説明

OFDMデジタル信号等化装置、等化方法及び中継装置

【課題】FIRフィルタ回路が、等化を行う信号と、フィルタ係数生成時間分遅延したフィルタ係数とを入力し、フィルタ係数を用いて等化を行う場合に、そのフィルタ係数生成時間内にフィルタ係数に位相回転が生じたとしても、正常に等化を行う。
【解決手段】フィルタ係数補正回路24−1は、フィルタ係数生成時間内に生じたフィルタ係数の位相回転を、シンボル番号xのフィルタ係数W(k,x)及びシンボル番号x−1のフィルタ係数W(k,x−1)に基づいて算出し、フィルタ係数生成時間(yシンボル)分先の新たなフィルタ係数W’(k,x+y)を推定する。FIRフィルタ回路14は、新たなフィルタ係数W’(k,x+y)を用いて等化を行う。これにより、推定されたフィルタ係数W’(k,x+y)は位相回転が補正されており、等化を行う信号に対応しているから、FIRフィルタ回路14において正常に等化を行うことが可能となる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、OFDM(Orthogonal Frequency Division Multiplexing:直交周波数分割多重)デジタル信号等化装置、等化方法及び中継装置に関し、特に、フィルタ係数の生成時間に起因して生じるフィルタ係数の位相変化を、既に演算したフィルタ係数を用いて補正する技術に関する。
【背景技術】
【0002】
デジタル信号を伝送する方式のひとつとして、OFDMと呼ばれる方式が用いられている。このOFDM方式は、伝送帯域内に多数の直交するサブキャリヤを設け、それぞれのサブキャリヤの振幅及び位相にデータを割り当て、QAM(Quadrature Amplitude Modulation)等によりデジタル変調を行う方式である。
【0003】
このような方式によりデジタル変調されたOFDM信号は、送信局からデジタル伝送される。そして、中継局に設置されたOFDMデジタル信号中継装置は、デジタル伝送されたOFDM信号を受信し、等化装置によって、送信局と中継局との間の伝送路の影響を受けて歪んだ信号を元の信号に戻すために、マルチパスを等化する。そして、OFDMデジタル信号中継装置は、等化した信号を電力増幅して再送信する。このような等化処理は、等化装置に備えたFIR(Finite Impulse Response)フィルタ回路によって行われ、FIRフィルタ回路の特性は、フィルタ係数生成回路にて生成されるフィルタ係数によって決定される。例えば、特許文献1には、FIRフィルタが、フィルタ係数を用いて受信信号の特性劣化を改善する技術が記載されている。
【0004】
図8は、従来の等化装置におけるフィルタ係数生成回路の構成を示すブロック図である。このフィルタ係数生成回路150は、前述した等化処理が行われるFIRフィルタ回路14のフィルタ係数を生成する回路であり、FFT(Fast Fourier Transform)演算回路20、SP(Scattered Pilot)抽出回路21、演算回路22及びIFFT(Inverse Fast Fourier Transform)演算回路23を備えている。
【0005】
フィルタ係数生成回路150が前段の直交復調回路13により直交復調された信号を入力すると、FFT演算回路20が、その直交復調された時間領域の信号をFFT(高速フーリエ変換)により周波数領域の信号に変換し、SP抽出回路21が、SP信号を抽出してチャネル応答H(n)を生成する。そして、演算回路22が、チャネル応答H(n)の逆数を演算し、IFFT演算回路23が、チャネル応答H(n)の逆数である周波数領域の信号をIFFT(逆高速フーリエ変換)により時間領域の信号に変換し、フィルタ係数W(k)を生成する。フィルタ係数生成回路150により生成されたフィルタ係数W(k)は、後段のFIRフィルタ回路14へ出力される。ここで、nはキャリヤ番号を示し、kはフィルタ係数番号(タップ番号)を示す。
【0006】
このフィルタ係数W(k)はフィルタ係数生成回路150により生成されるが、フィルタ係数W(k)が生成されるまでには約数ミリ秒の時間(フィルタ係数生成時間)を要する。このため、FIRフィルタ回路14において、等化を行う信号を入力するタイミングと、その等化を行う信号に対応したフィルタ係数W(k)を入力するタイミングとが異なり、両データ間に時間的なずれが生じる。
【0007】
本来は、FIRフィルタ回路14が等化を行う信号を入力するにあたり、その前段に遅延回路を設け、その遅延回路によってフィルタ係数W(k)の生成時間分、等化を行う信号の入力タイミングを遅らせることにより、両データの入力タイミングを合わせるべきである。しかしながら、等化を行う信号を遅らせることは、全体の処理遅延となり妥当でないことから、このような遅延回路は設けられていない。
【0008】
【特許文献1】特開2002−158632号公報
【発明の開示】
【発明が解決しようとする課題】
【0009】
ところで、地形や建物等に反射した電波であるマルチパスを受信する場合は、受信信号がフィルタ係数W(k)の生成時間内に大きく変化することがないことから、FIRフィルタ回路14において、等化を行う信号の入力タイミングとフィルタ係数W(k)の入力タイミングとが異なっていても、等化性能に影響を与えることがなく、正常にマルチパスを等化することができる。これは、フィルタ係数W(k)の生成時間内にフィルタ係数W(k)の値が大きく変わることがなく、マルチパスの影響が問題にならないからである。
【0010】
しかしながら、SFN(Single Frequency Network)局からの電波(SFN波)を受信する場合は、送信局からの希望波とSFN局からのSFN波との間の送信周波数の差によって受信信号が変化し、特に、送信周波数の差が大きくなると、受信信号の変化も大きくなってしまう。このため、FIRフィルタ回路14において、等化を行う信号の入力タイミングとフィルタ係数W(k)の入力タイミングとが異なるときには、等化性能に影響を与え、正常にSFN波を等化することができない。これは、フィルタ係数W(k)の生成時間内にフィルタ係数W(k)の値が変わることから、SFN波の影響が問題になるからである。
【0011】
図9は、マルチパスを受信する場合(a)と、SFN波を受信する場合(b)におけるフィルタ係数を模式的に示す図である。図9(a)に示すように、マルチパスを受信する場合、マルチパスのフィルタ係数の位相は、主波のフィルタ係数の位相に対して一定であるから、回転することはない。一方、図9(b)に示すように、SFN波を受信する場合、SFN波のフィルタ係数の位相は、主波のフィルタ係数の位相に対して一定でないから、回転する。これは、主波である希望波の送信周波数とSFN波の送信周波数との差が管理上1Hz以内になっており、必ずしも同一の周波数であるとは限らず、また、1Hz以上の差となることもあり得るからである。
【0012】
このように、SFN波を受信する場合、FIRフィルタ回路14において、等化を行う信号の入力タイミングとフィルタ係数W(k)の入力タイミングとが異なるときには、希望波とSFN波との間の送信周波数の差によって、SFN波のフィルタ係数の位相が回転してしまう。この位相回転は、送信周波数の差が大きいほど速くなる。このため、等化性能が低下し、正常にSFN波を等化することができない。
【0013】
そこで、本発明は前記課題を解決するためになされたものであり、本発明の目的は、FIRフィルタ回路が、等化を行う信号と、フィルタ係数生成時間分遅延したフィルタ係数とを入力し、そのフィルタ係数を用いて等化を行う場合に、フィルタ係数生成時間内にフィルタ係数に位相回転が生じたとしても、正常に等化を行うことが可能なOFDMデジタル信号等化装置、等化方法及び中継装置を提供することにある。
【課題を解決するための手段】
【0014】
前記課題を解決するため、本発明による請求項1のOFDMデジタル信号等化装置は、OFDM信号を周波数変換及びAD変換する第1の変換回路と、前記変換されたOFDM信号を直交復調する直交復調回路と、前記直交復調回路により直交復調された信号に基づいて、フィルタ係数を生成するフィルタ係数生成回路と、前記フィルタ係数生成回路により生成されたフィルタ係数を用いて、前記直交復調回路により直交復調された信号を等化するFIRフィルタ回路と、前記FIRフィルタ回路により等化された信号を直交変調する直交変調回路と、前記直交変調回路により直交変調されたOFDM信号をDA変換及び周波数変換する第2の変換回路とを備えたOFDMデジタル信号等化装置において、前記フィルタ係数生成回路が、前記直交復調回路により直交復調された時間領域信号に対してFFT処理の演算を行い、周波数領域信号であるキャリヤシンボルに変換するFFT演算回路と、前記FFT演算回路により変換されたキャリヤシンボルからSP信号を抽出し、前記抽出したSP信号に基づいて、チャネル応答を算出するSP抽出回路と、前記SP抽出回路により算出されたチャネル応答の周波数領域信号に対してIFFT処理の演算を行い、時間領域信号であるフィルタ係数に変換するIFFT演算回路と、前記IFFT演算回路により変換された現在のフィルタ係数及び過去のフィルタ係数に基づいて、前記現在のフィルタ係数を補正し、前記FFT演算回路による変換処理から当該新たなフィルタ係数を生成するまでの間のフィルタ係数生成時間分先の新たなフィルタ係数を推定するフィルタ係数補正回路と、を備え、前記FIRフィルタ回路が、前記フィルタ係数生成回路のフィルタ係数補正回路により推定された新たなフィルタ係数を用いて等化を行う、ことを特徴とする。
【0015】
また、本発明による請求項2のOFDMデジタル信号等化装置は、請求項1に記載のOFDMデジタル信号等化装置において、前記フィルタ係数補正回路が、現在のフィルタ係数と、現在よりも1シンボル前のフィルタ係数とを記憶するデータ記憶部と、前記データ記憶部に記憶された現在のフィルタ係数及び現在よりも1シンボル前のフィルタ係数を用いて、1シンボル間の補正量を演算し、前記1シンボル間の補正量に基づいて、前記フィルタ係数生成時間における補正量を演算し、前記現在のフィルタ係数を補正して新たなフィルタ係数を推定する演算部と、を備えたことを特徴とする。
【0016】
また、本発明による請求項3のOFDMデジタル信号等化装置は、請求項1に記載のOFDMデジタル信号等化装置において、前記フィルタ係数補正回路が、現在のフィルタ係数と、現在よりも前記フィルタ係数生成時間前のフィルタ係数とを記憶するデータ記憶部と、前記データ記憶部に記憶された現在のフィルタ係数及び前記フィルタ係数生成時間前のフィルタ係数を用いて、前記フィルタ係数生成時間における補正量を演算し、前記現在のフィルタ係数を補正して新たなフィルタ係数を推定する演算部と、を備えたことを特徴とする。
【0017】
また、本発明による請求項4のOFDMデジタル信号等化装置は、請求項1に記載のOFDMデジタル信号等化装置において、前記フィルタ係数補正回路が、前記フィルタ係数生成時間前から現在までのフィルタ係数をシンボル毎に記憶するデータ記憶部と、前記データ記憶部に記憶されたフィルタ係数を用いて、1シンボル間の補正量を前記フィルタ係数生成時間前から現在までの間でそれぞれ演算し、前記1シンボル間のそれぞれの補正量に基づいて、前記フィルタ係数生成時間における補正量を演算し、前記現在のフィルタ係数を補正して新たなフィルタ係数を推定する演算部と、を備えたことを特徴とする。
【0018】
また、本発明による請求項5のOFDMデジタル信号等化装置は、請求項1から4までのいずれか一項に記載のOFDMデジタル信号等化装置において、前記新たなフィルタ係数の推定を、予め設定された時間間隔で行う、ことを特徴とする。
【0019】
また、本発明による請求項6のOFDMデジタル信号等化装置は、請求項3に記載のOFDMデジタル信号等化装置において、前記新たなフィルタ係数の推定を、前記フィルタ係数生成時間毎に行う、ことを特徴とする。
【0020】
また、本発明による請求項7のOFDMデジタル信号等化方法は、OFDM信号を周波数変換及びAD変換し、前記変換したOFDM信号を直交復調し、前記直交復調した信号に基づいてフィルタ係数を生成し、前記直交復調した信号を、前記フィルタ係数を用いて等化し、前記等化した信号を直交変調し、前記直交変調したOFDM信号をDA変換及び周波数変換するOFDMデジタル信号等化方法において、前記直交復調した時間領域信号に対してFFT処理の演算を行い、周波数領域信号であるキャリヤシンボルに変換するステップと、前記変換したキャリヤシンボルからSP信号を抽出し、前記抽出したSP信号に基づいて、チャネル応答を算出するステップと、前記算出したチャネル応答の周波数領域信号に対してIFFT処理の演算を行い、時間領域信号であるフィルタ係数に変換するステップと、前記変換したフィルタ係数を現在のフィルタ係数として記憶し、既に記憶している現在よりも1シンボル前のフィルタ係数を引き続き記憶するステップと、前記記憶した現在のフィルタ係数及び現在よりも1シンボル前のフィルタ係数を用いて、1シンボル間の補正量を演算するステップと、前記1シンボル間の補正量に基づいて、前記フィルタ係数生成時間における補正量を演算するステップと、前記現在のフィルタ係数を補正して新たなフィルタ係数を推定するステップと、を有することを特徴とする。
【0021】
また、本発明による請求項8のOFDMデジタル信号等化方法は、OFDM信号を周波数変換及びAD変換し、前記変換したOFDM信号を直交復調し、前記直交復調した信号に基づいてフィルタ係数を生成し、前記直交復調した信号を、前記フィルタ係数を用いて等化し、前記等化した信号を直交変調し、前記直交変調したOFDM信号をDA変換及び周波数変換するOFDMデジタル信号等化方法において、前記直交復調した時間領域信号に対してFFT処理の演算を行い、周波数領域信号であるキャリヤシンボルに変換するステップと、前記変換したキャリヤシンボルからSP信号を抽出し、前記抽出したSP信号に基づいて、チャネル応答を算出するステップと、前記算出したチャネル応答の周波数領域信号に対してIFFT処理の演算を行い、時間領域信号であるフィルタ係数に変換するステップと、前記変換したフィルタ係数を現在のフィルタ係数として記憶し、既に記憶している前記フィルタ係数生成時間前のフィルタ係数を引き続き記憶するステップと、前記記憶した現在のフィルタ係数及び前記フィルタ係数生成時間前のフィルタ係数を用いて、前記フィルタ係数生成時間における補正量を演算するステップと、前記現在のフィルタ係数を補正して新たなフィルタ係数を推定するステップと、を有することを特徴とする。
【0022】
また、本発明による請求項9のOFDMデジタル信号等化方法は、OFDM信号を周波数変換及びAD変換し、前記変換したOFDM信号を直交復調し、前記直交復調した信号に基づいてフィルタ係数を生成し、前記直交復調した信号を、前記フィルタ係数を用いて等化し、前記等化した信号を直交変調し、前記直交変調したOFDM信号をDA変換及び周波数変換するOFDMデジタル信号等化方法において、前記直交復調した時間領域信号に対してFFT処理の演算を行い、周波数領域信号であるキャリヤシンボルに変換するステップと、前記変換したキャリヤシンボルからSP信号を抽出し、前記抽出したSP信号に基づいて、チャネル応答を算出するステップと、前記算出したチャネル応答の周波数領域信号に対してIFFT処理の演算を行い、時間領域信号であるフィルタ係数に変換するステップと、既に記憶しているフィルタ係数をシフトし、前記変換したフィルタ係数を含めて、前記フィルタ係数生成時間前から現在までの間のフィルタ係数をシンボル毎に記憶するステップと、前記記憶したフィルタ係数を用いて、1シンボル間の補正量を前記フィルタ係数生成時間前から現在までの間でそれぞれ演算するステップと、前記1シンボル間のそれぞれの補正量に基づいて、前記フィルタ係数生成時間における補正量を演算し、前記現在のフィルタ係数を補正して新たなフィルタ係数を推定するステップと、を有することを特徴とする。
【0023】
また、本発明による請求項10のOFDMデジタル信号中継装置は、請求項1から6までのいずれか一項に記載のOFDMデジタル信号等化装置を用いたことを特徴とする。
【発明の効果】
【0024】
以上のように、本発明によれば、フィルタ係数生成時間内に生じたフィルタ係数の位相回転を、過去のデータに基づいて算出し、その位相回転を補正する新たなフィルタ係数を推定するようにした。これにより、FIRフィルタ回路が、等化を行う信号と、フィルタ係数生成時間分遅延したフィルタ係数とを入力し、そのフィルタ係数を用いて等化を行う場合に、そのフィルタ係数生成時間内に位相回転が生じたとしても、そのフィルタ係数が、等化を行う信号に時間的に対応しているから、正常に等化を行うことが可能となる。
【発明を実施するための最良の形態】
【0025】
以下、本発明を実施するための最良の形態について図面を用いて詳細に説明する。
〔等化装置〕
まず、等化装置について説明する。図1は、本発明の実施形態による等化装置の構成を示すブロック図である。この等化装置1は、基準信号発振回路10、周波数変換回路11、AD変換回路12、直交復調回路13、FIRフィルタ回路14、フィルタ係数生成回路15、直交変調回路16、DA変換回路17及び周波数変換回路18を備えている。
【0026】
基準信号発振回路10は、周波数変換回路11,18においてOFDM信号を周波数変換するための基準となる信号を発振し、基準信号として周波数変換回路11,18に出力する。
【0027】
周波数変換回路11は、受信したOFDM信号を入力すると共に、基準信号発振回路10から基準信号を入力し、基準信号に基づいてOFDM信号を周波数変換し、IF信号をAD変換回路12に出力する。AD変換回路12は、周波数変換回路11からIF信号を入力し、アナログIF信号をデジタルIF信号にAD変換し、デジタルIF信号を直交復調回路13に出力する。
【0028】
直交復調回路13は、AD変換回路12からデジタルIF信号を入力し、直交復調処理を行い、複素ベースバンド信号に変換してFIRフィルタ回路14及びフィルタ係数生成回路15に出力する。
【0029】
フィルタ係数生成回路15は、直交復調回路13から直交復調された信号を入力し、フィルタ係数W(k)を生成して位相補正し、位相補正したフィルタ係数W’(k)をFIRフィルタ回路14に出力する。フィルタ係数W(k)を生成する処理、及びフィルタ係数W(k)を位相補正してフィルタ係数W’(k)を生成する処理の詳細については後述する。
【0030】
FIRフィルタ回路14は、直交復調回路13から直交復調された信号を入力すると共に、フィルタ係数生成回路15からフィルタ係数W’(k)を入力し、フィルタ係数W’(k)を用いて入力した信号を等化し、等化した信号を直交変調回路16に出力する。
【0031】
直交変調回路16は、FIRフィルタ回路14により等化された信号である複素ベースバンド信号を入力し、直交変調処理を行い、デジタルIF信号に変換してDA変換回路17に出力する。
【0032】
DA変換回路17は、直交変調回路16からデジタルIF信号を入力し、デジタルIF信号をアナログIF信号にDA変換し、アナログIF信号を周波数変換回路18に出力する。周波数変換回路18は、DA変換回路17からアナログIF信号を入力すると共に、基準信号発振回路10から基準信号を入力し、基準信号に基づいてアナログIF信号を周波数変換し、OFDM信号を出力する。
【0033】
〔フィルタ係数生成回路〕
次に、図1に示したフィルタ係数生成回路15について説明する。図2は、図1に示した等化装置1の構成要素からFIRフィルタ回路14及びフィルタ係数生成回路15を取り出した構成図であり、等化装置1におけるフィルタ係数生成回路15の遅延時間を説明する図である。また、図3は、フィルタ係数生成回路15の構成を示すブロック図である。このフィルタ係数生成回路15は、FFT演算回路20、SP抽出回路21、演算回路22、IFFT演算回路23及びフィルタ係数補正回路24を備えており、直交復調回路13から直交復調された信号を入力し、フィルタ係数W(k)を生成し、フィルタ係数W(k)を位相補正して新たなフィルタ係数W’(k)を生成し、その新たなフィルタ係数W’(k)をFIRフィルタ回路14に出力する。
【0034】
図2を参照して、フィルタ係数生成回路15は、直交復調回路13により直交復調された信号を入力してからフィルタ係数W’(k)を生成するまでには所定の時間(フィルタ係数生成時間)を要する。したがって、FIRフィルタ回路14は、直交復調回路13から直交復調された信号を入力し、フィルタ係数W’(k)を用いて等化を行う場合に、等化を行う信号に対し、フィルタ係数生成時間分遅延したフィルタ係数W’(k)を用いて等化を行うことになる。
【0035】
ところで、マルチパスを受信した場合は、フィルタ係数生成時間内において、マルチパスのフィルタ係数の位相は回転しないので、主波のフィルタ係数の位相に対して一定である。このため、FIRフィルタ回路14は、等化を行う信号に対し、フィルタ係数生成時間分遅延したフィルタ係数W’(k)を用いて等化を行ったとしても、フィルタ係数生成時間内でフィルタ係数W’(k)がさほど変化しないから、正常に等化を行うことができる。
【0036】
しかしながら、SFN波を受信した場合は、フィルタ係数生成時間内において、希望波である主波の送信周波数とSFN波の送信周波数とが異なるから、SFN波のフィルタ係数の位相は回転してしまう。このため、本発明の実施形態では、フィルタ係数生成回路15が、生成した現在のフィルタ係数W(k)及び過去のフィルタ係数に基づいて回転位相を算出し、現在のフィルタ係数W(k)に対し、その算出した位相回転分の補正を加え、新たなフィルタ係数W’(k)を生成する。そして、FIRフィルタ回路14が、その新たなフィルタ係数W’(k)を用いて等化を行う。これにより、フィルタ係数W’(k)が、等化を行う信号に対応したフィルタ係数になるから、FIRフィルタ回路14は、等化を行う信号に対し、フィルタ係数生成時間分遅延したフィルタ係数W’(k)を用いて等化を行ったとしても、正常に等化を行うことができる。
【0037】
図3を参照して、FFT演算回路20は、直交復調回路13から直交復調された信号を入力し、その時間領域信号に対してFFT処理を行い、周波数領域信号であるキャリヤシンボルに変換し、そのキャリヤシンボルをSP抽出回路21に出力する。
【0038】
SP抽出回路21は、FFT演算回路20からキャリヤシンボルを入力し、入力したキャリヤシンボルからSP信号を抽出し、抽出したSP信号を、予め設定された振幅及び位相を持つ送信SP信号で除算し、チャネル応答H(n)を算出する。そして、SP信号について算出したチャネル応答H(n)を用いて周波数方向及びシンボル方向に補間し、全てのキャリヤシンボルのチャネル応答H(n)を演算回路22に出力する。
【0039】
演算回路22は、SP抽出回路21からチャネル応答H(n)を入力し、1/H(n)を演算し、チャネル応答の逆数1/H(n)をIFFT演算回路23に出力する。IFFT演算回路23は、演算回路22からチャネル応答の逆数1/H(n)を入力し、その周波数領域信号に対してIFFT処理を行い、時間領域信号であるフィルタ係数W(k)に変換し、そのフィルタ係数W(k)をフィルタ係数補正回路24に出力する。
【0040】
フィルタ係数補正回路24は、IFFT演算回路23からフィルタ係数W(k)を入力し、入力したフィルタ係数W(k)及び過去に入力したフィルタ係数を用いて、フィルタ係数生成時間後のフィルタ係数W’(k)を推定し、そのフィルタ係数W’(k)をFIRフィルタ回路14に出力する。この場合、FIRフィルタ回路14は、等化する信号に(時間的に)対応したフィルタ係数W’(k)を用いて、等化を行うことができる。
【0041】
〔実施例1〕
次に、図2及び図3に示したフィルタ係数補正回路24について説明する。まず、実施例1のフィルタ係数補正回路24−1について説明する。図4は、実施例1のフィルタ係数補正回路24−1の構成を示すブロック図である。このフィルタ係数補正回路24−1は、データ記憶部30及び演算部31〜33を備えており、IFFT演算回路23からフィルタ係数W(k,x)を入力し、現在のフィルタ係数W(k,x)及び1シンボル前のフィルタ係数W(k,x−1)を用いて、フィルタ係数W(k,x)の位相回転の補正量を算出し、yシンボル先のフィルタ係数W’(k,x+y)を推定する。そして、推定したフィルタ係数W’(k,x+y)をFIRフィルタ回路14に出力する。このようにして出力された、現在を基準にしたyシンボル先のフィルタ係数W’(k,x+y)は、FIRフィルタ回路14において等化する信号に対応したフィルタ係数となる。ここで、xはシンボル番号を示す。尚、yは、予め設定された値とする(実施例2,3についても同じ)。また、フィルタ係数生成時間内に、フィルタ係数の振幅は変化しないものとする(実施例2,3についても同じ)。
【0042】
データ記憶部30は、現在のシンボル番号xのフィルタ係数W(k,x)を格納する第1の記憶部と、現在のシンボル番号xから1つ手前のシンボル番号x−1のフィルタ係数W(k,x−1)を記憶する第2の記憶部とを備えている。時間の経過に伴ってシンボル番号が進む毎に、第1の記憶部に記憶されたフィルタ係数W(k,x)は、第2の記憶部へシフトし、第2の記憶部にフィルタ係数W(k,x−1)として記憶される。そして、新たなシンボル番号xのフィルタ係数W(k,x)が第1の記憶部に記憶される。
【0043】
演算部31は、データ記憶部30からフィルタ係数W(k,x)及びフィルタ係数W(k,x−1)を読み出し、以下の複素演算式により補正量Cを算出し、補正量Cを演算部32に出力する。
C=W(k,x)/W(k,x−1)
ここで、補正量Cは、フィルタ係数番号kにおいて、シンボル番号x−1のフィルタ係数W(k,x−1)を基準にして、シンボル番号xのフィルタ係数W(k,x)に対する位相回転度合い(角度のずれ量)を示している。つまり、シンボル番号x−1からシンボル番号xまでの期間である1シンボルの位相回転度合いを示している。
【0044】
演算部32は、演算部31から補正量Cを入力し、以下の式により、フィルタ係数生成時間であるyシンボルの補正量C’を演算し、その補正量C’を演算部33に出力する。
C’=C
ここで、補正量C’は、フィルタ係数番号kにおいて、シンボル番号x−1のフィルタ係数W(k,x−1)を基準にして、シンボル番号xのフィルタ係数W(k,x)に対する位相回転度合い(1シンボルの位相回転度合い)をyシンボルに拡張した、yシンボルの位相回転度合いを示している。
【0045】
演算部33は、データ記憶部30からシンボル番号xのフィルタ係数W(k,x)を読み出すと共に、演算部32から補正量C’を入力し、以下の式によりフィルタ係数W(k,x)を位相補正し、yシンボル先の新たなフィルタ係数W’(k,x+y)を推定する。このようにして推定されたフィルタ係数W’(k)はFIRフィルタ回路14へ出力される。
W’(k,x+y)=W(k,x)・C’
=W(k,x)・C
【0046】
以上のように、実施例1のフィルタ係数補正回路24−1を含むフィルタ係数生成回路15を備えた等化装置1によれば、フィルタ係数生成時間内に生じたフィルタ係数の位相回転を、現在のシンボル番号xのフィルタ係数W(k,x)及び過去のシンボル番号x−1のフィルタ係数W(k,x−1)に基づいて算出し、その位相回転を補正してフィルタ係数生成時間(yシンボル)分先の新たなフィルタ係数W’(k,x+y)を推定するようにした。そして、FIRフィルタ回路14は、等化を行う信号と、フィルタ係数生成時間分先のフィルタ係数W’(k,x+y)とを入力し、等化を行うようにした。これにより、フィルタ係数生成時間内にフィルタ係数に位相回転が生じたとしても、推定されたフィルタ係数W’(k,x+y)は位相回転が補正されており、等化を行う信号に対応しているから、FIRフィルタ回路14において正常に等化を行うことが可能となる。
【0047】
例えばSFN波を受信した場合は、フィルタ係数生成時間内にフィルタ係数の位相回転が生じることがあり、等化装置1は、前述した処理により正常に等化を行うことが可能となる。また、マルチパスを受信した場合は、フィルタ係数生成時間内にフィルタ係数の位相回転が生じないが、フィルタ係数補正回路24−1において補正量がゼロになるから、等化装置1は、マルチパスを正しく等化することができる。したがって、前記等化装置1によれば、SFN波及びマルチパスを同時に受信した場合であっても、正常に等化を行うことが可能となる。
【0048】
また、前記等化装置1によれば、データ記憶部30は、2つのフィルタ係数W(k,x)及びフィルタ係数W(k,x−1)を記憶すればよいから、y+1個のフィルタ係数を記憶する実施例2及び3(詳細については後述する)に比べ、記憶量が少なくて済む。
【0049】
〔実施例2〕
次に、実施例2のフィルタ係数補正回路24−2について説明する。図5は、実施例2のフィルタ係数補正回路24−2の構成を示すブロック図である。このフィルタ係数補正回路24−2は、データ記憶部40及び演算部41,42を備えており、IFFT演算回路23からフィルタ係数W(k,x)を入力し、現在のフィルタ係数W(k,x)及びyシンボル(フィルタ係数生成時間)前のフィルタ係数W(k,x−y)を用いて、フィルタ係数W(k,x)の位相回転の補正量を算出し、yシンボル先のフィルタ係数W’(k,x+y)を推定する。そして、推定したフィルタ係数W’(k,x+y)をFIRフィルタ回路14に出力する。このようにして出力された、現在を基準にしてyシンボル先のフィルタ係数W’(k,x+y)は、FIRフィルタ回路14において等化する信号に対応したフィルタ係数となる。
【0050】
データ記憶部40は、現在のシンボル番号xのフィルタ係数W(k,x)を格納する第1の記憶部と、現在のシンボル番号xから1つ手前のシンボル番号x−1のフィルタ係数W(k,x−1)を記憶する第2の記憶部と、同様にして、現在のシンボル番号からyシンボル手前のシンボル番号x−yのフィルタ係数W(k,x−y)を記憶する第y+1の記憶部とを備えている。つまり、データ記憶部40は、シンボル番号xからシンボル番号x−yまでのy+1個のフィルタ係数を記憶する。時間の経過に伴ってシンボル番号が進む毎に、第1の記憶部に記憶されたフィルタ係数W(k,x)は第2の記憶部へシフトし、第2の記憶部にフィルタ係数W(k,x−1)として記憶される。また、第2の記憶部に記憶されたフィルタ係数W(k,x−1)は第3の記憶部へシフトし、第3の記憶部にフィルタ係数W(k,x−2)として記憶される。同様にして、第yの記憶部に記憶されたフィルタ係数W(k,x−y+1)は第y+1の記憶部へシフトし、第y+1の記憶部にフィルタ係数W(k,x−y)として記憶される。そして、新たなシンボル番号xのフィルタ係数W(k,x)が第1の記憶部に記憶される。
【0051】
演算部41は、データ記憶部40からフィルタ係数W(k,x)及びフィルタ係数W(k,x−y)を読み出し、以下の複素演算式により補正量Cを算出し、補正量Cを演算部42に出力する。
C=W(k,x)/W(k,x−y)
ここで、補正量Cは、フィルタ係数番号kにおいて、シンボル番号x−yのフィルタ係数W(k,x−y)を基準にして、シンボル番号xのフィルタ係数W(k,x)に対する位相回転度合い(角度のずれ量)を示している。つまり、補正量Cは、シンボル番号x−yからシンボル番号xまでの期間であるyシンボルの位相回転度合いを示している。
【0052】
演算部42は、データ記憶部40からシンボル番号xのフィルタ係数W(k,x)を読み出すと共に、演算部41から補正量Cを入力し、以下の式によりフィルタ係数W(k,x)を位相補正し、yシンボル先の新たなフィルタ係数W’(k,x+y)を推定する。このようにして推定されたフィルタ係数W’(k)はFIRフィルタ回路14へ出力される。
W’(k,x+y)=W(k,x)・C
【0053】
以上のように、実施例2のフィルタ係数補正回路24−2を含むフィルタ係数生成回路15を備えた等化装置1によれば、フィルタ係数生成時間内に生じたフィルタ係数の位相回転を、現在のシンボル番号xのフィルタ係数W(k,x)及び過去のシンボル番号x−yのフィルタ係数W(k,x−y)に基づいて算出し、その位相回転を補正してフィルタ係数生成時間(yシンボル)分先の新たなフィルタ係数W’(k,x+y)を推定するようにした。そして、FIRフィルタ回路14は、等化を行う信号と、フィルタ係数生成時間分先のフィルタ係数W’(k,x+y)とを入力し、等化を行うようにした。これにより、フィルタ係数生成時間内にフィルタ係数に位相回転が生じたとしても、推定されたフィルタ係数W’(k,x+y)はその位相回転が補正されており、等化を行う信号に対応しているから、FIRフィルタ回路14において正常に等化を行うことが可能となる。実施例1と同様に、例えばSFN波を受信した場合に有効である。また、実施例1と同様に、マルチパスを受信した場合、及び、SFN波及びマルチパスを同時に受信した場合であっても、等化装置1は、正常に等化を行うことが可能となる。
【0054】
〔実施例3〕
次に、実施例3のフィルタ係数補正回路24−3について説明する。図6は、実施例3のフィルタ係数補正回路24−3の構成を示すブロック図である。このフィルタ係数補正回路24−3は、データ記憶部50及び演算部51,52を備えており、IFFT演算回路23からフィルタ係数W(k,x)を入力し、現在のフィルタ係数W(k,x)、1シンボル前のフィルタ係数W(k,x−1)、さらに、yシンボル(フィルタ係数生成時間)前のフィルタ係数W(k,x−y)を用いて、すなわち、現在からyシンボル前までのy+1個のフィルタ係数を用いて、フィルタ係数W(k,x)の位相回転の補正量を算出し、yシンボル先のフィルタ係数W’(k,x+y)を推定する。そして、推定したフィルタ係数W’(k,x+y)をFIRフィルタ回路14に出力する。このようにして出力された、現在を基準にしてyシンボル先のフィルタ係数W’(k,x+y)は、FIRフィルタ回路14において等化する信号に対応したフィルタ係数となる。
【0055】
データ記憶部50は、実施例2のデータ記憶部40と同様に、現在のシンボル番号xのフィルタ係数W(k,x)、現在のシンボル番号xから1つ手前のシンボル番号x−1のフィルタ係数W(k,x−1)等のy+1個のフィルタ係数を記憶する。時間の経過に伴ってシンボル番号が進む毎に、記憶されたフィルタ係数はシフトする。
【0056】
演算部51は、データ記憶部50における第yの記憶部からフィルタ係数W(k,x−y+1)を読み出すと共に、第y+1の記憶部からフィルタ係数W(k,x−y)を読み出し、以下の複素演算式により補正量W’y−1を演算する。
W’y−1=W(k,x−y+1)/W(k,x−y)
ここで、補正量W’y−1は、フィルタ係数番号kにおいて、シンボル番号x−yのフィルタ係数W(k,x−y)を基準にして、シンボル番号x−y+1のフィルタ係数W(k,x−y+1)の位相回転度合い(角度のずれ量)を示している。つまり、補正量W’y−1は、シンボル番号x−yからシンボル番号x−y+1までの期間である1シンボルの位相回転度合いを示している。
【0057】
演算部51は、データ記憶部50における第y−1の記憶部からフィルタ係数W(k,x−y+2)を読み出すと共に、第yの記憶部からフィルタ係数W(k,x−y+1)を読み出し、以下の複素演算式により補正量W’y−2を演算する。
W’y−2=(W(k,x−y+2)/W(k,x−y+1))・W’y−1
ここで、補正量W’y−2は、フィルタ係数番号kにおいて、シンボル番号x−yのフィルタ係数W(k,x−y)を基準にして、シンボル番号x−y+2のフィルタ係数W(k,x−y+2)に対する位相回転度合い(角度のずれ量)を示している。つまり、補正量W’y−2は、シンボル番号x−yからシンボル番号x−y+2までの期間である2シンボルの位相回転度合いを示している。
【0058】
演算部51は、同様の処理を繰り返し、データ記憶部50における第2の記憶部からフィルタ係数W(k,x−1)を読み出すと共に、第3の記憶部からフィルタ係数W(k,x−2)を読み出し、以下の複素演算式により補正量W’を演算する。
W’=(W(k,x−1)/W(k,x−2))・W’
ここで、補正量W’は、フィルタ係数番号kにおいて、シンボル番号x−yのフィルタ係数W(k,x−y)を基準にして、シンボル番号x−1のフィルタ係数W(k,x−1)に対する位相回転度合い(角度のずれ量)を示している。つまり、補正量W’は、シンボル番号x−yからシンボル番号x−1までの期間であるy−1シンボルの位相回転度合いを示している。
【0059】
演算部51は、データ記憶部50における第1の記憶部からフィルタ係数W(k,x)を読み出すと共に、第2の記憶部からフィルタ係数W(k,x−1)を読み出し、以下の複素演算式により補正量Cを演算する。
C=(W(k,x)/W(k,x−1))・W’
ここで、補正量Cは、フィルタ係数番号kにおいて、シンボル番号x−yのフィルタ係数W(k,x−y)を基準にして、シンボル番号xのフィルタ係数W(k,x)に対する位相回転度合い(角度のずれ量)を示している。つまり、補正量Cは、シンボル番号x−yからシンボル番号xまでの期間であるyシンボルの位相回転度合いを示している。
【0060】
演算部52は、データ記憶部50からシンボル番号xのフィルタ係数W(k,x)を読み出すと共に、演算部51から補正量Cを読み出し、以下の式によりフィルタ係数W(k,x)を位相補正し、yシンボル先の新たなフィルタ係数W’(k,x+y)を推定する。このようにして推定されたフィルタ係数W’(k)はFIRフィルタ回路14へ出力される。
W’(k,x+y)=W(k,x)・C
【0061】
以上のように、実施例3のフィルタ係数補正回路24−3を含むフィルタ係数生成回路15を備えた等化装置1によれば、フィルタ係数生成時間内に生じたフィルタ係数の位相回転を、現在のシンボル番号xのフィルタ係数W(k,x)から、yシンボル前のシンボル番号x−yのフィルタ係数W(k,x−y)までの間のフィルタ係数に基づいて算出し、その位相回転を補正してフィルタ係数生成時間(yシンボル)分先の新たなフィルタ係数W’(k,x+y)を推定するようにした。そして、FIRフィルタ回路14は、等化を行う信号と、フィルタ係数生成時間分先のフィルタ係数W’(k,x+y)とを入力し、等化を行うようにした。これにより、フィルタ係数生成時間内にフィルタ係数に位相回転が生じたとしても、推定されたフィルタ係数W’(k,x+y)はその位相回転が補正されており、等化を行う信号に対応しているから、FIRフィルタ回路14において正常に等化を行うことが可能となる。実施例1,2と同様に、例えばSFN波を受信した場合に有効である。また、実施例1,2と同様に、マルチパスを受信した場合、及び、SFN波及びマルチパスを同時に受信した場合であっても、等化装置1は、正常に等化を行うことが可能となる。
【0062】
また、前記等化装置1によれば、現在のシンボル番号xのフィルタ係数W(k,x)から、yシンボル前のシンボル番号x−yのフィルタ係数W(k,x−y)までの間のそれぞれのフィルタ係数に基づいて補正量Cを算出するようにした。これにより、2シンボルのフィルタ係数に基づいて補正量を算出する実施例1及び2に比べ、精度の高いフィルタ係数W’(k,x+y)を推定することができる。例えば、SFN波を受信する場合、フィルタ係数生成時間内に周波数が変化したとしても、フィルタ係数補正回路24−3は、シンボル毎のフィルタ係数に基づいて補正量Cを算出しているから、その周波数変化に対応したフィルタ係数W’(k,x+y)を推定することができる。
【0063】
〔中継装置〕
次に、実施例1から3までのいずれかのフィルタ係数補正回路24を備えた等化装置1を用いた中継装置について説明する。図7は、中継装置の構成を示すブロック図である。この中継装置2は、受信アンテナ3、周波数変換部4、等化装置1、電力増幅部5及び送信アンテナ6を備えている。
【0064】
上位の送信局から送信された希望波は、放送波中継局の中継装置2において、受信アンテナ3によって受信される。周波数変換部4は、受信アンテナ3から給電線を通して受信信号を入力し、希望波の周波数帯域外の不要な信号成分を除去し、出力レベルが一定になるようにAGC(Automatic Gain Control)増幅した後、周波数変換してOFDM信号のIF信号を出力する。周波数変換部4により周波数変換されたOFDM信号のIF信号は、等化装置1に出力される。
【0065】
等化装置1は、周波数変換部4からOFDM信号を入力し、周波数変換、AD変換、直交復調、等化、直交変調、DA変換及び周波数変換のそれぞれの処理を行い、OFDM信号のIF信号を電力増幅部5に出力する。
【0066】
電力増幅部5は、等化装置1からOFDM信号のIF信号を入力し、IF信号をRF帯に周波数変換し、一定レベルになるように電力増幅した後、必要な周波数帯域外の信号成分を除去する。給電線を通して送信アンテナ6に供給された信号は、電波となって放射される。
【0067】
以上、実施例を挙げて本発明を説明したが、本発明は前記実施例に限定されるものではなく、その技術思想を逸脱しない範囲で種々変形可能である。前記実施例1〜3のフィルタ係数補正回路24−1〜24−3では、1シンボル毎に補正量を算出し、新たなフィルタ係数W’(k,x+y)を推定しているが、本発明はこれに限定されるものではなく、例えば2以上のシンボル毎に補正量を算出し、新たなフィルタ係数W’(k,x+y)を推定するようにしてもよい。例えば、yシンボル毎とすることにより、実施例2のフィルタ係数補正回路24−2におけるデータ記憶部40は、yシンボル毎に2つのフィルタ係数W(k,x),W(k,x−y)を記憶すればよいから、記憶量は少なくて済む。
【図面の簡単な説明】
【0068】
【図1】本発明の実施形態による等化装置の構成を示すブロック図である。
【図2】等化装置におけるフィルタ係数生成回路の遅延時間を説明する図である。
【図3】等化装置におけるフィルタ係数生成回路の構成を示すブロック図である。
【図4】実施例1のフィルタ係数補正回路の構成を示すブロック図である。
【図5】実施例2のフィルタ係数補正回路の構成を示すブロック図である。
【図6】実施例3のフィルタ係数補正回路の構成を示すブロック図である。
【図7】本発明の実施形態による等化装置を用いた中継装置の構成を示すブロック図である。
【図8】従来の等化装置におけるフィルタ係数生成回路の構成を示すブロック図である。
【図9】マルチパスを受信する場合及びSFN波を受信する場合におけるフィルタ係数を模式的に示す図である。
【符号の説明】
【0069】
1 等化装置
2 中継装置
3 受信アンテナ
4 周波数変換部
5 電力増幅部
6 送信アンテナ
10 基準信号発振回路
11 周波数変換回路
12 AD変換回路
13 直交復調回路
14 FIRフィルタ回路
15,150 フィルタ係数生成回路
16 直交変調回路
17 DA変換回路
18 周波数変換回路
20 FFT演算回路
21 SP抽出回路
22 演算回路
23 IFFT演算回路
24 フィルタ係数補正回路
30,40,50 データ記憶部
31,32,33,41,42,51,52 演算部

【特許請求の範囲】
【請求項1】
OFDM信号を周波数変換及びAD変換する第1の変換回路と、前記変換されたOFDM信号を直交復調する直交復調回路と、前記直交復調回路により直交復調された信号に基づいて、フィルタ係数を生成するフィルタ係数生成回路と、前記フィルタ係数生成回路により生成されたフィルタ係数を用いて、前記直交復調回路により直交復調された信号を等化するFIRフィルタ回路と、前記FIRフィルタ回路により等化された信号を直交変調する直交変調回路と、前記直交変調回路により直交変調されたOFDM信号をDA変換及び周波数変換する第2の変換回路とを備えたOFDMデジタル信号等化装置において、
前記フィルタ係数生成回路は、
前記直交復調回路により直交復調された時間領域信号に対してFFT処理の演算を行い、周波数領域信号であるキャリヤシンボルに変換するFFT演算回路と、
前記FFT演算回路により変換されたキャリヤシンボルからSP信号を抽出し、前記抽出したSP信号に基づいて、チャネル応答を算出するSP抽出回路と、
前記SP抽出回路により算出されたチャネル応答の周波数領域信号に対してIFFT処理の演算を行い、時間領域信号であるフィルタ係数に変換するIFFT演算回路と、
前記IFFT演算回路により変換された現在のフィルタ係数及び過去のフィルタ係数に基づいて、前記現在のフィルタ係数を補正し、前記FFT演算回路による変換処理から当該新たなフィルタ係数を生成するまでの間のフィルタ係数生成時間分先の新たなフィルタ係数を推定するフィルタ係数補正回路と、を備え、
前記FIRフィルタ回路は、
前記フィルタ係数生成回路のフィルタ係数補正回路により推定された新たなフィルタ係数を用いて等化を行う、ことを特徴とするOFDMデジタル信号等化装置。
【請求項2】
請求項1に記載のOFDMデジタル信号等化装置において、
前記フィルタ係数補正回路は、
現在のフィルタ係数と、現在よりも1シンボル前のフィルタ係数とを記憶するデータ記憶部と、
前記データ記憶部に記憶された現在のフィルタ係数及び現在よりも1シンボル前のフィルタ係数を用いて、1シンボル間の補正量を演算し、前記1シンボル間の補正量に基づいて、前記フィルタ係数生成時間における補正量を演算し、前記現在のフィルタ係数を補正して新たなフィルタ係数を推定する演算部と、
を備えたことを特徴とするOFDMデジタル信号等化装置。
【請求項3】
請求項1に記載のOFDMデジタル信号等化装置において、
前記フィルタ係数補正回路は、
現在のフィルタ係数と、現在よりも前記フィルタ係数生成時間前のフィルタ係数とを記憶するデータ記憶部と、
前記データ記憶部に記憶された現在のフィルタ係数及び前記フィルタ係数生成時間前のフィルタ係数を用いて、前記フィルタ係数生成時間における補正量を演算し、前記現在のフィルタ係数を補正して新たなフィルタ係数を推定する演算部と、
を備えたことを特徴とするOFDMデジタル信号等化装置。
【請求項4】
請求項1に記載のOFDMデジタル信号等化装置において、
前記フィルタ係数補正回路は、
前記フィルタ係数生成時間前から現在までのフィルタ係数をシンボル毎に記憶するデータ記憶部と、
前記データ記憶部に記憶されたフィルタ係数を用いて、1シンボル間の補正量を前記フィルタ係数生成時間前から現在までの間でそれぞれ演算し、前記1シンボル間のそれぞれの補正量に基づいて、前記フィルタ係数生成時間における補正量を演算し、前記現在のフィルタ係数を補正して新たなフィルタ係数を推定する演算部と、
を備えたことを特徴とするOFDMデジタル信号等化装置。
【請求項5】
請求項1から4までのいずれか一項に記載のOFDMデジタル信号等化装置において、
前記新たなフィルタ係数の推定を、予め設定された時間間隔で行う、ことを特徴とするOFDMデジタル信号等化装置。
【請求項6】
請求項3に記載のOFDMデジタル信号等化装置において、
前記新たなフィルタ係数の推定を、前記フィルタ係数生成時間毎に行う、ことを特徴とするOFDMデジタル信号等化装置。
【請求項7】
OFDM信号を周波数変換及びAD変換し、前記変換したOFDM信号を直交復調し、前記直交復調した信号に基づいてフィルタ係数を生成し、前記直交復調した信号を、前記フィルタ係数を用いて等化し、前記等化した信号を直交変調し、前記直交変調したOFDM信号をDA変換及び周波数変換するOFDMデジタル信号等化方法において、
前記直交復調した時間領域信号に対してFFT処理の演算を行い、周波数領域信号であるキャリヤシンボルに変換するステップと、
前記変換したキャリヤシンボルからSP信号を抽出し、前記抽出したSP信号に基づいて、チャネル応答を算出するステップと、
前記算出したチャネル応答の周波数領域信号に対してIFFT処理の演算を行い、時間領域信号であるフィルタ係数に変換するステップと、
前記変換したフィルタ係数を現在のフィルタ係数として記憶し、既に記憶している現在よりも1シンボル前のフィルタ係数を引き続き記憶するステップと、
前記記憶した現在のフィルタ係数及び現在よりも1シンボル前のフィルタ係数を用いて、1シンボル間の補正量を演算するステップと、
前記1シンボル間の補正量に基づいて、前記フィルタ係数生成時間における補正量を演算するステップと、
前記現在のフィルタ係数を補正して新たなフィルタ係数を推定するステップと、
を有することを特徴とするOFDMデジタル信号等化方法。
【請求項8】
OFDM信号を周波数変換及びAD変換し、前記変換したOFDM信号を直交復調し、前記直交復調した信号に基づいてフィルタ係数を生成し、前記直交復調した信号を、前記フィルタ係数を用いて等化し、前記等化した信号を直交変調し、前記直交変調したOFDM信号をDA変換及び周波数変換するOFDMデジタル信号等化方法において、
前記直交復調した時間領域信号に対してFFT処理の演算を行い、周波数領域信号であるキャリヤシンボルに変換するステップと、
前記変換したキャリヤシンボルからSP信号を抽出し、前記抽出したSP信号に基づいて、チャネル応答を算出するステップと、
前記算出したチャネル応答の周波数領域信号に対してIFFT処理の演算を行い、時間領域信号であるフィルタ係数に変換するステップと、
前記変換したフィルタ係数を現在のフィルタ係数として記憶し、既に記憶している前記フィルタ係数生成時間前のフィルタ係数を引き続き記憶するステップと、
前記記憶した現在のフィルタ係数及び前記フィルタ係数生成時間前のフィルタ係数を用いて、前記フィルタ係数生成時間における補正量を演算するステップと、
前記現在のフィルタ係数を補正して新たなフィルタ係数を推定するステップと、
を有することを特徴とするOFDMデジタル信号等化方法。
【請求項9】
OFDM信号を周波数変換及びAD変換し、前記変換したOFDM信号を直交復調し、前記直交復調した信号に基づいてフィルタ係数を生成し、前記直交復調した信号を、前記フィルタ係数を用いて等化し、前記等化した信号を直交変調し、前記直交変調したOFDM信号をDA変換及び周波数変換するOFDMデジタル信号等化方法において、
前記直交復調した時間領域信号に対してFFT処理の演算を行い、周波数領域信号であるキャリヤシンボルに変換するステップと、
前記変換したキャリヤシンボルからSP信号を抽出し、前記抽出したSP信号に基づいて、チャネル応答を算出するステップと、
前記算出したチャネル応答の周波数領域信号に対してIFFT処理の演算を行い、時間領域信号であるフィルタ係数に変換するステップと、
既に記憶しているフィルタ係数をシフトし、前記変換したフィルタ係数を含めて、前記フィルタ係数生成時間前から現在までの間のフィルタ係数をシンボル毎に記憶するステップと、
前記記憶したフィルタ係数を用いて、1シンボル間の補正量を前記フィルタ係数生成時間前から現在までの間でそれぞれ演算するステップと、
前記1シンボル間のそれぞれの補正量に基づいて、前記フィルタ係数生成時間における補正量を演算し、前記現在のフィルタ係数を補正して新たなフィルタ係数を推定するステップと、
を有することを特徴とするOFDMデジタル信号等化方法。
【請求項10】
請求項1から6までのいずれか一項に記載のOFDMデジタル信号等化装置を用いたOFDMデジタル信号中継装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2010−50834(P2010−50834A)
【公開日】平成22年3月4日(2010.3.4)
【国際特許分類】
【出願番号】特願2008−214401(P2008−214401)
【出願日】平成20年8月22日(2008.8.22)
【出願人】(000004352)日本放送協会 (2,206)
【Fターム(参考)】