説明

ナノプロプリエタリー,インコーポレイテッドにより出願された特許

1 - 10 / 10


【課題】平形カソードの製造に利用される、特定の物理的特性を示す電界放出膜を提供すること。
【解決手段】電界放出カソードとして用いられる炭素膜(703)は、基板(803)上の薄い炭素膜の層である。炭素膜は、25〜165cm-1の半値全幅値(FWHM)を有する、1578cm-1〜1620cm-1の範囲のUVラマンバンドを有する。炭素膜は、300ナノメートルより薄くてもよい。膜が堆積される基板は、導電性、非導電性のどちらでもよい。非導電基板の場合、基板は、連続的な導電層または導電性材料の緻密な網構造のいずれかでコーティングされ得る。 (もっと読む)


カーボンナノチューブ(CNT)のようなナノ粒子を用いる電界放出デバイスにおいて使用するためのカソードを形成するための方法が、開示される。CNT層は、カソードの表面上に、電界放出材料を含有する。本発明の方法を使用して、被覆されたCNTの密度は、このカソードの表面上に島状電界放出領域を形成することによって、調節され得る。CNT島状電界放出領域の大きさおよび分布は、得られるCNT層の電界放出特性を最適にするように働く。1つの実施形態において、CN島状電界放出領域は、スクリーン印刷被覆方法を使用して、形成される。本発明は、被覆後に、電界放出のためにカーボンナノチューブを活性化または整列させるためのさらなるプロセスなしで、実施され得る。
(もっと読む)


ナノ粒子の注入のためのマイクロ機械加工ビーズ破砕機械を用い、別の材料の表面上にナノサイズの材料のコーティングを形成するための方法が開示される。この方法は、広範な範囲のキャリアビーズサイズおよび材料を用い、またはキャリアビーズなくして、広範な範囲の標的材料、(カーボン−ナノチューブ、CNTのような)ナノ粒子、および環境条件とともに実施され得る。請求項に記載の注入方法は、電界放出デバイスにおける使用のための表面活性化CNT−カソードを製作するために用いられ得る。この注入方法はまた、互いとの衝撃の点の近傍に存在する任意の材料を化学的に反応するために用いられ得る。
(もっと読む)


金属または金属合金から構成されたナノワイヤまたはナノ粒子の厚みのフィルムのアレイから製造された、水素センサーおよび/またはスイッチ。上記センサーおよび/またはスイッチは、製造材料および製造方法に起因して、広範な作動温度範囲および短縮された応答時間を実証する。上記ナノワイヤまたはナノ粒子の厚みのフィルムは、水素の存在下で導電率の上昇を実証する。本発明の実施形態は、パラジウム−銀合金のナノワイヤの技術に関し、これは、(1)パラジウムナノワイヤの予測不可能な形成;(2)作動の狭小な温度範囲;および(3)水素濃度に対する感度の狭小な範囲を解消する。 (もっと読む)


【課題】平形カソードの製造に利用される、特定の物理的特性を示す電界放出膜を提供すること。
【解決手段】電界放出カソードとして用いられる炭素膜(703)は、基板(803)上の薄い炭素膜の層である。炭素膜は、25〜165cm-1の半値全幅値(FWHM)を有する、1578cm-1〜1620cm-1の範囲のUVラマンバンドを有する。炭素膜は、300ナノメートルより薄くてもよい。膜が堆積される基板は、導電性、非導電性のどちらでもよい。非導電基板の場合、基板は、連続的な導電層または導電性材料の緻密な網構造のいずれかでコーティングされ得る。 (もっと読む)


本発明は、空気または水用の光触媒クリーナーであって、光触媒材料コーティング基板;陽極であって、該基板から所定の距離に位置し、電子による衝撃に応じて紫外光を発する、陽極;および電界陰極であって、該陽極から所定の距離に位置し、電界に応じて電子を発することができる、陰極、を備える、光触媒クリーナーを提供する。空気もしくは水用の光触媒クリーナーは、光触媒材料コーティング基板を備える。基板から所定の距離に位置する陽極は、電界に応じて電子を発する電界発光陰極からの電子による衝撃に応じて紫外光を発する蛍りん光体を備える。この電界発光陰極は、組み込まれたカーボンナノチューブを備える、カーボンを基にした電界エミッター材料であり得る。
(もっと読む)


実質的に強化された電界放出特性が、CNTの表面を非接着性材料(例えば、紙、八歩シートまたはローラー)で覆う工程、特定の力を使用してその材料をプレスする工程、およびその材料を除去する工程からなるプロセスを使用することによって、達成される。この方法は、テーピングプロセスと比較して、CNTのずっと良い電界放出特性が達成された。このプロセスは以下の利点を有する:プロセスが非常に簡便かつ低コストである;このプロセスは、非常に大きな領域で、非常に良い均一性で行われ得る;プロセス後に残渣が基板上に残存しない。
(もっと読む)


ディスプレイデバイスにおけるカソードとしての使用のためのナノ粒子エミッターをパターン化するための工業的スケールの方法が開示される。低温の方法が、得られるディスプレイデバイスの良好な均一性とともに高容量適用で実施され得る。この方法のステップは、予備製作されたコンポジット構造の全面の上にCNTエミッター材料の堆積、および物理的方法を用いる表面の所望されない部分からのCNTエミッター材料の引き続く除去を含む。
(もっと読む)


ナノバイオセンサーのアレイを含む複数の分析物を検出するための装置であって、各々が、カーボンナノチューブ上に固定された生物学的実体を含み、アレイ中の複数のナノバイオセンサーが、独特の生物学的実体を有し、複数のナノバイオセンサーの第1のものが、カーボンナノチューブ上に固定された第1の生物学的実体を有し、複数のナノバイオセンサーのうちの第2のものが、カーボンナノチューブ上に固定された第2の生物学的実体を有し、第1の生物学的実体が、該第2の生物学的実体と比較して独特である、装置。
(もっと読む)


粒子ブラスティング技術(サンドブラスティングまたはビーズブラスティングとも呼ばれる)を使用する印刷またはディスペンスされたカーボンナノチューブ(CNT)フィルムの活性化。このプロセスは、粒子が表面に当たるときに、表面の材料のいくらかが取り除かれるように、十分に高い速度で材料の粒子を送りことによって作動する。印刷CNTフィルムの表面は、粒子銃からの粒子によってゆっくり侵食される。CNTファイバーは、容易に除去され得ないので、印刷層のいくつかの層に埋め込まれ得る。
(もっと読む)


1 - 10 / 10