説明

顕微鏡

【課題】異なる波長の光を標本上に照射して得られた複数の画像について、その位置ずれを防止することができる顕微鏡を提供する。
【解決手段】レーザ光および照明光を標本Aに照射する対物レンズ31と、レーザ光が照射されることで標本Aから発せられる第1の観察光を検出する第1の検出光学系10と、照明光が照射されることで標本Aから発せられる第2の観察光を検出する第2の検出光学系20と、第1の観察光と第2の観察光とを分岐する複数の光学素子18aと、複数の光学素子18aを択一的に切り替える回転ターレット18bと、光学素子18aの切り替えによって発生する第1の観察光と第2の観察光との相対的な位置ずれに関する補正情報を記憶する記憶部32と、記憶部32に記憶された補正情報に基づいて第1の観察光と第2の観察光との相対的な位置ずれを補正する制御部33とを備える顕微鏡1を採用する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、顕微鏡に関するものである。
【背景技術】
【0002】
従来、光走査手段と撮像手段(CCD)とを備え、光走査手段により試料上でレーザ光を2次元走査して得られた画像と、撮像手段により試料からの戻り光を撮像して得られた画像とを重ね合わせることで、合成画像を取得する顕微鏡が知られている(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開平11−231223号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1に開示されている顕微鏡において、光走査手段により用いるレーザ光や撮像手段により用いる照明光の波長に応じて、光路上に配置する光学素子(例えば、レーザ走査による観察光学系と撮像手段による観察光学系とを分離するダイクロイックビームスプリッタ等)についても、最適なものに切り換えたり、交換する必要が生じる。
【0005】
しかしながら、これら光学素子は、反射角度や折返し位置の固体差があるため、切り換えや交換の際にレーザ光や照明光の光軸がずれてしまう。その結果、光走査手段により試料上でレーザ光を2次元走査して得られた画像と、撮像手段により試料からの戻り光を撮像して得られた画像とに位置ずれが発生してしまうという不都合があった。
【0006】
本発明は、上述した事情に鑑みてなされたものであって、異なる波長の光を標本上に照射して得られた複数の画像について、その位置ずれを防止することができる顕微鏡を提供することを目的とする。
【課題を解決するための手段】
【0007】
上記目的を達成するために、本発明は以下の手段を採用する。
本発明は、第1の照明光および第2の照明光を標本に照射する照射光学系と、該照射光学系により前記第1の照明光が照射されることで前記標本から発せられる第1の観察光を検出する第1の検出光学系と、前記照射光学系により前記第2の照明光が照射されることで前記標本から発せられる第2の観察光を検出する第2の検出光学系と、前記第1の観察光と前記第2の観察光とを分岐する複数の光学素子と、複数の前記光学素子を択一的に切り替える切替手段と、該切替手段による前記光学素子の切り替えによって発生する前記第1の観察光と前記第2の観察光との相対的な位置ずれに関する補正情報を記憶する記憶手段と、該記憶手段に記憶された前記補正情報に基づいて前記第1の観察光と前記第2の観察光との相対的な位置ずれを補正する補正手段とを備える顕微鏡を採用する。
【0008】
本発明によれば、照射光学系により第1の照明光が照射されることで、第1の観察光が標本から発せられる。一方、照射光学系により第2の照明光が照射されることで、第2の観察光が標本から発せられる。この際、切替手段により複数の光学素子が択一的に切り替えられ、第1の観察光と第2の観察光のそれぞれの波長に応じた光学素子が光路上に配置される。これにより、第1の観察光と第2の観察光は、光学素子により分岐され、第1の検出光学系と第2の検出光学系によりそれぞれ検出される。
【0009】
この場合において、光学素子の反射角度や折返し位置の固体差により、第1の観察光と第2の観察光の光軸がずれてしまい、第1の観察光による画像と第2の観察光による画像とに位置ずれが発生してしまう。そこで、切替手段による光学素子の切り替えによって発生する第1の観察光と第2の観察光との相対的な位置ずれに関する補正情報を記憶手段に予め記憶しておき、補正手段により、該補正情報を用いて第1の観察光と第2の観察光との相対的な位置ずれを補正する。これにより、位置ずれのない複数の画像(第1の観察光による画像と第2の観察光による画像)を取得することができる。これにより、例えば、2つの蛍光画像(第1の観察光による画像と第2の観察光による画像)を、標本上の対応位置を一致させて表示することができる。
【0010】
上記発明において、前記第1の照明光を前記標本上で2次元走査する走査手段を備え、前記補正手段が、前記記憶手段に記憶された前記補正情報に基づいて前記走査手段を動作させることとしてもよい。
このようにすることで、記憶手段に記憶された補正情報に基づいて走査手段を動作させることによって、第1の観察光による2次元走査画像と第2の観察光による画像との相対的な位置ずれを補正することができる。
【0011】
上記発明において、前記第1の照明光を前記標本上で2次元走査する走査手段を備え、前記走査手段が、共振型ガルバノミラーを有し、前記補正手段が、前記共振型ガルバノミラーを回転させることとしてもよい。
走査手段に共振型ガルバノミラーを用いることで、標本の2次元走査画像を高速に取得することができる。但し、共振型ガルバノミラーでは、第1の観察光の光軸の微調整を行うことができない。そこで、共振型ガルバノミラーを回転させることで、第1の観察光の光軸の微調整を行うことができ、第1の観察光による2次元走査画像と第2の観察光による画像との相対的な位置ずれを補正することができる。
【0012】
上記発明において、前記第1の照明光を前記標本上で2次元走査する走査手段を備え、前記走査手段が、共振型ガルバノミラーを有し、前記補正手段が、前記共振型ガルバノミラーの走査方向と同一方向に角度変更可能なミラーを動作させることとしてもよい。
このようにすることで、ミラーを共振型ガルバノミラーの走査方向と同一方向に角度変更させることによって、第1の観察光の光軸の微調整を行うことができ、第1の観察光による2次元走査画像と第2の観察光による画像との相対的な位置ずれを補正することができる。また、走査手段に共振型ガルバノミラーを用いることで、標本の2次元走査画像を高速に取得することができる。
【0013】
上記発明において、前記第2の検出光学系の検出手段がCCDであり、前記補正手段が、前記記憶手段に記憶された前記補正情報に基づいて前記CCDの取得画像の視野中心位置を調節することとしてもよい。
このようにすることで、記憶手段に記憶された補正情報に基づいてCCDの取得画像の視野中心位置を調節することによって、第1の観察光による画像と第2の観察光による画像との相対的な位置ずれを補正することができる。また、第2の検出光学系の検出手段をCCDとすることで、標本の2次元画像を高速に取得することができる。
【発明の効果】
【0014】
本発明によれば、異なる波長の光を標本上に照射して得られた複数の画像について、その位置ずれを防止することができるという効果を奏する。
【図面の簡単な説明】
【0015】
【図1】本発明の第1の実施形態に係る顕微鏡の概略構成図である。
【図2】図1のガルバノスキャナの模式図である。
【図3】本発明の第2の実施形態に係る顕微鏡の概略構成図である。
【図4】図3の共振型ガルバノスキャナの模式図である。
【図5】本発明の第1の変形例に係る顕微鏡の概略構成図である。
【図6】図5の共振型ガルバノスキャナの模式図である。
【図7】本発明の第2の変形例に係る顕微鏡の概略構成図である。
【図8】図7の共振型ガルバノスキャナの模式図である。
【図9】本発明の第3の変形例に係る顕微鏡の概略構成図である。
【図10】本発明の第4の変形例に係る顕微鏡の概略構成図である。
【図11】本発明の第3の実施形態に係る顕微鏡の概略構成図である。
【図12】図11のCCDによる画像取得範囲を説明する図である。
【発明を実施するための形態】
【0016】
[第1の実施形態]
本発明の第1の実施形態に係る顕微鏡1について、図面を参照して以下に説明する。
本実施形態に係る顕微鏡1は、図1に示されるように、レーザ光(第1の照明光)を発するレーザ光源11と、白色光(第2の照明光)を発する光源21と、レーザ光および光源21からの光を標本Aに照射する対物レンズ(照射光学系)31と、レーザ光を標本Aに照射することで発生する蛍光(第1の観察光)を検出する第1の検出光学系10と、光源21による照明光を標本Aに照射した際の蛍光を含む戻り光(第2の観察光)を検出する第2の検出光学系20と、後述する補正情報を記憶する記憶部(記憶手段)32と、記憶部32に記憶された補正情報に基づいてガルバノスキャナ15を制御する制御部(補正手段)33とを備えている。第1の観察光としての蛍光と第2の観察光としての蛍光は、波長が同じでも異なっていてもよい。
【0017】
レーザ光源11は、標本A内の蛍光物質を励起させて蛍光を発生させるための励起光としてレーザ光を発する光源である。
光源21は、標本Aのカメラ観察画像を取得するための照明光として白色光を発する光源である。
【0018】
対物レンズ31は、レーザ光源11からのレーザ光を標本Aに照射する一方、標本A上において発生した蛍光を集めるようになっている。また、対物レンズ31は、光源21からの照明光を標本Aに照射する一方、標本Aからの戻り光を集めるようになっている。
【0019】
第1の検出光学系10は、対物レンズ31によりレーザ光源11からのレーザ光が照射されることで標本Aから発せられる蛍光を検出するようになっている。
第2の検出光学系20は、対物レンズ31により光源21からの照明光が照射された際の標本Aからの戻り光を検出するようになっている。
【0020】
第1の検出光学系10は、励起フィルタユニット12と、検出器13と、ミラー14と、ガルバノスキャナ(走査手段)15と、瞳投影レンズ16と、結像レンズ17と、第1のビームスプリッタ18とを備えている。
【0021】
第1の検出光学系10において、レーザ光源11の射出光軸上には、励起フィルタユニット12が配置されている。また、励起フィルタユニット12の反射光路上には、ミラー14と、ガルバノスキャナ15と、瞳投影レンズ16と、結像レンズ17と、第1のビームスプリッタ18と、対物レンズ31とが配置されている。また、励起フィルタユニット12の透過光路上には、検出器13が配置されている。
【0022】
励起フィルタユニット12は、レーザ光源11からのレーザ光と標本Aからの蛍光とを分岐するようになっている。励起フィルタユニット12は、レーザ光源11からのレーザ光を反射する一方、標本Aからの蛍光を透過する複数のダイクロイックフィルタ12aと、複数のダイクロイックフィルタ12aを回転させる回転ターレット12bとを備えている。複数のダイクロイックフィルタ12aは同心円上に配置されており、回転ターレット12bを動作させることで、複数のダイクロイックフィルタ12aのうちいずれかが、レーザ光源11の光軸上に択一的に配置されるようになっている。励起フィルタユニット12は、レーザ光源11からのレーザ光の波長に応じて、レーザ光源11の光軸上に配置するダイクロイックフィルタ12aが切り替えられるようになっている。
【0023】
検出器13は、励起フィルタユニット12を透過してきた標本Aからの蛍光を検出するようになっている。
ミラー14は、励起フィルタユニット12により反射されたレーザ光をガルバノスキャナ15に向けて反射するようになっている。
【0024】
ガルバノスキャナ15は、ミラーの角度を任意に制御可能な制御型ガルバノスキャナであり、図2に示すように、互いに直交する軸線を中心として揺動する一対のガルバノミラー15a,15bを有しており、これらガルバノミラー15a,15bの揺動角度を変化させることで、レーザ光源11からのレーザ光を標本A上で2次元走査するようになっている。具体的には、ガルバノミラー15aを揺動させることでレーザ光を標本A上でX方向に走査するとともに、ガルバノミラー15bを揺動させることでレーザ光を標本A上でY方向(X方向に直交する方向)に走査する。
【0025】
また、ガルバノスキャナ15は、後述のように、制御部33により、記憶部32に記憶された補正情報に基づいて、その動作が制御されるようになっている。
【0026】
第1のビームスプリッタ18は、レーザ光源11からのレーザ光と光源21からの照明光とを合成するとともに、標本Aからの第1の観察光と第2の観察光とを分岐するようになっている。第1のビームスプリッタ18は、複数の光学素子18aと、複数の光学素子18aを対物レンズ31の光軸に沿う軸線L回りに回転させる回転ターレット(切替手段)18bとを備えている。
【0027】
光学素子18aは、レーザ光源11からのレーザ光およびこのレーザ照射による標本Aからの蛍光を反射する一方、光源21からの照明光およびこの照明光による標本Aからの戻り光を透過するようになっている。光学素子18aは、軸線Lを中心とする同心円上に配置されており、回転ターレット18bを動作させることで、複数の光学素子18aのうちいずれかが、結像レンズ17の光軸と対物レンズ31の光軸との交点上に配置されるようになっている。
【0028】
第1のビームスプリッタ18は、レーザ光源11からのレーザ光の波長に応じて、対物レンズ31の光軸上に配置する光学素子18aが択一的に切り替えられるようになっている。このような構成を有することで、第1のビームスプリッタ18は、レーザ光源11からのレーザ光の波長に応じて、レーザ光源11からのレーザ光と光源21からの照明光とを合成するとともに、標本Aからの第1の観察光と第2の観察光とを分岐するようになっている。
【0029】
第2の検出光学系20は、第2のビームスプリッタ22と、レンズ23と、ミラー24と、CCD25と、ミラー26とを備えている。
第2の検出光学系20において、光源21の射出光軸上には、第2のビームスプリッタ22が配置されている。第2のビームスプリッタ22の反射光路上には、第1のビームスプリッタ18と、対物レンズ31とが配置されている。第2のビームスプリッタ22の透過光路上には、レンズ23と、光路へ挿脱可能なミラー24と、CCD25と、ミラー26とが配置されている。
【0030】
第2のビームスプリッタ22は、光源21からの白色光とそれによる標本Aからの戻り光とを分岐するようになっている。第2のビームスプリッタ22は、複数の光学素子22aと、複数の光学素子22aを対物レンズ31の光軸に沿う軸線L回りに回転させる回転ターレット(切替手段)22bとを備えている。
【0031】
光学素子22aは、光源21からの白色光のうち照明に用いる波長の光を反射する一方、標本Aからの戻り光を透過するようになっている。光学素子22aは、軸線Lを中心とする同心円上に配置されており、回転ターレット22bを動作させることで、複数の光学素子22aのうちいずれかが、光源21の光軸と対物レンズ31の光軸との交点上に配置されるようになっている。
【0032】
第2のビームスプリッタ22は、光源21からの白色光のうち照明に用いる波長とCCD25で検出する波長に応じて、対物レンズ31の光軸上に配置する光学素子22aが択一的に切り替えられるようになっている。このような構成を有することで、第2のビームスプリッタ22は、光源21からの白色光を第2の照明光として標本へ導き、標本Aからの戻り光をCCD25へ導くようになっている。
【0033】
ミラー24は、標本Aからの戻り光の光路に挿脱されるようになっている。ミラー24が光路に挿入された際には、標本Aからの戻り光は、ミラー24によりCCD25に向けて反射される。ミラー24が光路から外された際には、標本Aからの戻り光は、ミラー26の方向に通過する。
CCD25は、ミラー24により反射された標本Aからの戻り光を検出するようになっている。
ミラー26は、標本Aからの戻り光を接眼レンズ(図示略)に導くようになっている。
【0034】
記憶部32には、励起フィルタユニット12および第1のビームスプリッタ18の各光学素子の切り替えによって発生する第1の観察光と第2の観察光との相対的な位置ずれに関する補正情報が記憶されている。具体的には、記憶部32には、励起フィルタユニット12のダイクロイックフィルタ12aおよび第1のビームスプリッタ18の光学素子18aの反射角度や折返し位置の固体差を原因とする、第1の観察光と第2の観察光との相対的な位置ずれの補正量(補正情報)が、ダイクロイックフィルタ12aと光学素子18aとの組み合せに対応付けられて予め記憶されている。
【0035】
制御部33は、記憶部32に記憶された補正情報に基づいて、第1の観察光と第2の観察光との相対的な位置ずれを補正するようになっている。具体的には、制御部33は、記憶部32から、励起フィルタユニット12のダイクロイックフィルタ12aと第1のビームスプリッタ18の光学素子18aとの組み合せに対応付けられた補正量(補正情報)を読み出す。そして、制御部33は、記憶部32から読み出した補正量(補正情報)に基づいて、ガルバノスキャナ15のガルバノミラー15a,15bの揺動角度を変化させ、レーザ光源11からのレーザ光の焦点位置を補正し、該焦点位置から発生する蛍光の位置を補正する。
【0036】
上記構成を有する本実施形態に係る顕微鏡1の作用について以下に説明する。
本実施形態に係る顕微鏡1において、レーザ光源11から発せられたレーザ光は、励起フィルタユニット12により反射され、ミラー14、ガルバノスキャナ15、瞳投影レンズ16、結像レンズ17、第1のビームスプリッタ18を介して、対物レンズ31により標本Aの焦点位置に集光される。この場合において、ガルバノスキャナ15により、ガルバノミラー15a,15bの揺動角度が変化させられることで、レーザ光源11からのレーザ光が標本A上を2次元走査させられる。
【0037】
標本Aの焦点位置では蛍光物質が励起され、蛍光が発生する。標本Aから発生した蛍光は、レーザ光と逆の光路をたどって、対物レンズ31、第1のビームスプリッタ18、結像レンズ17、瞳投影レンズ16、ガルバノスキャナ15、ミラー14を介して、励起フィルタユニット12を透過し、検出器13により検出される。
【0038】
一方、光源21から発せられた白色光は、第2のビームスプリッタ22により反射され、第1のビームスプリッタ18を透過して、対物レンズ31により標本Aの焦点位置に集光される。また、標本Aからの戻り光は、逆の光路をたどって、対物レンズ31、第1のビームスプリッタ18、第2のビームスプリッタ22、レンズ23、ミラー24を介して、CCD25により検出される。
【0039】
この場合において、レーザ光源11からのレーザ光の波長を変化させた際には、レーザ光の光路上の光学素子(励起フィルタユニット12のダイクロイックフィルタ12a、第1のビームスプリッタ18の光学素子18a)を切り替える必要がある。また、光源21による照明波長を変化させる際には、白色光の光路上の光学素子(第2のビームスプリッタ22の光学素子22a)を切り替える必要がある。ここでは、例として、レーザ光源11からのレーザ光の波長を変化させ、第1のビームスプリッタ18の光学素子18aおよび励起フィルタユニット12のダイクロイックフィルタ12aを切り替えた場合について説明する。
【0040】
この場合には、励起フィルタユニット12の回転ターレット12bにより複数のダイクロイックフィルタ12aが択一的に切り替えられ、レーザ光源11からのレーザ光の波長に応じたダイクロイックフィルタ12aがレーザ光源11の光軸上に配置される。また、第1のビームスプリッタ18の回転ターレット18bにより複数の光学素子18aが択一的に切り替えられ、レーザ光源11からのレーザ光の波長(すなわち、標本Aからの蛍光の波長)に応じた光学素子18aが対物レンズ31の光軸上に配置される。これにより、標本Aからの蛍光と戻り光は、選択された光学素子18aにより分岐され、第1の検出光学系10(検出器13)と第2の検出光学系20(CCD25)によりそれぞれ検出される。
【0041】
この場合において、ダイクロイックフィルタ12aおよび光学素子18aの反射角度や折返し位置の固体差により、第1の観察光(レーザ光)と第2の観察光の光軸がずれてしまい、レーザ走査観察による画像とカメラ(CCD)観察による画像とに位置ずれが発生してしまうことがある。そこで、制御部33は、記憶部32に記憶された補正情報に基づいて、第1の観察光と第2の観察光との相対的な位置ずれを補正する。
【0042】
具体的には、記憶部32には、ダイクロイックフィルタ12aおよび光学素子18aの反射角度や折返し位置の固体差を原因とする、第1の観察光と第2の観察光との相対的な位置ずれの補正量(補正情報)が、ダイクロイックフィルタ12aと光学素子18aとの組み合せに対応付けられて記憶されている。
【0043】
制御部33は、記憶部32から、ダイクロイックフィルタ12aと光学素子18aとの組み合せに対応付けられた補正量(補正情報)を読み出す。そして、制御部33は、記憶部32から読み出した補正量(補正情報)に基づいて、ガルバノスキャナ15のガルバノミラー15a,15bの揺動角度を変化させ、レーザ光源11からのレーザ光の焦点位置を補正し、該焦点位置から発生する蛍光の位置を補正する。
【0044】
このようにすることで、検出器13により取得するレーザ走査画像とCCD25により取得するカメラ観察画像との位置ずれを補正することができ、位置ずれのないレーザ走査画像とカメラ観察画像とを取得することができる。これにより、レーザー走査画像とカメラ観察画像とを、標本A上の対応位置を一致させて表示することができる。
【0045】
また、ガルバノスキャナ15を動作させてレーザ光源11からのレーザ光の焦点位置を補正することで、新たに装置を設けることなく、位置ずれのないレーザー走査画像とカメラ観察画像とを容易に取得することができる。
【0046】
なお、上記の説明において、レーザ光源11からのレーザ光の波長を変化させた際に、第1のビームスプリッタ18の光学素子18aおよび励起フィルタユニット12のダイクロイックフィルタ12aを切り替えることとして説明したが、光学素子18aおよびダイクロイックフィルタ12aのいずれか一方を切り替えることとしてもよい。
【0047】
[第2の実施形態]
以下に、第2の実施形態に係る顕微鏡2について、図面を参照して説明する。以降では、本実施形態および各変形例に係る顕微鏡について、第1の実施形態に係る顕微鏡1と共通する点については同一の符号を付して説明を省略し、第1の実施形態に係る顕微鏡1と異なる点について主に説明する。
【0048】
本実施形態に係る顕微鏡2は、図3に示されるように、第1の実施形態に係る顕微鏡1のガルバノスキャナ15(図1参照)に代えて、共振型ガルバノミラーを有する共振型ガルバノスキャナ35を備えている。
【0049】
共振型ガルバノスキャナ35は、図4に示すように、互いに直交する軸線を中心として揺動する共振型ガルバノミラー35aと制御型ガルバノミラー35bを有しており、これらを動作させることで、レーザ光源11からのレーザ光を標本A上で高速で2次元走査するようになっている。具体的には、共振型ガルバノミラー35aを共振周波数で振動させることでレーザ光を標本A上でX方向に走査するとともに、制御型ガルバノミラー35bを揺動させることでレーザ光を標本A上でY方向(X方向に直交する方向)に走査する。
【0050】
共振型ガルバノミラー35aには、共振型ガルバノミラー35aを回転させる回転機構(例えばステッピングモータ)35dが設けられている。回転機構35dを動作させることで、共振型ガルバノミラー35aの走査中心位置を変化させることができるようになっている。回転機構35dは、制御部33により、記憶部32に記憶された補正情報に基づいて、その動作が制御されるようになっている。
【0051】
制御部33は、記憶部32に記憶された補正情報に基づいて、検出器13により検出する第1の観察光とCCD25により検出する第2の観察光との相対的な位置ずれを補正するようになっている。具体的には、制御部33は、記憶部32から、励起フィルタユニット12のダイクロイックフィルタ12aと第1のビームスプリッタ18の光学素子18aとの組み合せに対応付けられた補正量(補正情報)を読み出す。そして、制御部33は、記憶部32から読み出した補正量(補正情報)に基づいて、共振型ガルバノスキャナ35の回転機構35dを動作させ、共振型ガルバノミラー35aの走査中心位置を変化させることで、X方向の位置ずれを補正する。一方、制御型ガルバノミラー35bに対して、第1実施形態と同じように読み出した補正量にもとづいて走査ミラーの揺動角度を補正することで、Y方向の位置ずれを補正する。これにより、レーザ光源11からのレーザ光の焦点位置を補正し、該焦点位置から発生する蛍光の位置を補正する。
【0052】
上記構成を有する本実施形態に係る顕微鏡2の作用について以下に説明する。
本実施形態に係る顕微鏡2において、レーザ光源11から発せられたレーザ光は、励起フィルタユニット12により反射され、ミラー14、共振型ガルバノスキャナ35、瞳投影レンズ16、結像レンズ17、第1のビームスプリッタ18を介して、対物レンズ31により標本Aの焦点位置に集光される。この場合において、共振型ガルバノスキャナ35において、共振型ガルバノミラー35aを共振周波数で振動させるとともに、制御型ガルバノミラー35bの揺動角度を変化させることで、レーザ光源11からのレーザ光が標本A上を2次元走査させられる。
【0053】
標本Aの焦点位置では蛍光物質が励起され、蛍光が発生する。標本Aから発生した蛍光は、レーザ光と逆の光路をたどって、対物レンズ31、第1のビームスプリッタ18、結像レンズ17、瞳投影レンズ16、共振型ガルバノスキャナ35、ミラー14を介して、励起フィルタユニット12を透過し、検出器13により検出される。
【0054】
一方、光源21から発せられた白色光は、第2のビームスプリッタ22により反射され、第1のビームスプリッタ18を透過して、対物レンズ31により標本Aの焦点位置に集光される。また、標本Aからの第2の観察光は、白色光と逆の光路をたどって、対物レンズ31、第1のビームスプリッタ18、第2のビームスプリッタ22、レンズ23、ミラー24を介して、CCD25により検出される。
【0055】
この場合において、レーザ光源11からのレーザ光の波長を変化させた際には、レーザ光の光路上の光学素子(励起フィルタユニット12のダイクロイックフィルタ12a、第1のビームスプリッタ18の光学素子18a)を切り替える必要がある。また、光源21による照明波長を変化させる際には、白色光の光路上の光学素子(第2のビームスプリッタ22の光学素子22a)を切り替える必要がある。ここでは、例として、レーザ光源11からのレーザ光の波長を変化させ、第1のビームスプリッタ18の光学素子18aおよび励起フィルタユニット12のダイクロイックフィルタ12aを切り替えた場合について説明する。
【0056】
この場合には、励起フィルタユニット12の回転ターレット12bにより複数のダイクロイックフィルタ12aが択一的に切り替えられ、レーザ光源11からのレーザ光の波長に応じたダイクロイックフィルタ12aがレーザ光源11の光軸上に配置される。また、第1のビームスプリッタ18の回転ターレット18bにより複数の光学素子18aが択一的に切り替えられ、レーザ光源11からのレーザ光の波長(すなわち、標本Aからの蛍光の波長)に応じた光学素子18aが対物レンズ31の光軸上に配置される。これにより、標本Aからの第1の観察光と第2の観察光は、選択された光学素子18aにより分岐され、第1の検出光学系10(検出器13)と第2の検出光学系20(CCD25)によりそれぞれ検出される。
【0057】
この場合において、ダイクロイックフィルタ12aおよび光学素子18aの反射角度や折返し位置の固体差により、第1の観察光(レーザ光)と第2の観察光の光軸がずれてしまい、レーザ走査観察による画像とカメラ(CCD)観察による画像とに位置ずれが発生してしまうことがある。そこで、制御部33は、記憶部32に記憶された補正情報に基づいて、第1の観察光と第2の観察光との相対的な位置ずれを補正する。
【0058】
具体的には、記憶部32には、ダイクロイックフィルタ12aおよび光学素子18aの反射角度や折返し位置の固体差を原因とする、第1の観察光と第2の観察光との相対的な位置ずれの補正量(補正情報)が、ダイクロイックフィルタ12aと光学素子18aとの組み合せに対応付けられて記憶されている。
【0059】
制御部33は、記憶部32から、ダイクロイックフィルタ12aと光学素子18aとの組み合せに対応付けられた補正量(補正情報)を読み出す。そして、制御部33は、記憶部32から読み出した補正量(補正情報)に基づいて、回転機構35dにより共振型ガルバノミラー35aを回転させることで、レーザ光(第1の観察光)の光軸の微調整を行うことができ、検出器13により取得するレーザ走査画像とCCD25により取得するカメラ観察画像との相対的な位置ずれを補正することができる。
【0060】
このようにすることで、検出器13により取得するレーザ走査画像とCCD25により取得するカメラ観察画像との位置ずれを補正することができ、位置ずれのないレーザ走査画像とカメラ観察画像とを取得することができる。これにより、レーザ走査画像とカメラ観察画像とを、標本A上の対応位置を一致させて表示することができる。
また、走査手段として共振型ガルバノスキャナ35を用いることで、標本Aの2次元走査画像を高速に取得することができる。
【0061】
なお、上記の説明において、レーザ光源11からのレーザ光の波長を変化させた際に、第1のビームスプリッタ18の光学素子18aおよび励起フィルタユニット12のダイクロイックフィルタ12aを切り替えることとして説明したが、光学素子18aおよびダイクロイックフィルタ12aのいずれか一方を切り替えることとしてもよい。
【0062】
また、Y方向にレーザ光を走査するYガルバノミラーとして共振型ガルバノミラーを用いる場合には、X軸と同じように回転機構を設けてY方向の位置補正を行えばよい。また、Yガルバノミラーとして制御型ガルバノミラーを用いる場合であっても、本実施形態と同様に、回転機構を設けて補正してもよい。
【0063】
[第1の変形例]
以下に、第2の実施形態に係る顕微鏡2の第1の変形例について説明する。
本変形例に係る顕微鏡3は、図5に示すように、第2の実施形態に係る顕微鏡2の共振型ガルバノスキャナ35(図3参照)に代えて、回転ミラー41と、共振型ガルバノスキャナ42とを備えている。
【0064】
回転ミラー41は、Y方向の軸線を中心として角度調節可能なミラーであり、その回転角度を変化させることで、レーザ光源11からのレーザ光の走査中心位置をX方向に変化させるようになっている。
【0065】
共振型ガルバノスキャナ42は、図6に示すように、互いに直交する軸線を中心として揺動する共振型ガルバノミラー42aと、制御型ガルバノミラー42bを有しており、これら共振型ガルバノミラー42a、制御型ガルバノミラー42bを動作させることで、レーザ光源11からのレーザ光を標本A上で高速で2次元走査するようになっている。具体的には、共振型ガルバノミラー42aを共振周波数で振動させることでレーザ光を標本A上でX方向に高速で走査するとともに、制御型ガルバノミラー42bを揺動させることでレーザ光を標本A上でY方向(X方向に直交する方向)に走査する。
【0066】
ガルバノミラー41とガルバノミラー42bは、制御部33により、記憶部32に記憶された補正情報に基づいて、その動作が制御されるようになっている。
【0067】
制御部33は、記憶部32に記憶された補正情報に基づいて、第1の観察光と第2の観察光との相対的な位置ずれを補正するようになっている。具体的には、制御部33は、記憶部32から、励起フィルタユニット12のダイクロイックフィルタ12aと第1のビームスプリッタ18の光学素子18aとの組み合せに対応付けられた補正量(補正情報)を読み出す。そして、制御部33は、記憶部32から読み出した補正量(補正情報)に基づいて、回転ミラー41を動作させてX方向のズレ補正を行うとともに、制御型ガルバノミラー42bの揺動角度を変化させる。これにより、レーザ光源11からのレーザ光の焦点位置を補正し、該焦点位置から発生する蛍光の位置を補正する。
【0068】
上記構成を有する本変形例に係る顕微鏡3によれば、回転ミラー41を共振型ガルバノミラー42aの走査方向と同一方向に角度変更させることによって、レーザ光(第1の観察光)の光軸の微調整を行うことができ、レーザ走査画像とカメラ観察画像との相対的な位置ずれを補正することができる。また、走査手段として、共振型ガルバノミラー42aを用いることで、標本AのX方向の走査を高速で行うことができ、標本Aの2次元走査画像を高速に取得することができる。
【0069】
[第2の変形例]
以下に、第2の実施形態に係る顕微鏡2の第2の変形例について説明する。
本変形例に係る顕微鏡4は、図7に示すように、第2の実施形態に係る顕微鏡2の共振型ガルバノスキャナ35(図3参照)に代えて、回転ミラー45と、共振型ガルバノスキャナ46と、回転ミラー47とを備えている。
【0070】
回転ミラー45は、Y方向の軸線を中心として角度調節可能な回転ミラーであり、その揺動角度を変化させることで、レーザ光源11からのレーザ光の走査中心位置をX方向に変化させるようになっている。
回転ミラー47は、X方向の軸線を中心として角度調節可能な回転ミラーであり、その揺動角度を変化させることで、レーザ光源11からのレーザ光の走査中心位置をY方向に変化させるようになっている。
【0071】
共振型ガルバノスキャナ46は、図8に示すように、互いに直交する軸線を中心として揺動する共振型ガルバノミラー46aと、制御型ガルバノミラー46bを有しており、これら共振型ガルバノミラー46aおよび制御型ガルバノミラー46bを動作させることで、レーザ光源11からのレーザ光を標本A上で高速で2次元走査するようになっている。具体的には、共振型ガルバノミラー46aを共振周波数で振動させることでレーザ光を標本A上でX方向に走査するとともに、制御型ガルバノミラー46bを揺動させることでレーザ光を標本A上でY方向(X方向に直交する方向)に走査する。
【0072】
回転ミラー45と回転ミラー47は、制御部33により、記憶部32に記憶された補正情報に基づいて、その動作が制御されるようになっている。
【0073】
制御部33は、記憶部32に記憶された補正情報に基づいて、第1の観察光と第2の観察光との相対的な位置ずれを補正するようになっている。具体的には、制御部33は、記憶部32から、励起フィルタユニット12のダイクロイックフィルタ12aと第1のビームスプリッタ18の光学素子18aとの組み合せに対応付けられた補正量(補正情報)を読み出す。そして、制御部33は、記憶部32から読み出した補正量(補正情報)に基づいて、回転ミラー45と回転ミラー47を動作させ、その回転角度を変化させる。これにより、レーザ光源11からのレーザ光の焦点位置を補正し、該焦点位置から発生する蛍光の位置を補正する。
【0074】
上記構成を有する本変形例に係る顕微鏡4によれば、回転ミラー45,47をそれぞれ、共振型ガルバノミラー46a,制御型ガルバノミラー46bの走査方向と同一方向に角度変更させることによって、レーザ光(第1の観察光)の光軸の微調整を行うことができ、レーザ走査画像とカメラ観察画像との相対的な位置ずれを補正することができる。また、走査手段として、共振型ガルバノミラー46aを用いることで、標本Aの2次元走査を高速で行うことができ、標本Aの2次元走査画像を高速に取得することができる。
【0075】
[第3の変形例]
以下に、第2の実施形態に係る顕微鏡2の第3の変形例について説明する。
本変形例に係る顕微鏡5は、図9に示すように、第1の実施形態に係る顕微鏡1(図1参照)と第2の実施形態に係る顕微鏡2(図3参照)とを組み合わせた構成であり、レーザ光(蛍光)の光路上に挿脱されるガルバノ切替装置51を有している。
【0076】
ガルバノ切替装置51は、レーザ光源11からのレーザ光および標本Aからの蛍光を反射するミラー51a,51bと、これらミラー51a,51bをレーザ光(蛍光)の光路上に挿脱する駆動部(図示略)とを備えている。
【0077】
ミラー51a,51bをレーザ光(蛍光)の光路上に挿入した状態では、ミラー51bがミラー14の反射光路上に配置されるとともに、ミラー51aが瞳投影レンズ16の光軸上に配置される。この状態において、レーザ光源11からのレーザ光は、ミラー51aにより共振型ガルバノスキャナ35に入射するとともに、ミラー51bにより瞳投影レンズ16に導かれる。
【0078】
一方、ミラー51a,51bをレーザ光(蛍光)の光路上から外した状態では、レーザ光源11からのレーザ光は、ミラー14により反射され、ガルバノスキャナ15を通過して瞳投影レンズ16に導かれる。
すなわち、ミラー51a,51bをレーザ光(蛍光)の光路上に挿脱することで、レーザ光源11からのレーザ光の走査手段を、ガルバノスキャナ15と共振型ガルバノスキャナ35のいずれかに切り替えることができる。
【0079】
なお、本変形例に係る顕微鏡5において、ガルバノスキャナ15(図2参照)と共振型ガルバノスキャナ35(図4参照)は、前述の実施形態と同様の構成であるため、ここでは説明を省略する。
【0080】
本変形例に係る顕微鏡5によれば、ガルバノ切替装置51を動作させることで、レーザ光源11からのレーザ光の走査手段を、ガルバノスキャナ15と共振型ガルバノスキャナ35のいずれかに切り替えることができる。また、レーザ光源11からのレーザ光の走査手段をガルバノスキャナ15とした場合には、検出器13により取得するレーザ走査画像とCCD25により取得するカメラ観察画像との位置ずれを高精度に補正することができ、レーザ走査画像とカメラ観察画像との位置合わせ精度を向上することができる。一方、レーザ光源11からのレーザ光の走査手段を共振型ガルバノスキャナ35とした場合には、標本Aの2次元走査を高速で行うことができ、標本Aの2次元走査画像を高速に取得することができる。
【0081】
[第4の変形例]
以下に、第2の実施形態に係る顕微鏡2の第4の変形例について説明する。
本変形例に係る顕微鏡6は、図10に示すように、第1の実施形態に係る顕微鏡1(図1参照)と第1の変形例に係る顕微鏡3(図5参照)とを組み合わせた構成であり、レーザ光(第1の観察光)の光路上に挿脱されるガルバノ切替装置53を有している。
【0082】
ガルバノ切替装置53は、レーザ光源11からのレーザ光および標本Aからの蛍光を反射するミラー53a,53bと、これらミラー53a,53bをレーザ光(蛍光)の光路上に挿脱する駆動部(図示略)とを備えている。
【0083】
ミラー53a,53bをレーザ光(蛍光)の光路上に挿入した状態では、ミラー53bがミラー14の反射光路上に配置されるとともに、ミラー53aが瞳投影レンズ16の光軸上に配置される。この状態において、レーザ光源11からのレーザ光は、ミラー53aにより共振型ガルバノスキャナ42に入射するとともに、ミラー53bにより瞳投影レンズ16に導かれる。
【0084】
一方、ミラー53a,53bをレーザ光(蛍光)の光路上から外した状態では、レーザ光源11からのレーザ光は、ミラー14により反射され、ガルバノスキャナ15を通過して瞳投影レンズ16に導かれる。
すなわち、ミラー53a,53bをレーザ光(蛍光)の光路上に挿脱することで、レーザ光源11からのレーザ光の走査手段を、ガルバノスキャナ15と共振型ガルバノスキャナ42のいずれかに切り替えることができる。
【0085】
ここで、ガルバノ切替装置53のミラー53aは、Y方向の軸線を中心として角度調節可能な回転ミラーであり、その角度を変化させることで、レーザ光源11からのレーザ光の走査中心位置をX方向に変化させるようになっている。ミラー53aは、共振型ガルバノミラー42bおよびガルバノスキャナ15のガルバノミラー15a,15bと同様に、制御部33により、記憶部32に記憶された補正情報に基づいて、その動作が制御されるようになっている。
【0086】
なお、本変形例に係る顕微鏡6において、ガルバノスキャナ15(図2参照)と共振型ガルバノスキャナ42(図6参照)は、前述の実施形態と同様の構成であるため、ここでは説明を省略する。
【0087】
本変形例に係る顕微鏡6によれば、ガルバノ切替装置53を動作させることで、レーザ光源11からのレーザ光の走査手段を、ガルバノスキャナ15と共振型ガルバノスキャナ42のいずれかに切り替えることができる。また、レーザ光源11からのレーザ光の走査手段をガルバノスキャナ15とした場合には、検出器13により取得するレーザ走査画像とCCD25により取得するカメラ観察画像との位置ずれを高精度に補正することができ、レーザ走査画像とカメラ観察画像との位置合わせ精度を向上することができる。一方、レーザ光源11からのレーザ光の走査手段を共振型ガルバノスキャナ42とした場合には、標本Aの2次元走査を高速で行うことができ、標本Aの2次元走査画像を高速に取得することができる。
【0088】
[第3の実施形態]
以下に、第3の実施形態に係る顕微鏡7について、図面を参照して説明する。以降では、本実施形態に係る顕微鏡7について、前述の各実施形態および各変形例に係る顕微鏡と共通する点については同一の符号を付して説明を省略し、異なる点について主に説明する。
【0089】
本実施形態に係る顕微鏡7は、図11に示されるように、レーザ走査画像とカメラ観察画像との位置ずれを補正する補正手段を、レーザ走査画像を取得する第1の検出光学系10に設けるのではなく、カメラ観察画像を取得する第2の検出光学系20に設けている。
【0090】
本実施形態に係る顕微鏡7において、制御部33は、記憶部32に記憶された補正情報に基づいてCCD25により取得するカメラ観察画像の視野中心位置を変化させ、レーザ走査画像とカメラ観察画像との相対的な位置ずれを補正するようになっている。
【0091】
上記の制御部33による処理について、図12に示す具体例を用いて説明する。
図12に示すように、第1の検出光学系10により取得されたレーザ走査画像(図12において「LSM」と表示)と、第2の検出光学系20により取得されたカメラ観察画像(図12において「CCD1」と表示)とにおいて位置ずれが生じている。
【0092】
そこで、制御部33は、カメラ観察画像の中心位置P2が、レーザ走査画像の中心位置P1と一致するように、CCD25の画像取得範囲を変化させ、CCD25により取得されたカメラ観察画像を補正する(図12において「CCD2」と表示)。
具体的には、レーザ走査画像の視野数(図12に示す例では視野数18)はカメラ観察画像の視野数(図12に示す例では視野数11)よりも大きいため、カメラ観察画像の中心位置P2がレーザ走査画像の中心位置P1と一致するようにCCD25の実効視野数を小さくする(図12に示す例では視野数10)。
なお、レーザ走査画像の中心位置の調整方法として、CCD25の画像取得範囲自体は変化させずに、取得した1フレームの画像から中心位置をずらした画像データを切り出すこととしてもよい。
【0093】
上記のように、本実施形態に係る顕微鏡7によれば、記憶部32に記憶された補正情報に基づいてCCD25の視野中心位置を調節することによって、レーザ走査画像とレーザ走査画像との相対的な位置ずれを補正することができる。
【0094】
以上、本発明の各実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。例えば、本発明を上記の各実施形態および変形例に適用したものに限定されることなく、これらの実施形態および変形例を適宜組み合わせた実施形態に適用してもよい。
【0095】
また、各実施形態において、第1の照明光はレーザ光、第2の照明光は白色光であることとして説明したが、これに限定されるものではなく、例えば、第2の照明光を特定の波長帯域の光としてもよい。
【符号の説明】
【0096】
A 標本
1,2,3,4,5,6,7 顕微鏡
10 第1の検出光学系
11 レーザ光源
12 励起フィルタユニット
12a ダイクロイックフィルタ
12b 回転ターレット
13 検出器
15 ガルバノスキャナ(走査手段)
15a,15b 制御型ガルバノミラー
18 第1のビームスプリッタ
18a 光学素子
18b 回転ターレット(切替手段)
20 第2の検出光学系
21 光源
22 第2のビームスプリッタ
22a 光学素子
22b 回転ターレット(切替手段)
25 CCD
31 対物レンズ(照射光学系)
32 記憶部(記憶手段)
33 制御部(補正手段)
35 共振型ガルバノスキャナ
35a 共振型ガルバノミラー
35b 制御型ガルバノミラー
35d 回転機構
41 ガルバノミラー
42 共振型ガルバノスキャナ
45 ガルバノミラー
46 共振型ガルバノスキャナ
47 ガルバノミラー
51 ガルバノ切替装置
53 ガルバノ切替装置

【特許請求の範囲】
【請求項1】
第1の照明光および第2の照明光を標本に照射する照射光学系と、
該照射光学系により前記第1の照明光が照射されることで前記標本から発せられる第1の観察光を検出する第1の検出光学系と、
前記照射光学系により前記第2の照明光が照射されることで前記標本から発せられる第2の観察光を検出する第2の検出光学系と、
前記第1の観察光と前記第2の観察光とを分岐する複数の光学素子と、
複数の前記光学素子を択一的に切り替える切替手段と、
該切替手段による前記光学素子の切り替えによって発生する前記第1の観察光と前記第2の観察光との相対的な位置ずれに関する補正情報を記憶する記憶手段と、
該記憶手段に記憶された前記補正情報に基づいて前記第1の観察光と前記第2の観察光との相対的な位置ずれを補正する補正手段とを備える顕微鏡。
【請求項2】
前記第1の照明光を前記標本上で2次元走査する走査手段を備え、
前記補正手段が、前記記憶手段に記憶された前記補正情報に基づいて前記走査手段を動作させる請求項1に記載の顕微鏡。
【請求項3】
前記第1の照明光を前記標本上で2次元走査する走査手段を備え、
前記走査手段が、共振型ガルバノミラーを有し、
前記補正手段が、前記共振型ガルバノミラーを回転させる請求項1に記載の顕微鏡。
【請求項4】
前記第1の照明光を前記標本上で2次元走査する走査手段を備え、
前記走査手段が、共振型ガルバノミラーを有し、
前記補正手段が、前記共振型ガルバノミラーの走査方向と同一方向に角度変更可能なミラーを動作させる請求項1に記載の顕微鏡。
【請求項5】
前記第2の検出光学系の検出手段がCCDであり、
前記補正手段が、前記記憶手段に記憶された前記補正情報に基づいて前記CCDの取得画像の視野中心位置を調節する請求項1に記載の顕微鏡。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2012−203049(P2012−203049A)
【公開日】平成24年10月22日(2012.10.22)
【国際特許分類】
【出願番号】特願2011−64994(P2011−64994)
【出願日】平成23年3月23日(2011.3.23)
【出願人】(000000376)オリンパス株式会社 (11,466)
【Fターム(参考)】