説明

国際特許分類[F16H15/42]の内容

国際特許分類[F16H15/42]に分類される特許

1 - 10 / 59


【課題】トラクションオイルの油温低下に伴うスリップの発生を防止するものでありながら、出力トルクの低下を抑えてドライバに違和感を与えることの防止を図ることが可能な摩擦車式無段変速機を提供する。
【解決手段】摩擦車式無段変速機1は、リングが両コーンにトラクションオイルを介して挟持されていると共に、出力軸に作用する出力トルクに応じてリングの押付力を発生させる押付装置を有するように構成されている。油温判定手段53により判定されたトラクションオイルの油温が所定温度以下の場合に、変速比制御手段51が変速比を所定変速比よりもダウンシフト側の範囲に制限する。変速比が制限されたことに基づきエンジン30の駆動力が低下するが、該駆動力がその変速比により増大されて出力トルクの低下は抑えられる。これにより、押付装置の押付力が維持されてスリップの発生が防止され、かつドライバの違和感の発生も防止される。 (もっと読む)


【課題】トルクカムからなる押圧装置は、ボールに作用する遠心力が円弧面のカム溝に作用するため、接触角が変化して正確に設定することが困難である。
【解決手段】カム溝26,27又は29,30におけるボール28又は31が接触する外周面26b,27b又は30bを直線形状とする。上記外周面26b,27bが所定傾斜角なるトルクカム15は、遠心力に基づき設定された軸力を発生し、上記外周面30bが軸線と平行なトルクカム20は、遠心力に基づく軸力が0となる。 (もっと読む)


【課題】コーンリング式CVTは、トラクション用オイルを介在した状態でリングを介して動力伝達するので、その伝達トルク容量が比較的小さい。
【解決手段】エンジン出力軸54に連結する入力軸6の回転を、入力歯車17及び中間歯車19を介してコーンリング式CVT3の入力側摩擦車22に増速、反転して伝達する。コーンリング式CVT3の出力側摩擦車23の回転を、出力歯車44、カウンタ軸47に設けた歯車49,50及びデフマウント歯車41を介して同方向に減速して伝達する。 (もっと読む)


【課題】EV走行モードの領域を広げることを可能とし、もって燃費向上を図ることが可能なハイブリッド駆動装置の制御装置を提供する。
【解決手段】ハイブリッド駆動装置1の制御装置100は、EV走行モードからエンジン走行モードに変更された際に、エンジン始動制御手段105がクラッチ4を係合制御しつつエンジン9の回転数を上昇させてエンジン9を始動させると共に、始動時アップシフト制御手段107が該エンジン9の回転上昇に合わせて変速機構3の変速比をアップシフト変速して該変速機構3にてイナーシャトルクTiを発生させる。EV走行モードとエンジン走行モードとを選択するモード選択手段106が、変速機構3の変速比及び入力軸6の回転数、即ちエンジン始動時に発生するイナーシャトルクTiに応じて、EV走行モードを選択する領域を広げる。これにより、エンジン走行モードの領域が減少して燃費向上が図られる。 (もっと読む)


【課題】運転者に違和感を感じさせずに、素早くエンジンを始動可能なハイブリッド駆動装置の制御装置を提供する。
【解決手段】ハイブリッド駆動装置1は、変速機構3と、入力軸6に駆動連結されるモータ2と、エンジン9と入力軸6との間に介在するクラッチ4とを備えており、EV走行中におけるエンジン始動時には、クラッチ4を係合してエンジン9の回転上昇を行う。ハイブリッド駆動装置1の制御装置100は、エンジン始動時に変速機構3をアップシフトしてイナーシャトルクを発生させる始動時アップシフト制御手段107と、クラッチトルク補正手段109とを備えており、クラッチトルク補正手段109は、始動時アップシフト制御手段107によるアップシフト時に、クラッチ4のトルク容量をイナーシャトルクに応じて増加補正し、エンジン9の回転数を素早く上昇させると共に、駆動車輪10へのイナーシャトルクの伝達を防止する。 (もっと読む)


【課題】摩擦車による無段変速装置は、接触部にトラクション用オイルを介在して動力伝達するが、油温が高くなると、滑りが増加する。
【解決手段】押圧装置12に、トルクカム15による軸力方向直列に線膨張係数の高いスペーサ40及びスプリング13を配置する。押圧装置12は、スプリングの予圧に加えて、トルクカム15により伝達トルクに応じた軸力を発生すると共に、スペーサによりオイル温度に応じた軸力を発生する。 (もっと読む)


【課題】潤滑油の供給量を確保しつつ動力伝達効率の低下を抑制すること。
【解決手段】入力軸11と、出力軸12と、入力コーン21と、出力コーン22と、リング31と、変速比の変更の際にリング31と共に移動するリング支持装置40と、間隙Cを空けてリング31の外周面及び側面を覆いつつ、端部が油貯留部91の潤滑油の油面よりも上方に位置するよう当該潤滑油内からリング31の回転方向に向けて延設し、前記間隙Cに入り込んだ潤滑油を前記端部の排出口52に向けて案内する油案内部材51と、を備えること。 (もっと読む)


【課題】オイル溜りの撹拌が不充分で、オイルが局所的に高温となり、リングと摩擦車との間で滑りが増大する。
【解決手段】入力側摩擦車22及び出力側摩擦車23は、共にその大径側がオイル溜り50に浸る。両摩擦車のオイル溜り50に浸る部分22A,23Aは、軸方向に離れ(p)ており、かつ反対方向(I’,J’)に回転するため、オイル溜り50は、全体として一方向の循環流れKを生じる。 (もっと読む)


【課題】オイル溜りの撹拌が不充分で、オイルが局所的に高温となり、リングと摩擦車との間で滑りが増大する。
【解決手段】オイル溜り50にオイル循環装置51を接続する。オイル循環装置51は、オイル溜り50の深い部分における深さ方向で底面側Fdに配置された吸入口51aから吸引し、オイルクーラ53で冷却したオイルを、上記吸入口より油面50a側に配置された吐出口51bから吐出する。これにより、オイル溜り50に循環流れを生じる。 (もっと読む)


【課題】リングの軸方向位置を検知するセンサをなくすと共に、リングが正常可動範囲を越えるような信号が出力することを防止する。
【解決手段】インプットコーン回転数,入力トルク,トラクション油温に基づきリングのスリップ率を求めて、実変速比から求めたリング軸方向位置を上記スリップ率により補正して、リングの軸方向位置を推定する。該推定したリングの軸方向位置と、目標速度比から算出したリングの軸方向位置とにより、リングのステア角を算出する。 (もっと読む)


1 - 10 / 59