られる角度を直感的に与え、その偏角が、数を表す位置ベクトルのハーフラインと正の実数軸との間の角度(前文の方程式で概要を述べたように)である。
【0055】
計算器ユニット27の出力信号は、計算器ユニット29に新しく計算された適応ゲインの位相を表す信号arg{G_a(jω)}を供給する引き算器30によって、計算器ユニット28の出力信号から引かれ、計算器ユニット29において、操作子|G(jω)|・ej{}を用いて処理される。従って、前の絶対値|G(jω)|は再び受け取られ、しかし位相φ=arg{G(jω)}は、新しく計算され(すなわち、適応される)、「{}」によって表示される。絶対値|G(jω)|は、周波数領域のルックアップテーブルとして格納され得る。計算器ユニット29は、乗算器26に複素数のゲインG(jω)を提供する。配列31において、推定の遅延されたノイズ信号D^(jω)は、複素数のターゲットエラー信号、すなわち、−E_d(jω)と比較され、および異なりは、例えば、この異なりが一定に保たれるように複素数のゲインG(jω)を計算(適応)するために、評価配列、すなわち、計算ユニット29によって使われる。従って、推定の遅延されたノイズ信号D^(jω)および所望のエラー信号E_d(jω)は、互いに比較され、すなわち、実際の妨害ノイズ信号d[n]を表す推定の遅延されたノイズ信号D^(jω)の位相は、所望のエラー信号E_d(jω)の位相から引かれる。2つの位相の異なり(すなわち、これらの2つの複素数の信号の比率E_d(jω)/D^(jω))に基づいて、新しい複素数のゲイン因子G(jω)は、位相が適応されるのみにおいて計算される。
【0056】
前の概要を述べたように、コントロール可能な減衰A(jω)の位相および絶対値は、
A(jω)=E(jω)/D(jω)=1−G(jω)
に従って、エラー信号E(jω)および遅延されたノイズ信号D(jω)(=d[n]周波数領域にいて)に関連する。
【0057】
近似された妨害ノイズ信号D^(jω)が処理ユニット11によって推定され得る(引き算器22の出力)のとき、および所望のエラー信号E_d(jω)またはその位相arg{E_d(jω)}が、例えば、ルックアップテーブルによって容易に提供される場合、
【0058】
【数5】

【0059】
を有する適応ゲインG_a(jω)またはその位相arg{G_a(jω)}
【0060】
【数6】

【0061】
は、計算され得る。
【0062】
位相の計算で、一連のステップにおいて、システムに使われる複素数のゲインは、
G(jω,k+1)=|G(jω,k)|・e^(j・arg{G_a(jω,k)})
G(jω)=|G(jω)|・e^(j・arg{G_a(jω)})
に従って、離散的計算によって適応される。
【0063】
従って、伝送関数z^−1を有する遅延ブロックは、計算ユニット29の下流に接続され得る(示されていない)。また|G(jω)|は、ルックアップテーブルとしてシステム内に格納され得る。従って、エラー信号e[n]の位相は、リスニング位置4において妨害ノイズ信号d[n]および補償信号y’[n]の重ね合わせから生じる音声信号が所望エラー信号E_d(jω)のターゲット位相によって規定されるように所望の特性に適応されるように、変えられかつコントロールされる。合計エラー信号E(jω)は、位相
φE_d=arg{E_d(jω)}
および振幅
|E(jω)|=|(1−G(jω))・D(jω)|=|A(jω)・D(jω)|
を有する。
【0064】
2つの操作のモードは可能である。
1.位相のみは、
G(jω)=|G(jω)|・e^(j・arg{G_a(jω)})または
G(jω,k+1)=|G(jω,k)|・e^(j・arg{G_a(jω,k)})
を適応される。|G(jω)|、E_d(jω)またはarg{E_d(jω)}はルックアップテーブル内に格納される。
2.振幅および位相は、
G(jω)=G_a(jω)=1−(E_d(jω)/D^(jω))または
G(jω,k+1)=G_a(jω,k)=1−(E_d(jω)/D^(jω,k))
を適応される。E_d(jω)のみは、ルックアップテーブル内に格納され、およびE(jω)として音響的に提供される。
【0065】
図8は、図7に応じて、引き算器30と計算ユニット29との間に接続される追加の平均するユニット36を有するシステムを説明する。平均するユニット36は、引き算器30の出力と、他の入力が係数要素34(係数a)を介してラッチ35の出力に接続される加算器33の入力との間に接続される係数要素32(係数1−aを有する)を含む。ラッチ35の入力は、加算器33の出力に接続される。周波数領域において平均するための追加のユニット、ブロックまたはサンプル的処理等は、あり得る場合によって提供され得る
(図面に示されていない)。
【0066】
複素数のゲインおよび複素数のゲインを自動的に調整するための配列はまた、図1、2および5で説明されるようなシステムに関連して使われ得る。この配列は、(図1の点線g[z]によって表示されるような)適応性フィルタ内に含まれ得る。複素数のゲイン因子はまた、乗算器または分配器の代わりに、コントロール可能なフィルタによって提供され得る。さらに、本発明の範囲は、自動車の応用に制限されなくて、他の環境(例えば、ホームシネマのような消費者の応用等、およびシネマおよびコンサートホール等も)にも適応され得る。
【0067】
前述の例において、修正かつフィルタされたX最小二乗平均(MFXLMS)アルゴリズムは、例えば、FXLMSを用いた最大のステップサイズが、二次パス内に生じる遅延の逆数であるゆえに、より速い収束を提供するように使われ得る。従って、FXLMSアルゴリズムの収束遅延は、MFXLMSと対照的に、音響的な二次パスの長さを増加すること共に増加する。MFXLMSアルゴリズムを使うときに、例えば、図2のシステムにおいてフィルタ17からフィルタ20へフィルタ係数のコピーはコントロールされ得、従ってシステムが不安定になる傾向がある場合、システムを安定に保つことを許可する。
【0068】
既に述べたように、参照ノイズ信号x[n]は、音響信号または非音響的(例えば、合成される)信号であり得る。さらに、参照ノイズ信号x[n]は、時間領域のアナログ信号としてピックアップされ得、しかしブロック的(FFT)またはサンプル的(Goertzel、ヘテロダイン)に周波数領域内にデジタル的に処理され得る。エラー信号e[n]は、また、時間領域のアナログ信号としてピックアップされ得、しかしブロック的(FFT)またはサンプル的(Goertzel、ヘテロダイン)に周波数領域内にデジタル的に処理され得る。補償は、周波数領域内にブロック的またはサンプル的に処理され得、時間領域のアナログ信号として音響的に発される。(適合可能な)g因子は、時間または周波数領域で処理され得る。
【0069】
当然、当業者にとって、同じ機能を行う他の部品が適切に代わりに用いられることは明白である。本発明のコンセプトに対するこのような修正は、以下の請求項によってカバーされるつもりである。
【符号の説明】
【0070】
4 リスニング位置
5 拡声器
6、13 加算器
7、8 マイクロフォン
12、14 乗算器

【特許請求の範囲】
【請求項1】
リスニング位置において、ノイズソースから該リスニング位置まで発された音響ノイズ信号のパワーを低減するための適応性ノイズコントロールシステムであって、該システムは、
該ノイズ信号を表す電気参照信号と、該リスニング位置での音響信号を表す電気エラー信号とを受信し、電気出力信号を提供する適応性フィルタと、
該適応性フィルタの下流に接続され、および第1のゲイン因子を掛けられた該電気出力信号を示す第1の電気補償信号と、第2のゲイン因子を掛けられ、かつフィルタされた該電気出力信号を示す第2の電気補償信号とを提供する信号処理配列であって、該第2のゲイン因子が、1から該第1のゲイン因子を引いた値と等しく、該第2の補償信号が、補償のために該エラー信号に加算される、該信号処理配列と、
該第1の電気補償信号を受信し、および該リスニング位置に該第1の電気補償信号を示す音響補償信号を発する少なくとも1つ以上の音響トランスデューサーと
を含む、システム。
【請求項2】
前記ゲイン因子は、複素数である、請求項1に記載の適応性ノイズコントロールシステム。
【請求項3】
前記ゲイン因子は、ターゲットノイズ信号に従って該ゲイン因子を自動的に調整するように適応された配列によってコントロール可能である、請求項1または2に記載の適応性ノイズコントロールシステム。
【請求項4】
前記複素数のゲインを自動的に調整するための前記配列は、推定されたノイズ信号を前記ターゲットノイズ信号と比較することと、推定されたノイズ信号と該ターゲットノイズ信号との差を評価することと、該複素数のゲインを適応することとを行うように適応される、請求項2または3に記載の適応性ノイズコントロールシステム。
【請求項5】
前記複素数のゲインを自動的に調整するための前記配列は、該複素数のゲイン因子の実数値と掛けられた前記推定されたノイズ信号と前記ターゲットノイズ信号との差に複素数の回転子を適用することによって、該差を評価するように適応される、請求項4に記載の適応性ノイズコントロールシステム。
【請求項6】
前記複素数のゲインを自動的に調整するための前記配列は、前記推定されたノイズ信号と前記ターゲットノイズ信号との差を平均するように適応される、請求項4または5に記載の適応性ノイズコントロールシステム。
【請求項7】
前記複素数のゲインを自動的に調整するための前記配列は、前記推定されたノイズ信号の偏角と前記ターゲットノイズ信号の偏角とを比較するように適応される、請求項4〜6のいずれかに記載の適応性ノイズコントロールシステム。
【請求項8】
前記信号処理配列は、少なくとも前記エラー信号を周波数領域内で処理する、請求項1〜7のいずれかに記載の適応性ノイズコントロールシステム。
【請求項9】
リスニング位置において、ノイズソースから該リスニング位置まで発された音響ノイズ信号のパワーを低減するための適応性ノイズコントロール方法であって、該方法は、
該音響ノイズ信号と相関する電気参照信号を提供することと、
電気出力信号を提供するために、適応性フィルタを用いて該電気参照信号をフィルタすることと、
第1の電気補償信号を提供するために、該適応性フィルタの該電気出力信号にゲイン因子を掛けることと、
第2の電気補償信号を提供するために、該適応性フィルタの該電気出力信号をフィルタし、およびそれに該ゲイン因子の逆数を掛けることであって、該第2のゲイン因子が、1から該第1のゲイン因子を引いた値と等しい、ことと、
音響トランスデューサーを用いて、該リスニング位置へ該第1の電気補償信号を発することと、
該リスニング位置で残差電気エラー信号を感知することと、
補償されたエラー信号を提供するために、該電気エラー信号に該第2の電気補償信号を加えることと、
該補償されたエラー信号および該参照信号の関数として、該適応性フィルタのフィルタ係数を適応することと
を含む、方法。
【請求項10】
前記ゲイン因子は、ターゲットノイズ信号に従って該ゲイン因子を自動的に調整することによってコントロールされる、請求項9に記載の適応性ノイズコントロール方法。
【請求項11】
推定されたノイズ信号は、前記ターゲットノイズ信号と比較され、該推定されたノイズ信号と該ターゲットノイズ信号との差が評価され、複素数のゲインは適応される、請求項9または10に記載の適応性ノイズコントロール方法。
【請求項12】
前記複素数のゲインを自動的に調整することための前記配列は、該複素数のゲイン因子の実数値を掛けられた前記推定されたノイズ信号と前記ターゲットノイズ信号との差に複素数の回転子を適用することによって、該差を評価するように適応される、請求項11に記載の適応性ノイズコントロール方法。
【請求項13】
前記推定されたノイズ信号と前記ターゲットノイズ信号との差は、平均される、請求項11または12に記載の適応性ノイズコントロール方法。
【請求項14】
前記推定されたノイズ信号の偏角と前記ターゲットノイズ信号の偏角とは、比較される、請求項11〜13のいずれかに記載の適応性ノイズコントロール方法。
【請求項15】
少なくとも前記エラー信号は、周波数領域内に処理される、請求項9〜14のいずれかに記載の適応性ノイズコントロール方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate