説明

酸化セルロースの製造方法

【課題】 セルロース繊維を酸化し酸化セルロースを得る際に用いられるN−オキシル化合物を含む触媒を効率的に回収し、回収した触媒を再利用して経済的に酸化セルロースを製造する方法の提供。
【解決手段】 N−オキシル化合物を含む触媒の存在下でセルロース繊維を酸化して、酸化セルロースの水分散液を得る工程、及び得られた酸化セルロースの水分散液、あるいはこの酸化セルロースの水分散液から酸化セルロースを分離した後の触媒を含む反応液に、有機溶剤、吸着剤又はイオン交換樹脂を添加して、触媒又は触媒を含む水溶液を回収する工程を含む酸化セルロースの製造方法。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、酸化セルロースの製造方法に関する。
【背景技術】
【0002】
工業製品、構造材料、化粧品、食品、ガスバリヤ材料等において、機能性を付与するために表面を改質したセルロースを製造することが検討されている。
【0003】
特許文献1〜3及び非特許文献1には、N−オキシル化合物を触媒として用いセルロース繊維を酸化し、セルロースにカルボキシル基もしくはアルデヒド基を導入する方法が記載されている。しかし、いずれの文献においても、触媒を回収し、再利用して酸化セルロースを製造する方法については記載されていない。
【0004】
また、特許文献4〜8には、ニトロキシド類の存在下でセルロースを酸化させ、セルロースにカルボキシル基を導入する方法が記載されている。これらの文献はニトロキシド類の例示として使われている2,2,6,6−テトラメチル−1−ピペリジン−N−オキシル(TEMPO)を水性系から再生又は再循環(再使用)させてもよいと記載されているが、その再生方法及び再循環方法についての具体的な記載はなく、実際に再生又は再利用した実験も行われていない。
【特許文献1】特開2008−1728号公報
【特許文献2】特開2001−49591号公報
【特許文献3】特開2003−183302号公報
【非特許文献1】Bio MACROMOLECULES Volume7, Number6,2006年6月, Published by the American Chemical Society
【特許文献4】特開2003−73402号公報
【特許文献5】特開2003−89701号公報
【特許文献6】特開2003−54349号公報
【特許文献7】特開2005−68630号公報
【特許文献8】特開2005−97818号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
TEMPO等のN−オキシル化合物を触媒として用いるセルロース繊維の酸化反応において、反応後の液を再循環させて2回目の反応を行うと、N−オキシル化合物とともに、塩及び低分子量のウロン酸などの副生成物が2回目の反応に混入してしまう。さらに、蒸発等、単純に水を除去することによりN−オキシル化合物を再生しても、再生物に副生成物が混入し、純度が極めて低いN−オキシル化合物が得られる。副生成物を含むN−オキシル化合物を使用して2回目の反応を行った場合、製品への副生成物の混入量が増加し、安定な生産ができない。副生成物の量は反応回数を重ねるとともに増加してしまうため、安定した条件で酸化セルロースを連続的に生産することができない。
【0006】
従って、本発明の課題は、セルロース繊維を酸化し酸化セルロースを得る際に用いられるN−オキシル化合物を含む触媒を効率的に回収し、回収した触媒を再利用して経済的に酸化セルロースを製造する方法を提供することにある。
【課題を解決するための手段】
【0007】
本発明者らは、かかる課題に対し、有機溶剤、吸着剤もしくはイオン交換樹脂を用いてより純度の高い触媒を回収すること、また回収した触媒を再利用して効率的に酸化セルロースが製造できることを見出し、本発明を完成した。
【0008】
即ち、本発明は、下記セルロース繊維の酸化処理工程及び触媒の回収工程を含む、酸化セルロースの製造方法を提供する。
【0009】
<セルロース繊維の酸化処理工程>
N−オキシル化合物を含む触媒の存在下でセルロース繊維を酸化して、酸化セルロースの水分散液を得る工程
<触媒の回収工程>
前記酸化処理工程で得られた酸化セルロースの水分散液に対し、下記の処理a〜cから選ばれる少なくとも一つの処理を行う工程
処理a:酸化セルロースの水分散液、あるいはこの酸化セルロースの水分散液から酸化セルロースを分離した後の触媒を含む反応液に、有機溶剤を添加して触媒を抽出し、得られた触媒を溶解した有機溶剤から有機溶剤を除去して触媒又は触媒を含む水溶液を回収する工程
処理b:酸化セルロースの水分散液、あるいはこの酸化セルロースの水分散液から酸化セルロースを分離した後の触媒を含む反応液に、吸着剤を添加して触媒を吸着させ、該吸着剤から触媒又は触媒を含む溶液を回収する工程
処理c:酸化セルロースの水分散液、あるいはこの酸化セルロースの水分散液から酸化セルロースを分離した後の触媒を含む反応液に、イオン交換樹脂を添加して副生成物を除去し、触媒又は触媒を含む水溶液を回収する工程
【発明の効果】
【0010】
本発明の方法により、純度の高い触媒を回収することができ、更にその触媒を再利用することにより、酸化セルロースの生成に必要な触媒の使用量を低減できるとともに、副生成物の増加を押さえた安定な条件で酸化セルロースの製造を行うことができる。
【発明を実施するための最良の形態】
【0011】
以下、本発明の酸化セルロースの製造方法を各工程ごとに説明する。
【0012】
<セルロース繊維の酸化処理工程>
本発明におけるセルロース繊維の酸化処理工程は、N−オキシル化合物を含む触媒の存在下でセルロース繊維を酸化して、酸化セルロースの水分散液を得る工程である。
【0013】
本工程において、酸化処理を行う前のセルロース繊維は、原料となる天然セルロース繊維(絶対乾燥基準)に対して、約10−1000倍量(質量基準)の水を加え、ミキサー等で前処理を行い、スラリー化することが好ましい。
【0014】
原料となる天然セルロース繊維としては、例えば、木材パルプ、非木材パルプ、コットン、再生セルロース、バクテリアセルロース等を用いることができる。
【0015】
次にスラリー化されたセルロース繊維を、N−オキシル化合物を含む触媒の存在下で、酸化して酸化セルロースの水分散液を得る。
【0016】
本発明に用いられるN−オキシル化合物としては、特許文献2に記されている化合物、即ち、下記式(1)で表される化合物が挙げられる。
【0017】
【化1】

【0018】
(式中、環Aは、環を構成する窒素原子とともに他のヘテロ原子を有していても良い非芳香族性5又は6員環で構成された環を示す。)
N−オキシル化合物としては、2,2,6,6−テトラメチル−1−ピペリジン−N−オキシル(TEMPO)、4−アセトアミド−2,2,6,6−テトラメチル−1−ピペリジン−N−オキシルが好ましい。
【0019】
N−オキシル化合物の使用量は、原料のセルロース繊維(絶対乾燥基準)に対して、0.1〜10質量%が好ましく、0.2〜8質量%がより好ましく、0.4〜5質量%が更に好ましい。0.1質量%以上であると酸化反応が円滑に進行し、10質量%以下であると、後工程における除去負担が軽減される。
【0020】
本発明の酸化処理工程に用いられる酸化剤としては、例えば塩素,臭素,ヨウ素などのハロゲン;次亜塩素酸、次亜塩素酸ナトリウム、次亜塩素酸カリウム、次亜塩素酸リチウム、次亜臭素酸、次亜ヨウ素酸などの次亜ハロゲン酸又はその塩;亜塩素酸、亜塩素酸ナトリウム、亜塩素酸カリウム、亜塩素酸リチウム、亜臭素酸、亜ヨウ素酸などの亜ハロゲン酸又はその塩;過塩素酸、過臭素酸、過ヨウ素酸などの過ハロゲン酸又はその塩;ClO,ClO2,Cl26,BrO2,Br37などのハロゲン酸化物、NO,NO2,N23などの窒素酸化物;過酸化水素;過酢酸などの過有機酸などが挙げられる。これらの酸化剤は単独で又は二種以上組み合わせて使用できる。これら酸化剤の中では、次亜ハロゲン酸又はその塩、亜ハロゲン酸又はその塩、過ハロゲン酸又はその塩、過酸化水素、及び過有機酸からなる群から選ばれる少なくとも1種が好ましく、次亜塩素酸又はその塩がより好ましく、次亜塩素酸ナトリウムが更に好ましい。
【0021】
酸化剤の使用量は、原料のセルロース繊維(絶対乾燥基準)1gに対して、0.1〜10mmolが好ましく、1〜7mmolがより好ましく、1.4〜5mmolが更に好ましく、1.7〜4.5mmolが更により好ましい。0.1mmol以上であると酸化反応が円滑に進行し、10mmol以下であると後工程における除去負担が軽減される。
【0022】
本発明の酸化処理工程においては、酸化剤と共に臭化物又はヨウ化物を共存させることが好ましい。
【0023】
臭化物又はヨウ化物としては、例えば、臭化アンモニウム、ヨウ化アンモニウムなどのアンモニウム塩、臭化リチウム、臭化カリウム、臭化ナトリウム、ヨウ化リチウム、ヨウ化カリウム、ヨウ化ナトリウムなどの臭化アルカリ金属又はヨウ化アルカリ金属、臭化カルシウム、臭化マグネシウム、臭化ストロンチウム、ヨウ化カルシウム、ヨウ化マグネシウム、ヨウ化ストロンチウムなどの臭化アルカリ土類金属又はヨウ化アルカリ土類金属などが例示できる。これらの臭化物やヨウ化物は単独で又は二種以上組み合わせて使用できる。この中では、臭化ナトリウムが好ましい。
【0024】
臭化物又はヨウ化物の使用量は、原料のセルロース繊維(絶対乾燥基準)1gに対して、0.1〜10mmolが好ましく、0.5〜7mmolがより好ましく、0.7〜5mmolが更に好ましい。0.1mmol以上であると酸化反応が円滑に進行し、10mmol以下であると、後工程における除去負担が軽減される。
【0025】
本発明の酸化処理におけるpHは、酸化反応を効率良く進行させる点から、9〜12の範囲が好ましく、9.5〜11.5がより好ましい。
【0026】
本発明の酸化処理における温度(前記スラリーの温度)は1〜50℃が好ましく、時間は1〜300分が好ましい。
【0027】
本発明の酸化処理工程において、セルロース繊維を酸化した後は、触媒、未反応の酸化剤、副生成物等を含む酸化セルロースの水分散液が得られる。
【0028】
<触媒の回収工程>
本発明における触媒の回収工程は、前記セルロース繊維の酸化処理工程で得られた酸化セルロースの水分散液に対し、上記の処理a〜cから選ばれる少なくとも一つの処理を行う工程である。
【0029】
上記処理a〜cにおいては、酸化セルロースの水分散液、あるいはこの酸化セルロースの水分散液から酸化セルロースを分離した後の触媒を含む反応液に、有機溶剤、吸着剤又はイオン交換樹脂を添加するが、酸化セルロースの水分散液から酸化セルロースを分離した後の触媒を含む反応液にこれらを添加することが好ましい。
【0030】
酸化セルロースの水分散液から酸化セルロースを分離する方法としては、篩又は網目構造を持つ装置を用いて酸化セルロースを分離する方法、重力又は遠心力により酸化セルロースを沈降させて分離する方法等が挙げられる。
【0031】
分離した酸化セルロースから、さらに高純度の酸化セルロースを得るため、水洗や遠心脱水等の公知の精製方法を行うことが好ましい。また、必要に応じて乾燥処理を行ってもよい。
【0032】
得られる酸化セルロースは、セルロース構成単位のC6位の水酸基が選択的にカルボキシル基に酸化された構造を有する。酸化セルロースのカルボキシル基含有量は0.1〜2.0mmol/gが好ましく、0.4〜2mmol/gがより好ましく、0.5〜1.7mmol/gが更に好ましく、0.6〜1.7mmol/gが更により好ましい。酸化セルロースのカルボキシル基含有量は、実施例に記載の測定方法により、求められるものである。
【0033】
上記処理aにおいて、用いられる有機溶剤としては、副生成物の溶解量が少なく、触媒を溶解する有機溶剤であれば、特に限定されない。有機溶剤の具体例として、例えばエタノール、メタノール、プロパノール等のアルコール系溶剤;アセトン等のケトン系溶剤;アミルベンゼン、エチルベンゼン、オクタン、ガソリン、キシレン、シクロヘキサン、シクロペンタン、ジメチルナフタレン、樟脳油、スチレン、石油エーテル、石油ベンジン、ソルベントナフサ、デカリン、デカン、テトラリン、テレピン油、トルエン、ナフタレン、ノナン、ピネン、ヘキサン、ヘプタン、ベンゼン、ペンタン、メシチレン、リグロイン、流動パラフィン等の炭化水素系溶剤;塩化イソプロピル、塩化ナフタレン、塩化ブチル、塩化メチレン、クロロホルム、四塩化炭素、クロロベンゼン、臭化エチル等のハロゲン化炭化水素系溶剤;超臨界二酸化炭素、超臨界形質炭化水素、超臨界無機ガス、超臨界アルコール等の超臨界流体(亜臨界流体も含む)が挙げられる。これら有機溶剤は複数使用しても良く、超臨界流体にエタノール等のエントレーナーを添加しても良い。
【0034】
これらの有機溶剤の中では、触媒を溶解した有機溶剤の分離工程の負荷を軽減するため、水と相分離する低極性又は無極性の有機溶剤であることが好ましく、炭化水素系溶剤がより好ましく、脂肪族炭化水素系溶剤が更に好ましい。
【0035】
使用する有機溶剤の量は、使用した触媒を十分に溶解する量であれば特に限定されない。使用する有機溶剤と水への触媒の分配率を求めることにより、必要有機溶剤量を求めることができる。分配率は、水と有機溶剤中の触媒濃度を、例えば実施例記載の方法を用いることにより求めることができる。
【0036】
処理aにおいては、有機溶剤を添加して触媒を抽出した後、触媒を溶解した有機溶剤を、副生成物を含む水から分離する。分離は、水と相分離する有機溶剤を用いた場合には、例えば分液漏斗やソックスレー抽出機などの抽出機により行うことができる。水と相分離し難い有機溶剤を用いた場合には、遠心分離により分離を行うことができる。
【0037】
以上の抽出操作は繰り返し行ってもよい。抽出及び分離を行う装置としては、例えば、スプレー塔、充填塔、バッフル塔、多孔板抽出塔、オリフィス塔、フローミキサー等の非動力式抽出装置、ミキサーセトラー抽出装置、シャイベル塔、回転円板抽出塔、オルドシュー−ラシュトン塔(ミクスコ塔)、ARD塔(ルーワ抽出機)、クーニ塔等の攪拌式抽出装置、脈動充填塔、脈動多孔板塔、振動版塔(カール塔)などの脈動式・振動式抽出装置、ポドビルニアク抽出機、ルウェスタ抽出機等の遠心式抽出装置、超臨界抽出装置等が挙げられる。
【0038】
次に、触媒を溶解した有機溶剤から、有機溶剤を除去して触媒単体又は触媒水溶液を得る。触媒濃度が触媒の溶解度以下になるまで有機溶剤を蒸発又は降温又は減圧して触媒を析出させ、析出した触媒と有機溶剤を分離することで、触媒単体を回収することができる。有機溶剤を完全に蒸発させて触媒単体を得ても良い。
【0039】
また、触媒を溶解した有機溶剤に新たに水を添加し、有機溶剤を蒸留することにより触媒水溶液を得ても良い。蒸留の方法としては、単蒸留、連続多段蒸留、充填塔による連続蒸留があげられる。エントレーナーを添加して蒸留しても良い。
【0040】
上記処理bにおいて、使用する吸着剤としては、酸化セルロースを吸着せず、触媒を吸着する吸着剤であれば、特に限定されないが、N−オキシル化合物の吸着性の観点から、疎水性の強い吸着剤が好ましい。
【0041】
吸着剤の具体例として、活性炭などの炭素、シリカ、ゼオライト、アルミナ、その他の金属、酸化物等の無機吸着剤、スチレン−ジビニルベンゼン系、Br導入スチレン−ジビニルベンゼン系、アクリル系、メタクリル酸エステル系、C18基導入脂肪族系等の有機吸着剤が挙げられる。これら吸着剤は複数種使用しても良い。
【0042】
吸着剤の形体は特に限定されないが、粒状、板状などが挙げられる。粒状の場合、粒径は特に限定されないが、0.01〜50000μmが好ましく、0.1〜20000μmがより好ましい。吸着界面を増加する観点から、吸着剤は多孔質粒子であることが望ましい。多孔質粒子の平均孔径は特に限定されないが、粒径の1/10以下が好ましく、1/100以下がより好ましい。
【0043】
使用する吸着剤の量は、使用した触媒を十分に吸着する量であれば特に限定されない。触媒の吸着量は、吸着剤と接触前後の液中の触媒濃度を、例えば実施例記載の方法を用いて測定することにより、求めることができる。
【0044】
触媒を吸着剤に吸着させる方法としては、固定層吸着、擬似移動層吸着、移動層吸着、流動層吸着、攪拌層吸着などの方法が挙げられる。攪拌層吸着を行った場合には、フィルターや篩、重力、遠心力等の方法により触媒が吸着した吸着剤を分離できる。以上の吸着操作は複数回行ってもよい。
【0045】
触媒の吸着した吸着剤から触媒を回収する方法としては、昇温して吸着剤から触媒を脱離させる熱回収法、圧力を下げて吸着剤から触媒を脱離させる減圧回収法、不活性ガスを流して吸着剤から触媒を脱離させるパージ回収法、溶媒を加える置換回収法などが挙げられる。これらの回収法を二種以上用いてもよい。
【0046】
熱回収法、減圧回収法、パージ回収法を用いた場合には、触媒単体が吸着剤から脱離されることにより、触媒を回収することができる。置換回収法を用いた場合には、用いた溶媒(以下溶離液と呼ぶ)から触媒を回収する。溶離液としては、吸着剤を溶解せず、触媒を溶解すれば特に限定はされないが、例えば水、リン酸緩衝液、クエン酸緩衝液、エタノール、メタノールなどのアルコール類等の溶媒が挙げられる。これらの溶媒を2種類以上混合して使用しても良い。触媒の溶解性、すなわち溶離液中の触媒濃度は、例えば実施例記載の方法により確認することができる。溶離液の回収方法としては、吸着剤と溶離液の混合物からフィルターもしくは篩もしくは重力、遠心力により吸着剤と溶離液を分離して回収してもよく、カラム等に充填された吸着剤に溶離液を流通させて回収してもよい。次に触媒の溶解した溶離液から触媒を回収するには、触媒濃度が触媒の溶解度以下になるまで溶離液を蒸発又は降温又は減圧して触媒を析出させ、析出した触媒と溶離液を分離することで、触媒単体を回収することができる。溶離液を完全に蒸発させて触媒単体を得ても良い。
【0047】
リン酸緩衝液、クエン酸緩衝液等の水溶液を用いた場合には、処理cに示すイオン交換樹脂により、触媒と水以外の成分を除去して触媒水溶液を得てもよい。アルコール類を用いた場合には、溶離液に新たに水を添加し、溶離液を蒸留することにより触媒水溶液を得ても良い。蒸留の方法としては、単蒸留、連続多段蒸留、充填塔による連続蒸留があげられる。エントレーナーを添加して蒸留しても良い。
【0048】
上記処理cにおいて、使用するイオン交換樹脂としては、触媒の吸着量が少なく、副生成物の吸着量が多いイオン交換樹脂であれば、特に限定されない。このようなイオン交換樹脂として、例えば酸性カチオン交換樹脂と塩基性アニオン交換樹が挙げられる。酸性カチオン交換樹脂としては、例えばスチレン−ジビニルベンゼン系等の架橋ポリマーにSO3-Na+、COOH等の官能基を導入した樹脂が挙げられる。塩基性アニオン交換樹脂としては、例えばスチレン−ジビニルベンゼン系等の架橋ポリマーにN+(CH3)3Cl-、N+(CH3)2C2H4OHCl-、NH(C2H4NH)n、N(CH3)2等の官能基を導入した樹脂が挙げられる。これらのイオン交換樹脂は、二種以上用いてもよい。
【0049】
イオン交換樹脂の平均粒径は特に限定されないが、0.01〜50000μmが好ましく、0.1〜20000μmがより好ましい。表面積を増加させる観点から、粒径の1/10以下の細孔、好ましくは粒径の1/100以下の細孔を持つ多孔質体であることが望ましい。
【0050】
水分散液又は反応液にイオン交換樹脂を添加する方法としては、水分散液又は反応液にイオン交換樹脂を添加する回分式、カラム等に充填して水分散液又は反応液を流通させるカラム法(塔方式)等が挙げられる。カラム法としては、固定層方式、移動層方式、多段流動層による連続方式等が挙げられる。回分式を行った場合には、フィルターや、篩、重力、遠心力等の方法によりイオン交換樹脂から触媒水溶液を分離できる。以上の吸着操作は複数回行ってもよい。
【0051】
得られた触媒水溶液は、適宜水を乾燥させて所望の濃度の触媒水溶液にしてもよく、触媒濃度が触媒の溶解度以下になるまで溶離液を蒸発又は降温又は減圧して触媒を析出させ、触媒単体を回収、保存してもよい。水を完全に蒸発させて触媒単体を得ても良い。
【0052】
本発明の触媒回収工程において、処理a〜cは、それぞれの処理を単独で、又は2つ以上併用して適用することができる。また、触媒の回収率を向上させるため、分離した酸化セルロースの水洗による精製の際に用いた水に対しても、処理a〜cを適用してもよい。
【0053】
上記処理a〜cにおいて、酸化セルロースを分離せずに酸化セルロースの水分散液に、有機溶剤、吸着剤又はイオン交換樹脂を添加して処理する場合には、上記のような触媒の回収処理を行った後に酸化セルロースの分離を行う。この際にも、分離した酸化セルロースに対し、上記の精製方法により精製を行い、高純度の酸化セルロースを得ることができる。この場合、触媒の回収処理を行った液から酸化セルロースを分離する負荷を低減する観点から、処理aの方法を用いることが好ましい。
【0054】
上記のような触媒の回収工程で回収した触媒又は触媒を含む溶液は、副生成物の含有量が低く、高純度である。従って、セルロース繊維の酸化処理に効率的に再利用することができる。
【0055】
回収した触媒又は触媒を含む溶液を再利用する際には、回収した触媒単体を水に溶解させるか、又は回収した触媒水溶液を利用し、該触媒水溶液に、酸化剤及び原料となるセルロース繊維、更に必要により臭化物又はヨウ化物を添加し、前記酸化処理工程と同様の方法でセルロース繊維の酸化を行うことができる。必要に応じて触媒を新たに加えて触媒濃度を濃くしてもよく、水を添加して薄めてもよい。
【0056】
この再利用工程で得られた反応液から前記と同様の触媒の回収工程を行うことで、再度触媒を回収し、再利用することができる。すなわち、触媒は以降繰り返し使用が可能となる。
【実施例】
【0057】
以下の実施例において、使用した測定方法は、次のとおりである。
【0058】
(1)酸化パルプ(酸化セルロース)のカルボキシル基含有量(mmol/g)
酸化パルプを真空乾燥機により室温で乾燥し、絶乾酸化パルプを得た。該絶乾酸化パルプ約0.5gを100mlビーカーにとり、イオン交換水を加えて全体で55mlとし、そこに0.01M塩化ナトリウム水溶液5mlを加えて0.83質量%酸化パルプ懸濁液とし、酸化パルプが十分に分散するまでスタラーにて攪拌した。そして、0.1M塩酸を加えてpH2.5〜3.0としてから、自動滴定装置(AUT-501、東亜デイーケーケー(株)製)を用い、0.05M水酸化ナトリウム水溶液を待ち時間60秒の条件で注入し、酸化パルプ懸濁液の1分ごとの電導度とpHの値を測定し、pH11程度になるまで測定を続けた。そして、得られた電導度曲線から、水酸化ナトリウム滴定量を求め、酸化パルプのカルボキシル基含有量を算出した。
【0059】
(2)TEMPO濃度(ppm)
TEMPOを水に溶解し、500ppmTEMPO水溶液を作製した。更に該水溶液を希釈することにより、250ppm、100ppm、33ppmのTEMPO水溶液を作製した。紫外可視分光光度計(UV-1700、(株)島津製作所製)により各水溶液の吸収スペクトルを800nm〜200nmの範囲で測定し、249nmに存在するTEMPOの吸収ピーク高さ(吸光度)から検量線を得た。測定には光路長1mmの石英セルを用いた。
【0060】
TEMPOをエタノール及びヘキサンにそれぞれ溶解し、上記の水の検量線の作成方法と同様の方法で、エタノール溶液に対する検量線、ヘキサン溶液に対する検量線をそれぞれ得た。
【0061】
反応液や回収液の吸収スペクトルを、上記検量線の作成時に用いた方法と同様の方法で測定し、249nmの吸収ピークの有無とその吸収ピーク高さ(吸光度)を測定することにより、得られた検量線から各溶液中に含まれるTEMPO濃度を求めた。
【0062】
なお、副生成物である低分子量のウロン酸は220nm以下に吸収を持つため、上記スペクトルの測定より、反応液及び回収液中のウロン酸の有無も確認できる。
【0063】
(3)固形分濃度(質量%)とTEMPO純度(%)
反応液又は回収液中の固形分濃度を測定するため、反応液又は回収液1.5gを精密天秤で容器内に量りとった。次に真空乾燥機を用いて105℃で溶媒を絶乾させ、副生成物を析出させた。溶媒が水である場合には、乾燥前に予め絶乾させた硫酸ナトリウム10gを加えて真空乾燥機中(105℃)で芒硝乾燥させた。
【0064】
容器全体の重量の増加量を精密天秤で測定し、これを副生成物と触媒の和である固形分量とした。なお、精密天秤で定量可能である最低固形分量は1mgである。固形分濃度は該固形分量を仕込み重量(1.5g)で除することにより算出される。固形分濃度は同じ溶液から3回測定し、その平均値を測定値とした。
【0065】
乾燥前の各溶液中のTEMPO濃度を(2)で示した方法で求め、該TEMPO濃度を固形分濃度で割ることにより、固形分中のTEMPO濃度、すなわちTEMPO純度を求めることができる。
【0066】
実施例1
(1) セルロース繊維の酸化処理工程
セルロース繊維原料として、針葉樹の漂白クラフトパルプ(製造会社:フレッチャー チャレンジ カナダ、商品名「Machenzie」、CSF650ml)を用いた。
【0067】
まず、上記の針葉樹の漂白クラフトパルプ繊維40gを3960gのイオン交換水で十分攪拌し、ある程度解繊した。その後、パルプ質量40gに対し、TEMPO(製造会社:ALDRICH、Free radical 98質量%)が3.71質量%となる量、臭化ナトリウム(和光純薬工業(株))3.6mmol/g−パルプ、次亜塩素酸ナトリウム(和光純薬工業(株),Cl濃度5質量%)1.88mmol/g−パルプをこの順で添加した。その後、pHスタッドを用い、0.5M水酸化ナトリウムにて滴下を行い、pHを10.5、温度25℃に保持し、60分間酸化反応を行い、酸化パルプを得た。さらに目開き90μmの篩いを用いて、反応液と酸化パルプとを分離した。
【0068】
分離した酸化パルプをイオン交換水にて十分に洗浄し、脱水処理を行った。さらに該酸化パルプを真空乾燥機にて絶乾させ、先に示した方法でカルボキシル基含有量を測定したところ、0.91mmol/g−パルプであった。
【0069】
次に反応液中のTEMPO濃度及び固形分濃度を測定したところ、それぞれ327ppm及び1.27%であった。すなわち反応液中に含まれるTEMPO純度は2.57%であった。また、反応液の吸収スペクトルは220nm以下の吸収が大きく、ウロン酸が存在することが認められた。
【0070】
(2) 触媒の回収工程
(1)で得られた酸化パルプを分離した反応液300gにn-ヘキサン(純度96%以上、和光純薬工業(株)製)300gを添加して、30分間攪拌を行い、TEMPOを抽出した。攪拌後、混合液を静置し、水とヘキサンを二相分離させてヘキサン相を得た。
【0071】
ヘキサン相中のTEMPO濃度を測定したところ245ppmであり、220nm以下のウロン酸由来の吸収はほとんど観察されなかった。ヘキサン相1.5g中の固形分量は定量限界以下(1mg)であった。すなわち、固形分量は0.067質量%以下であり、ヘキサンで回収したTEMPOの純度は最低でも36.8%である。
【0072】
なお、抽出後の水相側の吸収スペクトルからは、TEMPO由来の249nmの吸収ピークは観察されず、220nm以下のウロン酸由来の吸収のみ観察された。
【0073】
該ヘキサン相280gにイオン交換水70gを添加し、ウォーターバスを用いて該混合液の温度を70℃とし、混合液を攪拌しながらヘキサンを蒸発させ、TEMPO水溶液を得た。水溶液中のTEMPO濃度は919ppmであり、220nm以下のウロン酸由来の吸収はほとんど観察されなかった。
【0074】
(3)触媒の再利用工程
以下に示すパルプ原料、試薬は全て(1)の酸化処理工程で用いたものと同じ原料、試薬を用いた。
【0075】
まず、漂白クラフトパルプ繊維2.0gを148gのイオン交換水で十分攪拌し、ある程度解繊した。その後、パルプ質量2.0gに対し、(2)の回収工程で得られたTEMPO水溶液(TEMPO濃度919ppm)50g、臭化ナトリウム3.6mmol/g−パルプ、次亜塩素酸ナトリウム(Cl濃度5質量%)1.88mmol/g−パルプをこの順で添加した。その後、pHスタッドを用い、0.5M水酸化ナトリウムにて滴下を行い、pHを10.5、温度25℃に保持し、60分間酸化反応を行い、酸化パルプを得た。反応液から前記酸化パルプを目開き90μmの篩いで分離した。
【0076】
分離した酸化パルプをイオン交換水にて十分に洗浄し、脱水処理を行った。さらに該酸化パルプを真空乾燥機にて絶乾させ、先に示した方法でカルボキシル基含有量を測定したところ、0.95mmol/g−パルプであった。
【0077】
次に反応液中のTEMPO濃度及び固形分濃度を測定したところ、それぞれ215ppm及び1.10質量%であった。すなわちTEMPO純度は1.95%である。
【0078】
すなわち、再利用工程で得られた酸化セルロースも、再利用工程の反応液中の副生成物を含む固形分濃度も、(1)の酸化処理工程で得られた値と同程度であった。
【0079】
実施例2
(1) セルロース繊維の酸化処理工程
実施例1の(1)と同様にしてセルロース繊維の酸化処理を行った。
【0080】
(2) 触媒の回収工程
合成吸着剤(HP20、三菱化学(株)製)をイオン交換水で十分に洗浄し、吸着剤の表面を活性化させた。洗浄後に得られた水を含む合成吸着剤の水分量を赤外線水分計(FD230、株式会社ケット科学研究所製)で測定したところ、72%であった。
【0081】
(1)で得られた酸化パルプを分離した反応液300gに、前記合成吸着剤(水分量72%)105gを添加して、十分に攪拌した。その後、目開き90μmの篩いで合成吸着剤を反応液から分離した。合成吸着剤を分離した後の反応液からは、TEMPO由来の249nmの吸収ピークは観察されず、220nm以下のウロン酸由来の吸収のみ観察された。
【0082】
分離した合成吸着剤105gにエタノール(純度99.5%以上、関東化学(株)製)300gを添加し、よく攪拌した。その後、液を静置して合成吸着剤を沈降させ、上澄みのエタノール溶液を回収した。回収したエタノール溶液中のTEMPO濃度及び固形分濃度を測定したところ、それぞれ236ppm及び0.127%であった。すなわち反応液中に含まれるTEMPO純度は18.6%であった。また、反応液の吸収スペクトルは220nm以下の吸収が小さく、ウロン酸の量が低下していることが認められた。
【0083】
実施例3
(1) セルロース繊維の酸化処理工程
実施例1の(1)と同様にしてセルロース繊維の酸化処理を行った。
【0084】
(2) 触媒の回収工程
酸性イオン交換樹脂と塩基性イオン交換樹脂の混合樹脂(SNMUP、三菱化学(株)製)をイオン交換水で十分に洗浄し、イオン交換樹脂の表面を活性化させた。洗浄後に得られた水を含むイオン交換樹脂の水分量を赤外線水分計(FD230、株式会社ケット科学研究所製)で測定したところ、68%であった。
【0085】
(1)で得られた酸化パルプを分離した反応液300gに、前記イオン交換樹脂(水分量68%)105gを添加して、十分に攪拌した。その後、液を静置してイオン交換樹脂を沈降させ、上澄み液を回収した。
【0086】
上澄み液中のTEMPO濃度を測定したところ217ppmであり、220nm以下のウロン酸由来の吸収は小さかった。上澄み液1.5g中の固形分量は定量限界以下(1mg)であった。すなわち、固形分量は0.067質量%以下であり、上澄み液で回収されたTEMPOの純度は最低でも32.4%である。
【0087】
比較例1
実施例1の(1)の酸化処理工程で得られた反応液を用いて、触媒の回収工程を行わずに下記に示す再利用工程を行った。
なお、再利用工程では、パルプ原料、試薬はすべて実施例1の(1)で用いたものと同じ原料、試薬を用いた。
【0088】
まず、漂白クラフトパルプ繊維3.0gを60gのイオン交換水で十分攪拌し、ある程度解繊した。その後、パルプ質量2.0gに対し、酸化処理工程の反応液(TEMPO濃度327ppm)237g、臭化ナトリウム3.6mmol/g−パルプ、次亜塩素酸ナトリウム(Cl濃度5質量%)1.88mmol/g−パルプをこの順で添加した。その後、pHスタッドを用い、0.5M水酸化ナトリウムにて滴下を行い、pHを10.5、温度25℃に保持し、60分間酸化反応を行い、酸化パルプを得た。反応液から前記酸化パルプを目開き90μmの篩いで分離した。
【0089】
分離した酸化パルプをイオン交換水にて十分に洗浄し、脱水処理を行った。さらに該酸化パルプを真空乾燥機にて絶乾させ、先に示した方法でカルボキシル基含有量を測定したところ、0.86mmol/g−パルプであった。
【0090】
次に反応液中のTEMPO濃度及び固形分濃度を測定したところ、それぞれ258ppm及び2.15%であった。すなわち反応液中に含まれるTEMPOの純度は1.20%であった。また、反応液の吸収スペクトルは220nm以下の吸収が大きく、ウロン酸が存在することが認められた。
【0091】
すなわち、再利用工程で得られた酸化パルプのカルボキシル基含有量は最初に行った酸化処理工程で得られた酸化パルプの値と同程度であったが、副生成物が約2倍に増加し、反応液中の固形分濃度が増加してTEMPO純度が低下した。
【0092】
実施例1〜3及び比較例1の反応条件の結果をまとめて表1に示す。
【0093】
【表1】


【特許請求の範囲】
【請求項1】
下記セルロース繊維の酸化処理工程及び触媒の回収工程を含む、酸化セルロースの製造方法。
<セルロース繊維の酸化処理工程>
N−オキシル化合物を含む触媒の存在下でセルロース繊維を酸化して、酸化セルロースの水分散液を得る工程
<触媒の回収工程>
前記酸化処理工程で得られた酸化セルロースの水分散液に対し、下記の処理a〜cから選ばれる少なくとも一つの処理を行う工程
処理a:酸化セルロースの水分散液、あるいはこの酸化セルロースの水分散液から酸化セルロースを分離した後の触媒を含む反応液に、有機溶剤を添加して触媒を抽出し、得られた触媒を溶解した有機溶剤から有機溶剤を除去して触媒又は触媒を含む水溶液を回収する工程
処理b:酸化セルロースの水分散液、あるいはこの酸化セルロースの水分散液から酸化セルロースを分離した後の触媒を含む反応液に、吸着剤を添加して触媒を吸着させ、該吸着剤から触媒又は触媒を含む溶液を回収する工程
処理c:酸化セルロースの水分散液、あるいはこの酸化セルロースの水分散液から酸化セルロースを分離した後の触媒を含む反応液に、イオン交換樹脂を添加して副生成物を除去し、触媒又は触媒を含む水溶液を回収する工程
【請求項2】
触媒の回収工程で回収した触媒又は触媒を含む溶液を用い、再度セルロース繊維の酸化処理を行う請求項1記載の酸化セルロースの製造方法。
【請求項3】
酸化セルロースが、セルロース繊維を構成するセルロースのカルボキシル基含有量が0.1〜2.0mmol/gの酸化セルロースである請求項1又は2記載の酸化セルロースの製造方法。
【請求項4】
N−オキシル化合物が、2,2,6,6−テトラメチル−1−ピペリジン−N−オキシルである請求項1〜3いずれかに記載の酸化セルロースの製造方法。
【請求項5】
セルロース繊維の酸化剤が、次亜ハロゲン酸又はその塩、亜ハロゲン酸又はその塩、過ハロゲン酸又はその塩、過酸化水素、及び過有機酸からなる群から選ばれる少なくとも1種である請求項1〜4いずれかに記載の酸化セルロースの製造方法。