説明

Fターム[2H040GA02]の内容

孔内観察装置 (21,440) | 電子撮像 (4,585) | 撮像素子を内蔵したもの (2,129)

Fターム[2H040GA02]の下位に属するFターム

Fターム[2H040GA02]に分類される特許

1,921 - 1,933 / 1,933


【解決課題】優れたダイナミック・レンジ及び/または分解能を有し、同時に内視鏡のサイズ及びコストを低減するカラー内視鏡、光源及び内視鏡システム、他を提供する。
【解決手段】本内視鏡はこれを部分的に、カラーセンサでなく内視鏡先端における白黒(グレースケールまたはモノクロ)センサを使用することによって達成する。本内視鏡は、組織を一度に1つの色で精確かつ特定的に照らし、グレースケールで画像を捕捉し、次いでコンピュータを使用して上記画像と上記色とを関連づけるライト・システムを使用する。本発明の所定の態様は、内視鏡に加えて画像システムに適用される。 (もっと読む)


【課題】 ここにおける装置および方法は、生体組織を検視するときに、画像の品質およびユーザーが所望の特徴を区別する機能を向上することができる光源および内視鏡システムを、内視鏡からの、特に、小さな画像センサおよび小さな画素電子井戸容量、および他の光学システムが理由で限られたダイナミックレンジを有する内視鏡からの画像のダイナミックレンジを向上する方法および装置を提供することにより提供する。 (もっと読む)


内視鏡は、細長の挿入部の先端部に、第1及び第2の対物光学系及び各対物光学系の結像位置にそれぞれ配置された第1及び第2の固体撮像素子を備えた第1及び第2の撮像部と、第1及び第2の対物光学系に対して流体の噴出を行えるようにように配置されたノズルとが設けてある。また、内視鏡には、第1及び第2の撮像部を切り換える切換装置が設けてある。 (もっと読む)


本発明は、自動化された内視鏡装置及び診断方法であって、少なくとも一つの他の疾患を検知する方法を、白色光内視鏡操作の過程で同時に実行するものである。幾つかの実施態様では、蛍光画像化または分光法が、白色光内視鏡操作の過程で行われる。他の実施態様では、マルチモード画像化及び/または分光法が、多様な方法で組み合わされ、実施される。白色光以外の診断様式が、気づかれること無くバックグラウンドで行われるため、本工程は臨床医にとって、従来知られている白色光検査よりも手間のかかるものではない。幾つかの実施態様では、本願発明により疑いのある組織が検知され、その存在が臨床医に知らされる。他の実施態様では、本願発明は生体検査の必要性の有無を決定するのに役立ち、また例えば、疑わしい部位を特定し及び/または生検を行う際に、臨床医に概略を示すか援助する。更に他の実施態様によれば、例えば患者の履歴、過去の内視鏡検査データ、定性的及び/または定量的喀痰細胞診結果等の事前情報を組み込むことによって得られる改良点も含む。
(もっと読む)


限定された関心領域(ROI)での画像取得および/または画像表示を提供するための装置および方法。この装置はマイクロエレクトロメカニカルシステム(MEMS)を含み、好ましくは光源、カンチレバー、レンズ、アクチュエータ、光検出器および位置センサを統合したMEMSを含む。光源は、ROIを照明し、画像を表示し、治療を提供し、かつ/または他の機能を実行するための光を提供する。カンチレバーは、他の多くのまたは全ての構成要素を支持する基板に取り付けられた固定端を有する樹脂導波路を含む。カンチレバーの自由端は作製中に基板から解放され、レンズを含む。アクチュエータは、ROIを照明しまたは画像を表示するために自由端を直交方向に走査する。位置センサは、制御のために自由端の位置を検出する。光検出器は、ROIから後方散乱された光を、カンチレバーの固定端から離れてまたはカンチレバーの固定端で受光する。

(もっと読む)


【課題】 電子内視鏡の操作を行わずに視野を変更する。
【解決手段】 電子スコープ10にメモリ42を設け、メモリ42に個々の電子スコープ10に固有のマスク位置データを格納する。電子スコープ10をプロセッサ100へ装着すると、プロセッサ100がメモリ42からマスク位置データを読出す。メモリコントロール回路120は、マスク位置データと、ROM122から読み出したマスクデータとに基づいて画像メモリ106から読み出した映像信号にマスク処理を行う。フロントパネルスイッチ114の特定のスイッチの操作によりマスク位置データを任意に変更することにより、モニタ装置200に表示すべき画像の視野を変更する。 (もっと読む)


【課題】 異なる表示状態で表示された蛍光診断画像を観察者が観察可能であり、蛍光診断画像に基づいて組織性状を識別する際の識別精度が向上する。
【解決手段】励起光Leを照射された観察部1から発せられた蛍光像Zjから狭帯域蛍光画像および広帯域蛍光画像をCCD撮像素子101 により取得し、蛍光演算値算出部303で、画像間の画素値の除算値である蛍光演算値を求め、蛍光診断画像生成部304で、選択された階調関数を用いて、蛍光演算値に応じた表示色を割り当てた蛍光診断画像3を生成し、モニタ90に表示する。蛍光診断画像生成部304 には、予め4種類の階調関数に対応するルックアップテーブルが記憶されている。使用される階調関数が異なれば、蛍光診断画像の表示色も異なるものとなる。観察者は、モニタ90に観察目的に応じた表示状態で蛍光診断画像が表示されるように、入力装置61を介して使用する階調関数を選択する。 (もっと読む)


【課題】 蛍光診断画像生成装置を構成する結像光学手段や固体撮像手段のばらつきの影響を除去する。
【解決手段】 標準光源100から発せられる、光量および輝度スペクトルが既知であり、時間的な変動が小さく、輝度が均一の標準光Lsを撮像し、IR反射標準画像データS1および蛍光標準画像データS2を得る。これらの画像データにより表される標準画像の除算値を算出し、この除算値により予め定められた基準値を除算することにより補正係数H1を求める。生体観察部10を撮像して、蛍光画像データK0およびIR反射画像データF1を得、これらのデータにより表される蛍光画像およびIR反射画像の除算データDを求め、この除算データDを補正係数H1により補正して蛍光診断画像データGを得、これを蛍光診断画像12としてモニタ270に表示する。 (もっと読む)


【課題】 内視鏡用の撮像方法および装置において、電荷増倍シフトレジスタ付固体撮像素子の撮像に基づいて得られた画像信号により作成される観察用画像信号のS/Nを向上させる。
【解決手段】 照射手段10により生体組織1に励起光を照射し、この励起光の照射により生体組織1から発生した蛍光による蛍光像を電荷増倍シフトレジスタ付固体撮像素子20により撮像して蛍光像を表す信号電荷を取得し、読出手段30によりこの信号電荷を読み出してこの信号電荷に基づく画像信号を出力し、この出力された画像信号に基づいて観察用画像信号を取得するにあたり、読出手段30によって出力された画像信号からこの画像信号に含まれるダークノイズを表すダークノイズ画像信号成分を減算する演算を減算手段40で行ない前記観察用画像信号を取得する。 (もっと読む)


【課題】 様々な被検体に対応させて、蛍光画像信号の増幅の度合いを最適に調節することが可能な電子内視鏡装置を、提供する。
【解決手段】 ピーク値検出回路T27は、被検体への白色光照射中に得られたW画像信号,励起光照射中に得られたF画像信号を、1フレームずつ処理することにより、1フレーム中のW画像信号の最大値(参照ピーク値)及び1フレーム中のF画像信号の最大値(蛍光ピーク値)を、取得する。これら両ピーク値に基づいて、参照係数値及び蛍光係数値が夫々算出される。そして、両係数器MW,MFは、W画像信号及びF画像信号に、参照係数値及び蛍光係数値を夫々乗じてレベル調整する。レベル調整されたW画像信号の青色成分からレベル調整されたF画像信号が減算されることにより、診断用画像信号が生成される。 (もっと読む)


【課題】 電子内視鏡に用いられるカラー単板式CCDの分光感度特性に関わりなく、適正なカラー画像を撮像できるように電子内視鏡用の光源の分光特性を制御する。
【解決手段】 RGBのフルカラーLED21により照明された白色物体の映像を電子内視鏡の先端部に設けられ補色フィルタを用いたカラー単板式CCD51により検出する。検出された各色信号をプロセス回路12を介して光源部20の比較回路25に入力する。各色信号の信号振幅レベルを比較回路25において比較し、その結果に基づいてフルカラーLED21の発光要素RGBの発光出力を制御するLEDドライバ22、23、24を制御してCCD51において検出される各色信号の信号振幅レベル相互間における比が1となるようにする。 (もっと読む)


【課題】 内視鏡の個体差によって複数の特性情報が映像信号の画質へ影響を与える場合でも、良好な画質の映像信号が得られる内視鏡装置を提供する。
【解決手段】 内視鏡に設けられた不揮発性メモリ19には、内視鏡の撮像装置及び信号ケーブルに関する複数の特性情報が格納され、ビデオプロセッサ制御回路33は、この特性情報に応じてビデオプロセッサ各部を制御し、撮像装置を駆動する駆動信号及び撮像装置で得られる撮像信号の波形を補正する。このとき、不揮発性メモリ19には、内視鏡の固体差に関する複数の特性情報が格納されているので、内視鏡の固体差によって複数の特性情報が映像信号の画質へ影響を与える場合でも、良好な画質の映像信号が得られる。 (もっと読む)


【課題】 光源から放射される光を、体腔内まで無駄なく適正に伝達する。
【解決手段】 プロセッサ20内に、集光レンズ27、光源ランプ28、ステッピングモータ29を設ける。また、電子内視鏡10内にLCB11を設け、電子内視鏡10をプロセッサ20に接続させる。ステッピングモータ29を駆動させることにより、集光レンズ27を移動範囲内で光軸方向に移動させる。その移動範囲において、体腔Sの画像信号から生成される輝度値に対して最大輝度値が検出される時の集光レンズ27の位置を最適位置とし、集光レンズ27を最適位置に移動させる。集光レンズ27を最適位置に移動させることにより、光源ランプ28から放射されて集光レンズ27を通る光を、無駄なく適正にLCB11に伝達する。 (もっと読む)


1,921 - 1,933 / 1,933