説明

Fターム[5F102GR09]の内容

接合型電界効果トランジスタ (42,929) | 素子構造 (2,911) | 半導体基体内に付加領域を設けたもの (876) | 絶縁領域(高抵抗領域を含む) (273)

Fターム[5F102GR09]に分類される特許

261 - 273 / 273


【課題】 高アバランシェ耐量を有する、高耐圧且つ超低オン抵抗の窒化物含有電力用半導体装置を提供する。
【解決手段】 本発明の実施の一形態に係る窒化物含有半導体装置は、ソース電極4に電気的に接続され、ゲート電極6よりもドレイン電極5側に突出して延在するp型窒化ガリウム(GaN)層3が、バリア層としてのノンドープ又はn型窒化アルミニウムガリウム(AlGaN)層2上に形成されているものである。 (もっと読む)


【課題】マイクロ波FETでは、内在するショットキー接合容量またはpn接合容量が小さく、それらの接合が静電気に弱い。しかし、マイクロ波デバイスにおいては、保護ダイオードを接続することによる寄生容量の増加が、高周波特性の劣化を招き、その手法を取ることができなかったという問題があった。
【解決手段】pn接合、ショットキー接合、または容量を有する被保護素子の2端子間に第1n+型領域−絶縁領域−第2n+型領域からなる保護素子を並列に接続する。第1n+型領域および第2n+型領域のうち少なくとも一方は対向する先端部分の幅が非常に狭く、金属層が重畳してコンタクトしており、近接した第1、第2n+領域間で非常に大きな静電気を放電できるので、寄生容量をほとんど増やすことなくHEMTの動作領域に至る静電エネルギーを大幅に減衰させることができる。 (もっと読む)


【課題】 III族窒化物半導体層を用いた半導体装置において、熱的安定性に優れ、且つリーク電流が少ない高抵抗領域を容易に形成する。
【解決手段】 III族窒化物半導体層における素子形成領域を分離させる絶縁酸化膜を形成する半導体装置の製造方法は、III族窒化物半導体層よりなる堆積層11における素子形成領域を区画するように、堆積層11にIII族窒化物半導体層の改質領域13を形成する工程と、改質領域13を酸化することにより、酸化領域14を形成する工程とを備える。 (もっと読む)


【課題】 電界効果トランジスタ特性の劣化を低減し、微細化を実現することが可能なガリウム砒素電界効果トランジスタを提供する。
【解決手段】 基板31と、メサ11と、メサ11上に形成されたソース電極13、ドレイン電極14及びゲート電極12とを備え、メサ11上面には、櫛形状のソース電極13及びドレイン電極14の指状部13a、14aが互いに組み合わさるように対向して位置し、かつミアンダ形状のゲート電極12がソース電極13とドレイン電極14との間に位置する形状の上面パターンが形成され、ソース電極13及びドレイン電極14の指状部13a、14aの基部となる共通部13b、14bは、メサ11上面に形成され、ゲート電極12における指状部13a、14aと平行な直線部12aの下方に位置する部分は、ゲート電極12における隣り合う直線部12aをつなぐ屈曲部12bの下方に位置する部分と電気的に分離されている。 (もっと読む)


【課題】 従来の半導体装置では、ゲート領域から注入された自由キャリア(正孔)がソース領域に取り込まれ、所望のhFEを得られ難いという問題があった。
【解決手段】 本発明の半導体装置では、ソース領域6と同電位となる固定電位絶縁電極11とゲート領域7と同電位となる可変電位絶縁電極9とを有する。そして、固定電位絶縁電極11を介してチャネル領域12を空乏層で満たし、ON動作、OFF動作状態を成す。一方、可変電位絶縁電極を利用し、自由キャリア(正孔)のポテンシャルエネルギーを積極的に可変することで、所望のhFEやスイッチング特性を得ることができる。 (もっと読む)


【課題】 電界効果トランジスタのキャリアの移動度を向上させる。
【解決手段】 半導体部と絶縁部を備える電界効果トランジスタであって、絶縁部が強誘電性及び強磁性をともに有する物質と非磁性物質を含有することを特徴とする電界効果トランジスタ。 (もっと読む)


【課題】 ゲート絶縁膜と半導体層との間に良好な界面が形成され、ゲートリーク電流の小さい窒化物含有半導体装置を提供する。
【解決手段】 本発明の実施の一形態に係る窒化物含有半導体装置は、チャネル層として形成されたノンドープの第1の窒化アルミニウムガリウム(AlGa1−xN(0≦x≦1))層と、第1の窒化アルミニウムガリウム層上にバリア層として形成されたノンドープ又はn型の第2の窒化アルミニウムガリウム(AlGa1−yN(0≦y≦1,x<y))層と、第2の窒化アルミニウムガリウム層上にゲート絶縁膜下層として形成された窒化アルミニウム(AlN)膜と、窒化アルミニウム膜上にゲート絶縁膜上層として形成された酸化アルミニウム(Al)膜と、第2の窒化アルミニウムガリウム層にそれぞれ電気的に接続されるように第1及び第2の主電極として形成されたソース電極及びドレイン電極と、酸化アルミニウム膜上に制御電極として形成されたゲート電極と、を備えているものである。 (もっと読む)


【課題】 サージへの耐性を向上させると共に、リーク電流の低減を図ることができる保護ダイオードを提供する。
【解決手段】 n型のnGaAs層6と、nGaAs層上に形成されたn型のnGaAs層7を備え、nGaAs層内にp型エミッタ領域8及びp型コレクタ領域9が形成された保護ダイオードであって、nGaAs層のドーパントのドーピング濃度をnGaAs層のドーパントのドーピング濃度よりも小さくする。 (もっと読む)


【課題】 電界効果トランジスタのキャリアの移動度を向上させる。
【解決手段】 電界効果トランジスタに、強誘電性及び強磁性をともに有する物質を含有する絶縁部16と絶縁部16に対向して設けられ強磁性を少なくとも有する物質を含有する強磁性部14とを設ける。 (もっと読む)


本発明は、第2の導電型基板(10)内の第1の導電型の第1のウエル(11)と、前記第1のウエル内のそれぞれ第1の導電型からなるソース(14)及びドレイン(15)と、第2の導電型からなる第2のウエル(12)内に配設されている第2の導電型のゲート(16)とを有している高圧接合型電界効果トランジスタに関しており、前記第2のウエルは逆行性のタイプからなり、さらにソース、ゲート、ドレインの素子がフィールド酸化膜領域(13a〜13d)によって相互に離間されていることを特徴としている。またゲート(16)からソース及びドレイン領域の方向にフィールドプレート(17a,17b)がフィールド酸化膜(13a,13b)の上方で延在している。
(もっと読む)


高出力高周波数半導体デバイスは、並列に接続された複数のユニットセルを有する。これらのユニットセルは各々、制御電極と、第1及び第2の被制御電極とを有する。熱スペーサ(すなわち、電気的に不活性な領域)が、これらのユニットセルのうち少なくとも1つを第1の活性部分及び第2の活性部分に分割し、第2の活性部分は、この熱スペーサにより第1の部分から離隔される。ユニットセルの制御電極ならびに第1及び第2の被制御電極は、第1の熱スペーサを横切っている。

(もっと読む)


III族窒化物スイッチは、凹型のゲートコンタクトを含み、ノミナリーオフの、すなわち、エンハンスメント型のデバイスを提供する。凹型のゲートコンタクトを提供することにより、ゲート電極が不活性状態である場合には、2つのIII族窒化物材料の界面に形成された伝導チャンネルが遮断され、デバイス中の電流の流れを防止する。ゲート電極は、ショットキコンタクト又は絶縁金属コンタクトである可能性がある。2つのゲート電極が提供され、ノミナリーオフ特性の双方向スイッチを形成することが可能である。ゲート電極と共に形成された凹部は、傾斜した側壁を持つ可能性がある。デバイスの電流伝達電極に関連して、多くの形状にてゲート電極を形成することが可能である。
(もっと読む)


例示的一実施例によれば、基板上に位置するBiFETは、基板の上に位置するエミッタ層部分を含み、エミッタ層部分は第1のタイプの半導体を含む。HBTはエッチストップ層の第1の部分をさらに含み、エッチストップ層の第1の部分はInGaPを含む。BiFETは基板の上に位置するFETをさらに含み、FETはソース領域およびドレイン領域を含み、エッチストップ層の第2の部分はソース領域およびドレイン領域の下に位置し、エッチストップ層の第2の部分はInGaPを含む。FETはエッチストップ層の第2の部分の下に位置する第2のタイプの半導体層をさらに含む。エッチストップ層はFETの線形性を増大させ、HBTの電子の流れを低下させない。
(もっと読む)


261 - 273 / 273