説明

Fターム[5F092BE02]の内容

Fターム[5F092BE02]に分類される特許

41 - 45 / 45


【課題】TMR素子における出力電圧を大きくする。
【解決手段】単結晶MgO(001)基板11を準備し、50nm厚のエピタキシャルFe(001)下部電極(第1電極)17をMgO(001)シード層15上に室温で成長し、次いで、超高真空(2×10−8Pa)において、350℃でアニールを行う。2nm厚のMgO(001)バリア層21をFe(001)下部電極(第1電極)17上に室温でエピタキシャル成長する。この際、MgOの電子ビーム蒸着を用いた。MgO(001)バリア層21上に室温で、厚さ10nmのFe(001)上部電極(第2電極)23を形成した。連続して、10nm厚さのCo層21をFe(001)上部電極(第2電極)23上に堆積した。次いで、上記の作成試料を微細加工してFe(001)/MgO(001)/Fe(001)TMR素子を形成する。これによりMRAMの出力電圧値を高めることができる。 (もっと読む)


【課題】高感度で、温度依存性の少ない、かつ、広い温度範囲を簡単な駆動回路で動作することができる磁気センサの提供。
【解決手段】平滑な基板表面上に、半導体薄膜からなる4個の磁気抵抗効果を生じる素子部、配線部、およびボンディング電極を有し、4個の磁気抵抗効果を生じる素子部がブリッジ構造で接続され、該4個の素子部のうちブリッジ構造の隔辺の位置関係にある2個の素子部が同時に同一強度の磁界を垂直に受ける状態で配置されており、素子部とボンディング電極とは配線部で接続されていることを特徴とする半導体磁気抵抗装置。 (もっと読む)


【課題】種々の用途に使用できる導電制御デバイスを提供すること。
【解決手段】導電制御デバイスは、比較的大きい飽和保磁力を有する第1強磁性領域(6)と、比較的小さい飽和保磁力を有する第2強磁性領域(8)と、第1強磁性領域と第2強磁性領域との間に配置された接合領域(11)とを備え、このデバイスは、更に接合領域内の電荷キャリア密度を制御するよう接合領域に電界を加えるためのゲート(3)も備える。 (もっと読む)


単結晶MgO(001)基板11を準備し、50nm厚のエピタキシャルFe(001)下部電極(第1電極)17をMgO(001)シード層15上に室温で成長し、次いで、超高真空(2×10−8Pa)において、350℃でアニールを行う。2nm厚のMgO(001)バリア層21をFe(001)下部電極(第1電極)17上に室温でエピタキシャル成長する。この際、MgOの電子ビーム蒸着を用いた。MgO(001)バリア層21上に室温で、厚さ10nmのFe(001)上部電極(第2電極)23を形成した。連続して、10nm厚さのCo層21をFe(001)上部電極(第2電極)23上に堆積した。Co層21は、上部電極23の上部電極23の保持力を高めることによって反平行磁化配置を実現するためのものである。次いで、上記の作成試料を微細加工してFe(001)/MgO(001)/Fe(001)TMR素子を形成する。これによりMRAMの出力電圧値を高めることができる。 (もっと読む)


希釈磁性半導体(DMS)ナノワイヤを製作する方法について示した。この方法は、触媒がコーティングされた基板を提供するステップと、前記基板の少なくとも一部を、塩化物系蒸気搬送体を介して、半導体およびドーパントに暴露するステップと、を有し、ナノワイヤが合成される。この新しい塩化物系化学気相搬送処理方法を用いて、単結晶希釈磁性半導体ナノワイヤGa1−xMnN(x=0.07)が合成される。ナノワイヤは、直径が〜10nm乃至100nmであり、全長は最大数十μmであり、キューリー点が室温を超える強磁性体であり、250K(ケルビン)まで磁気抵抗を示す。
(もっと読む)


41 - 45 / 45