説明

JFEスチール株式会社により出願された特許

2,081 - 2,090 / 8,589


【課題】磁区細分化処理が施されていない方向性電磁鋼板を変圧器等の鉄心材に切断する際に、効率的に磁区細分化処理を施すことができる切断装置とその切断方法を提案する。
【解決手段】方向性電磁鋼板を所定の形状・寸法に切断する切断装置において、切断前あるいは切断後の方向性電磁鋼板に対して圧延方向と45〜90°をなす方向に線状の歪を前記方向性電磁鋼板の全面に付与する磁区細分化処理機構を付設してなることを特徴とする方向性電磁鋼板の切断装置。 (もっと読む)


【課題】目的とする形状に鋼板を高精度に圧延すること。
【解決手段】パススケジュール演算装置が、分割部の断面積がパス間で同じになるように各パスの鋼板を長手方向に仮想的に分割し、各分割点のパス間の位置変化に基づいて、各分割点における先進率を予測する。これにより、マスフロー一定の原則からi番目のパスにおける鋼板2の分割点の位置Pは、次のi+1番目のパスでは位置P’となり、i+1番目のパスにおける鋼板2の分割点の位置Pと一致するので、先進率を算出する際に用いられる出側板厚に誤差が生じない。このため、鋼板2の長手方向位置を高精度に算出し、目的とする形状に鋼板を高精度に圧延することができる。 (もっと読む)


【課題】デスケーリング効率を向上しつつ、デスケーリング装置の寿命低下を抑えることを目的する。
【解決手段】搬送されてくる鋼板1に向けて噴射流体を噴射する噴射ノズル3を備えたデスケーリング装置である。搬送されてくる鋼板1に対する前記噴射ノズル3の迎え角θを1度以上に設定する。前記鋼板1と噴射ノズル3との間に、鋼板1からの跳ね返り水が噴射ノズル3側に戻ることを阻止するプロテクタ4を設ける。そのプロテクタ4に対し、前記噴射ノズル3から鋼板1に向けて噴射流体を通過させるためのプロテクタ穴5を開口する。鋼板1の移動方向に沿った方向において、前記噴射ノズル3の噴射口3aの位置から、前記プロテクタ穴5の鋼板1上流側端部位置までの距離を、30mm以下とした。 (もっと読む)


【課題】熱間圧延のスラブ加熱時におけるスラブ表層部の脱炭および浸炭を抑制して、表層から内部まで炭素濃度が一定になった極低炭素鋼材を製造することができる、板厚方向の材質均一性に優れた極低炭素鋼材の製造方法を提供する。
【解決手段】C:0.0005〜0.01質量%を含有するスラブを加熱し、熱間圧延して極低炭素鋼材を製造するに当たり、スラブ加熱温度T(℃)ならびに加熱炉雰囲気中の炭素活量Cg(atm)および鋼材含有炭素濃度Cs(質量%)より求められるパラメータA(=Cg/(Cs/100)−T/1000)の値を適正な範囲(23.5≦A≦28.5)にして加熱する。 (もっと読む)


【課題】冷間鍛造性に優れるだけでなく、浸炭時の粗粒化抑制能にも優れることから高い耐疲労強度を有する肌焼鋼を製造するための方法について提案する。
【解決手段】C:0.10〜0.35質量%、Si:0.01〜0.50質量%、Mn:0.40〜1.50質量%、P:0.02質量%以下、S:0.03質量%以下、Al:0.04〜0.10質量%、Cr:0.5〜2.5質量%、B:0.0005〜0.0050質量%、Nb:0.003〜0.050質量%、Ti:0.003質量%以下およびN:0.0080質量%未満を含有し、残部はFe及び不可避不純物からなる鋼素材を、一旦、1150℃以上の温度に加熱した後に500℃以下まで冷却し、その後に1000℃以下に加熱後、850℃以上の温度にて加工を終了したのち、800〜500℃の温度域を0.1〜1.0℃/sの冷却速度で冷却する。 (もっと読む)


【課題】微小点状欠陥の検出を精度良く行うことができる。
【解決手段】リング状の光出射部3Aと、光出射部3Aと鋼板2との間に、光出射部3Aと同心円状で、かつ、光出射部3Aの内径より径の小さい光学的な開口部を有する遮光板3Bとを有したリング照明装置3と、遮光板3Bの開口部の中心線C上に配置され、該開口部を介して鋼板2の表面を撮像する撮像部4と、を備え、撮像部4が撮像する鋼板2表面上の撮像領域Aには、光出射部3Aから照射された光のうち遮光板3Bの開口部縁部で回折した光のみが照射され、光出射部3Aと鋼板2表面との間の距離Hは、撮像領域A内の平均輝度レベルが所定レベル以上で、かつ、撮像領域A内の輝度レベル差が所定範囲内となるように設定される。 (もっと読む)


【課題】硫化脱銅スラグから、NaとSをフラックスとして再利用可能な化合物として高い回収率で回収する。
【解決手段】溶融状態から固化した硫化脱銅スラグを、粒径5〜20mmの割合が50質量%以上である粒度に調整し、この粒状の硫化脱銅スラグを水に浸漬してスラグ中のNaとSを抽出し、該水溶液からNa・S成分を回収するに際して、水溶液をpH≧9に維持する。スラグを粉砕することなく所定の粒度で水等に浸漬することにより、スラグ中のSを−2価の状態に維持することができ、且つ、水溶液をpH≧9に保つことにより、Sの揮発を防止して、−2価のSを水溶液中に安定的に保つことができ、これらにより、NaとSをフラックスとして再利用可能な化合物として高い回収率で回収できる。 (もっと読む)


【課題】スラグが持ち込まれる環境でもスラグに損耗を助長されない、十分に長い寿命を持つ溶銑用保持炉を提供する。
【解決手段】電鋳煉瓦5を内張り耐火物4として使用したこと、さらには出銑口1および出滓口1の何れか一方もしくは両方の内張り耐火物4として前記電鋳煉瓦5を使用した溶銑用保持炉。前記電鋳煉瓦5は、剥落回数2以上の体スポーリング性を有すること、さらには、α、β−アルミナ質のものであることが好ましい。 (もっと読む)


【課題】ラインパイプ等の溶接構造物に用いて好適な、引張強度が780MPa以上の鋼材で、溶接金属部靭性に優れるレーザ溶接継手およびレーザ溶接方法を提供する。
【解決手段】溶接金属は、mass%で、C:0.14%以下、O:0.02%以下を含み、かつCeqが0.35〜0.65%を満足する成分組成と、アスペクト比で4以上の針状のM−A組織(島状マルテンサイト)が面積率で5%以下である、ベイナイトあるいはベイナイトとマルテンサイトの混合組織からなるミクロ組織を有するレーザ溶接継手。Ceq=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14、ここで、Ceq:炭素当量(mass%)、C、Mn、Si、Ni、Cr、Mo、V:各合金元素の含有量(mass%)。シールドガスとして酸素供給ガスが体積比率で10%以下の不活性ガスを用いる。 (もっと読む)


【課題】3電極以上の細径多電極サブマージアーク溶接に用いて好適な、径3.2mm以下の溶接金属の低温靭性に優れるフラックス入り溶接ワイヤを提供する。
【解決手段】ワイヤ全成分組成が質量%で、C:0.04〜0.22%、Si:0.1〜0.6%、Mn:1.0〜3.0%、Ti:0.01〜0.25%、REM:0.01〜0.5%、更に、Ni:10.0%以下、Mo:3.0%以下の1種又は2種を含有し、必要に応じて、B;0.1〜0.5%、Cu:0.5%以下を含有し、残部がFeおよび不可避的不純物からなり、ワイヤ全質量に対するメタル系フラックス成分の質量比(充填率)が10〜40%であるフラックス入り溶接ワイヤ。 (もっと読む)


2,081 - 2,090 / 8,589