説明

Fターム[4K014AC03]の内容

Fターム[4K014AC03]の下位に属するFターム

連続処理 (25)

Fターム[4K014AC03]に分類される特許

1 - 20 / 40


【課題】脱燐剤にフッ素を含む副原料を使わず、上吹き酸素の供給時間が5〜8分間でも、スピッティングやスロッピングを発生せずに脱燐率80%以上で溶銑から燐を除去する。
【解決手段】上底吹き転炉を用いて、脱燐剤として供給するCaO質量の40%以上を上吹き酸素の供給開始と同時に、または1分経過時点までに、溶銑への吹き付けを開始し、脱燐処理終了時のスラグ塩基度を2.0〜2.9とする。上吹き酸素の供給前に、或いは開始直後に、取鍋スラグまたはカルシウムフェライトを投入する第1の条件と、上吹き酸素の供給前に、或いは上吹き酸素の供給時間全体の21%が経過する前に、取鍋スラグを、かつ、上吹き酸素の供給前に、或いは供給時間の28%が経過する前に、カルシウムフェライトを投入し、脱燐処理終了時のスラグ中Al2O3濃度が6〜12%に調整する第2の条件とを満足する。 (もっと読む)


【課題】P1C2操業とC3操業とを行う転炉の操業を適正化することによって、目標とする生産チャージ数を確保しつつ脱りん処理の実施比率を高められる効率の良い操業を行うことができるようにする。
【解決手段】P1C2操業の実施比率Rbが、(Na−N)÷(Na−Nb)×0.7≦Rb≦(Na−N)÷(Na−Nb)を満たすように、P1C2操業とC3操業とを組み合わせた操業を行う。Tn: 転炉工場(転炉設備)の非稼動時間 (分/日)、Ta:「C3操業」のサイクルタイム(分/ch)、Na:「C3操業」の生産能力(ch/日)、Tb:「P1C2操業」のサイクルタイム(分/ch)、Nb:「P1C2操業」の生産能力(ch/日)、Rb:「P1C2操業」の実施比率[Rb=Cb÷(Cb+Ca)]、Ca:「C3操業」の生産チャージ数(ch/日)、Cb:「P1C2操業」の生産チャージ数(ch/日)、N:目標生産チャージ数[N=Ca+Cb(ch/日)] (もっと読む)


【課題】脱珪処理と脱りん処理とを同一の転炉型精錬炉にて行うに際して脱珪及び脱りん処理の時間を十分に短縮しつつ精錬を行うことができるようにする。
【解決手段】溶銑を装入した後の転炉型精錬炉の空間容積を0.2〜0.6m3/tとした上で、スラグの塩基度を0.7〜1.0とし、脱珪に必要な計算必要酸素量の2〜3倍の酸素を固体酸素源と気体酸素とにより供給し、供給時の固体酸素源の平均酸素供給速度を0.8〜2.5kg−O/t/minとし且つ気体酸素の平均酸素供給速度を0.9〜1.4Nm3/t/minとした脱珪処理を1回以上行うと共に当該脱珪処理における珪素の低下量を0.4〜0.6質量%とし、脱珪処理を経ることにより脱りん処理前の溶銑の珪素濃度が0.4質量%以下になるようにし、脱珪処理終了後には転炉型精錬炉の傾動による脱珪スラグの排滓を行わずに、引き続き脱りん処理を行う。 (もっと読む)


【課題】脱珪処理と脱りん処理とを同一の転炉型精錬炉にて行うに際して脱珪及び脱りん処理の時間を十分に短縮しつつ精錬を行うことができるようにする。
【解決手段】溶銑を装入した後の転炉型精錬炉の空間容積を0.6〜1.5m3/tとした上で、スラグの塩基度を0.7〜1.0とし、脱珪に必要な計算必要酸素量の2.5〜4倍の酸素を固体酸素源と気体酸素とにより供給し、供給時の固体酸素源の平均酸素供給速度を1.5〜2.5kg−O/t/minとし且つ気体酸素の平均酸素供給速度を1.5〜3Nm3/t/minとした脱珪処理を1回以上行うと共に当該脱珪処理における珪素の低下量を0.5〜0.7質量%とし、脱珪処理を経ることにより脱りん処理前の溶銑の珪素濃度が0.4質量%以下になるようにし、脱珪処理終了後には転炉型精錬炉の傾動による脱珪スラグの排滓を行わずに、引き続き脱りん処理を行う。 (もっと読む)


【課題】同一の転炉で脱りん精錬と脱炭精錬を行うことによるメリットを享受しつつ、P規格の特に厳しい極低りん鋼についても安定的に溶製することのできる転炉精錬方法を提供する。
【解決手段】上底吹き転炉を用いて鋼を精錬するに際し、第1工程で溶銑を転炉に装入し、第2工程でフラックスを用いた転炉上底吹き精錬により溶銑脱りんを行い、第3工程で転炉を傾動して第2工程で生成したスラグの一部又は全部を排出し、第4工程でフラックスを追加して転炉上底吹き精錬により溶銑脱りんを行い、第5工程で転炉を傾動して第4工程で生成したスラグの一部又は全部を排出し、第6工程で転炉上底吹き精錬により脱炭を行う。最初の脱りん精錬とその後のスラグ除去の後、フラックスを追加して第2の脱りん精錬とスラグ除去を行い、さらにその後に脱炭精錬を行うので、脱炭精錬終了後の溶鋼中P濃度を十分に極低P鋼レベルまで低減できる。 (もっと読む)


【課題】 多種多様な鉄スクラップを鉄源として、各種の高品位鋼の製造に使用できる銑鉄を製造する実用的なプロセスを提供する。
【解決手段】 上記課題を解決するための本発明に係る溶銑の製造方法は、鉄スクラップを鉄源として用いて炭素を含有する溶銑を電気炉にて製造する工程と、その後、該溶銑に対して脱銅処理を行う工程と、脱銅された溶銑と高炉にて製造された溶銑とを混合する工程と、混合した後の溶銑に対して脱硫処理を行う工程と、を有することを特徴とする。 (もっと読む)


【課題】精錬炉として好適に使用されるアーク炉を用い、ガス撹拌手段や電磁誘導撹拌装置を要せずに低酸素及び低硫黄であって所要量の鋳鉄溶湯を供給することができる鋳鉄の精錬方法及び精錬装置を提供する。
【解決手段】本発明に係る鋳鉄の精錬方法は、鋳鉄溶解炉と、炭素を含む還元性雰囲気下にあるアーク炉とによる脱酸された鋳鉄溶湯の連続出湯が可能な鋳鉄の精錬方法であって、前記鋳鉄溶解炉からの鋳鉄溶湯を前記アーク炉に供給し、そのアーク炉において供給された鋳鉄溶湯に向けてアーク放電を行い、高温度と生じさせた撹拌作用により脱酸反応を促進させることにより実施される。 (もっと読む)


【課題】電気炉で発生したスラグを製鋼プロセスの中で有効に利用する方法を提供する。
【解決手段】転炉で溶銑の脱珪脱燐処理を行うに際し,造滓材の一部として電気炉スラグを転炉に装入することを特徴とする電気炉スラグの利用方法であり、また、該利用方法において、転炉に装入する電気炉スラグ量を,脱珪脱燐処理により発生するスラグ量に対する比率が5%以上30%未満となるように装入すること、さらに、また、電気炉スラグを、脱珪脱燐処理の開始から終了までの時間中の該開始後の70%以後から90%以前の間において転炉に装入することを特徴とする。 (もっと読む)


【課題】 機械攪拌式脱硫装置を用いて溶銑を脱硫処理する際に、反応性に優れる細粒の脱硫剤を効率良く溶銑中へ添加し、溶銑を効率良く脱硫する方法を提供する。
【解決手段】 機械攪拌式脱硫装置を用いた溶銑の脱硫方法において、攪拌羽根4によって攪拌されている溶銑3の浴面上に、脱硫剤7を、上吹きランス5を介して搬送用ガスと共に上吹き添加して脱硫処理を行う。その際に、前記脱硫剤の添加完了後、更に、上吹きランスから搬送用ガスを溶銑表面に向けて吹き付けること、及び、溶銑の浴面に衝突する搬送用ガスの流速を10m/秒以上とするなどにより、脱硫反応を効率良く行うことができる。 (もっと読む)


【課題】転炉における脱炭処理により生成されたスラグを再利用する転炉の精錬方法において、コスト増大や熱の損失などを生じることなく、脱燐処理時の新たなCaO添加に伴う未滓化CaOの発生を抑制する。
【解決手段】転炉における脱炭処理により生成されたスラグを再利用する転炉の精錬方法において、前記第4工程で投入するCaO量を、次チャージの前記第2工程での目標塩基度と前記第4工程での仕上げ脱燐に必要なCaO量を共に確保可能なCaO量とするに際し、現在チャージの前記第3工程で排出したスラグのCaO濃度及び排出量を測定し、この測定したCaO濃度及び排出量と予め求めた該排出前の炉内スラグ量を基にして現在チャージの前記第3工程後に於ける炉内残留スラグ中のCaO量を算出し、この算出した炉内残留スラグ中のCaO量と、次チャージの第2工程で必要とする前記CaO量との差から決定する。 (もっと読む)


【課題】本発明は、設備費や処理コストの高いLF装置や真空脱ガス装置を使うことなく、また環境に悪影響を与えることなく、より簡便に、高効率でかつ安定して脱硫処理する精錬方法を提供する。
【解決手段】溶鉄を脱硫精錬するに際し、脱硫剤を添加して脱硫を施しながら、溶鉄表面を覆った脱硫スラグの上部から水素ガスまたは水素ガスを30体積%以上含む不活性ガス(水素含有ガス)を吹き付ける。または、第一工程として脱硫剤を添加して脱硫を施し、第二工程として溶鉄表面を覆った第一工程の脱硫スラグの一部あるいは全部を残し、該スラグ上部から水素含有ガスを吹き付ける。水素含有ガスを吹き付けることにより、脱硫スラグからの気化脱硫が進行するので、溶鉄からスラグへの脱硫が継続し、優れた脱硫能力を発揮する。また、脱硫剤として実質的にフッ素を含まないフラックスを使用する。さらに、発生したスラグを、再度脱硫剤として用いる。 (もっと読む)


【課題】本発明は、精錬容器の形状を問わず、製鋼工程でのスクラップ消費量を低下させることなく、また、脱りん剤にCaF2を用いない場合でも、効率良くCaO源の滓化を促進し、安価にかつ高効率に溶銑を脱りん処理する精錬方法を提供する。
【解決手段】Si含有量0.1質量%以上の溶銑にCaO源と酸素源を添加して脱りん精錬を行うに際し、溶鋼を製造する際に発生するスラグを再利用する目的で脱りん精錬容器に予め入れ置きするおよび/または溶銑装入後に添加するスラグ中のCaO分を除き、CaO源の添加量を全精錬期間中に添加するCaO源添加量の30質量%以下(ゼロを含む)とする精練前半と、CaO源の添加量を全精錬期間中に添加するCaO源添加量の70質量%以上とする精練後半に分け、後半の開始時点は、溶銑中のSi含有量が0.1質量%未満とする。 (もっと読む)


【課題】 溶銑脱りん処理において高い脱りん効率を実現する。
【解決手段】本発明の溶銑脱りん処理方法においては、上吹ランス4をハードブローとすると共に底吹撹拌動力をソフトブローとする脱珪期と、上吹ランス4をソフトブローとすると共に底吹撹拌動力をハードブローとする脱りん期との間に、上吹ランス4をソフトブローとすると共に底吹撹拌動力をソフトブローとする造滓期を設けると共に、溶銑の温度と脱りん処理後の溶銑の炭素濃度とを制御することにより、安定的かつ高精度に低りん鋼を溶製する。 (もっと読む)


【課題】転炉における脱炭処理により生成されたスラグを再利用する溶鋼の吹錬方法において、コスト増大や熱の損失などを生じることなく、脱燐処理時の新たなCaO添加に伴う未滓化CaOの発生を抑制する。
【解決手段】溶銑が装入された転炉内にCaOを含むフラックスを添加し脱珪及び脱燐を行う溶銑予備処理工程と、溶銑予備処理工程後のスラグを転炉から排出する中間排滓工程と、転炉内にCaOを含むフラックスを新たに添加し脱炭及び仕上げ脱燐を行う脱炭処理工程と、を順に繰り返し行い、nチャージ目の脱炭処理工程で生成されたスラグの全量を(n+1)チャージ目の溶銑予備処理工程のフラックスとして再利用する溶鋼の吹錬方法において、nチャージ目の脱炭処理工程では、該脱炭処理工程で生成されたスラグ中に含まれるCaO量が(n+1)チャージ目の溶銑予備処理工程で使用するCaO量を確保可能なように、CaOの添加量を決定する。 (もっと読む)


【課題】溶鋼の脱硫処理を効率よくかつ均一に行うことができ、さらに耐火物溶損の少ない溶鋼の脱硫剤およびその製造方法を提供する。
【解決手段】CaO、CaF2及びMgOの3成分を三角図の座標軸で示したとき、CaOが35〜55質量%、CaF2が25〜45質量%、MgOが7〜33質量%の範囲にあり、不純物含有量が10質量%以下である脱硫剤であり、CaO粒子表面にCaF2層が融着している脱硫剤であり、CaO粒子表面に融着しているCaF2層の厚みが0.1μm以上である脱硫剤。 (もっと読む)


【課題】本発明は、現状よりコストをかけないで、且つ予備処理での溶銑の温度をあまり低下させずに、転炉におけるスクラップの使用量を高めることの可能な溶銑予備処理方法を提供することを目的としている。
【解決手段】 処理容器に保持した溶銑中に、インジェクションランスを浸漬し、該ランスを介して酸化剤と石灰系造滓剤を、処理の開始当初より終了まで連続的に吹き込み、該溶銑から脱珪及び脱燐を行う溶銑の予備処理方法を改良した。改良後の方法は、処理開始当初は、気体酸素だけを吹き込み、溶銑のSi濃度が0.1質量%まで低下した後に、前記気体酸素に加え、固体酸化剤及び生石灰を吹き込むと同時に、前記処理容器の上方空間に別途設けた上吹きランスを介して、該溶銑の浴面上に気体酸素を吹き付けるものである。 (もっと読む)


【課題】溶銑を脱硫処理するに際し、脱硫剤としてフッ素系の脱硫剤を使用せず、溶銑の温度が比較的低温であっても、脱硫処理後の溶銑中の硫黄濃度を大幅に低下できるようにした溶銑の脱硫方法の提供
【解決手段】この発明の脱硫処理は第1工程と第2工程の2つの工程からなる。第1工程では、溶銑を機械攪拌するとともに、その溶銑中にCaO系フラックスを添加して脱硫処理を行う。第2工程は、第1工程が終了した溶銑中に、CaO系フラックスと、金属Mg及び/またはMgOとを混合した、粒状及び/または粉状の脱硫剤ワイヤを投入して脱硫処理を行う。 (もっと読む)


【課題】脱硫処理期間の途中において脱硫剤の反応界面を新たに作り出すようにし、溶銑の脱硫効率の向上を図るようにした溶銑の脱硫処理方法の提供
【解決手段】この発明は、溶銑に脱硫剤を含んだフラックスを添加して、インペラを回転して攪拌することにより溶銑を脱硫処理する方法である。まず、脱硫処理の開始から所定時間経過までインペラを所定の回転数で回転させるようにした。その後、インペラの回転数を相対的に下げて一定時間保持するようにした。引き続き、インペラの回転数を低下時よりも相対的に上げて一定時間保持し、脱硫処理を終了するようにした。 (もっと読む)


【課題】 溶銑やスクラップの物流をスムーズにすることができ、脱りん工程や脱炭工程を含めた全体のサイクルタイムを延長することなく、溶湯クレーンとスクラップクレーンとの干渉を防止することができると共に、効率よく転炉の操業を行うことができるようにする。
【解決手段】脱りん処理及び脱炭処理を行う転炉設備1の操業方法において、最上流に配置された第1の転炉2Aを脱りん炉として採用し、最下流に配置された第3の転炉2Cを脱炭炉として採用し、第1の転炉2Aと第3の転炉2Cとの間に配置された第2の転炉2Bを脱りん処理又は脱炭処理を行う兼用炉として採用して脱りん処理及び脱炭処理を行う。 (もっと読む)


【課題】高濃度のクロムを含有する鋼を製造する場合でも、処理後のスラグが資源化しやすいフラックスを用いて効率良く脱硫を行い、低硫黄濃度の含クロム鋼を安定して製造する方法を提供する。
【解決手段】クロムを10質量%以上50質量%以下、炭素を3質量%以上9質量%以下含有する含クロム溶鉄を、脱硫精錬前温度Tを1400℃以上1600℃以下とし、脱硫精錬後のスラグ中SiO2濃度が10質量%未満となるようにスラグ混入量を抑制して取鍋に出湯した後、脱硫フラックスを使用して取鍋内で機械式攪拌により脱硫する。脱硫フラックスは、CaO濃度CA(質量%)とAl23濃度AL(質量%)、MgO濃度(質量%)の関係が下記(1)(2)式を満たすとともに、脱硫フラックス中のF濃度が1質量%以下である。
−0.000375T+0.91≦CA/(CA+AL)≦−0.000375T+1.06 (1)
CA+AL+MgO≧90 (2) (もっと読む)


1 - 20 / 40