説明

クロマトグラフ質量分析装置

【課題】化合物テーブルに基づいて分析条件テーブルを自動生成した場合に、多数の測定イベントが時間的に重なって測定点時間間隔(ループタイム)が長くなりすぎることを防止し、精度や再現性の良好なクロマトグラムピークを取得する。
【解決手段】化合物テーブルに従って各化合物を測定するための分析条件テーブルを自動生成した後(S1-S3)、測定イベントの重なりが相違する測定区間毎にループタイムを計算する(S4)。或る化合物の或る測定区間でループタイムが規定値を超えていた場合には(S6でNo)、重なっている測定イベントの中で終了時間が最も早いものと開始時間が最も遅いものを抽出し(S71)、その終了時間と開始時間との中間時間を求めて各測定イベントの長さを調整する(S72-S73)。これを繰り返して、ループタイムが規定値以下になるように分析条件テーブル中のパラメータを修正する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ガスクロマトグラフ質量分析装置(GC/MS)、液体クロマトグラフ質量分析装置(LC/MS)等、クロマトグラフと質量分析計とを組み合わせたクロマトグラフ質量分析装置に関し、さらに詳しくは、質量分析計において既知の成分に対する選択イオンモニタリング(SIM)測定、選択反応モニタリング(SRM)測定、多重反応モニタリング(MRM)測定等の測定を行うクロマトグラフ質量分析装置に関する。
【背景技術】
【0002】
試料に含まれる様々な成分の定性や定量を行うために、ガスクロマトグラフ(GC)や液体クロマトグラフ(LC)等のクロマトグラフと四重極型質量分析計等の質量分析計とを組み合わせたクロマトグラフ質量分析装置が広く利用されている。一般に、クロマトグラフ質量分析装置を利用して既知成分の定量分析を行う場合には、予め指定された1乃至複数の特定の質量電荷比を持つイオンのみを選択的に繰り返し検出するSIM測定法が用いられる。
【0003】
即ち、クロマトグラフ質量分析装置では、既知である目的成分の質量電荷比をSIM測定対象に設定して分析を実行することにより、該質量電荷比を持つイオン強度の時間経過が得られるから、これをプロットすれば目的成分に対する抽出イオンクロマトグラム(マスクロマトグラムと呼ばれることもある)が求まる。定量を行うには、この抽出イオンクロマトグラムにおいて既知成分の保持時間付近に現れるピークを検出し、そのピーク面積を求め、予め求めておいた検量線に照らして面積値を目的成分の含有量に換算する。
【0004】
上述のようにSIM測定を利用した定量分析を行う際には、測定すべき質量電荷比などの分析条件を分析に先立って設定しておく必要がある。例えば特許文献1に記載のクロマトグラフ質量分析装置では、測定対象である化合物の情報を記載した化合物テーブルを分析者が作成しておくと、該テーブルの記載情報に基づいて自動的に分析条件テーブルを作成する機能が備えられている。従来のクロマトグラフ質量分析装置における、こうした分析条件テーブル作成機能について、具体例を挙げて説明する。
【0005】
図9は化合物テーブルの一例である。図示するように、化合物テーブルには、化合物毎に、化合物名、定量イオンの質量電荷比、確認イオンの質量電荷比、予測保持時間、測定時間幅などの情報が含まれる。定量イオンはその化合物を最も特徴付けるイオンである。また、確認イオンはその化合物を特徴付ける、定量イオンとは別の質量電荷比を持つイオンである。この確認イオンは、マススペクトル上において確認イオンピークの信号強度と定量イオンピークの信号強度との相対比率を用い、定量イオンのクロマトグラムピークが目的化合物由来のものであることを確認するために利用される。予測保持時間はクロマトグラフのカラムから溶出する時間の予測値である。また、測定時間幅は予測保持時間を中心としてその化合物を測定すべき時間範囲を指定するためのパラメータである。
【0006】
図10は上記化合物テーブルに対して自動的に作成される分析条件テーブルの一例である。分析条件テーブルでは、1つの化合物に対する分析条件が「測定イベント」として1行にまとめられている。即ち、各測定イベントには、化合物名のほか、測定モード(SIM測定モード、スキャン測定モード等の選択)、測定イオンの質量電荷比、測定開始時間、測定終了時間、イベントタイム、などを含む。測定イオンの質量電荷比には、測定対象の化合物の、定量イオン及び確認イオンの質量電荷比が設定される。測定開始時間には、測定対象の化合物の予測保持時間から測定時間幅だけ遡った時間が設定される。測定終了時間には、測定対象の化合物の予測保持時間から測定時間幅だけ経過した時間が設定される。また、イベントタイムは測定イベントの繰り返しの単位時間であり、これは分析者が予め決めておいた値が設定される。
【0007】
図10において、例えば化合物Aを測定するための測定イベント#1(測定イベント番号を#で示す)は、SIM測定モードであり、m/z100、m/z200の2つの質量電荷比を9.0minから11.0minまでの2分間、100msec単位で繰り返し測定することを意味する。図10に示した分析条件テーブルに従って分析を遂行した結果、例えば図6に示すような抽出イオンクロマトグラムが得られる。ただし、ここでは1つの測定イベントに対して1つのクロマトグラムのみを示しているが、測定イオンの数(この例では化合物毎に2つ)だけクロマトグラムは作成されることになる。
【0008】
図6及び図10を見れば分かるように、10.2minから11.0minまでの0.8分の間は、測定イベント#1、 #2、#3の3つの測定期間が重なる。測定期間が重なった複数の測定は時分割で順次行われることになるから、1つの化合物に対する測定点時間間隔は測定期間の重なりが多いほど広くなる。例えば10.2minから11.0minまでの期間においては3つの測定イベントが重なるため、1つの測定に対するイベントタイム:100msec×3=300msecが測定点時間間隔となる。ここでは測定点時間間隔をループタイムと呼ぶ。図6に示した例において、測定区間<1>〜<7>におけるループタイムは図11に示すようになる。
【0009】
複数の測定対象化合物の予測保持時間が近接している場合、異なる測定イベントの時間的な重なりが増えるためにループタイムが大きくなる。或る測定区間においてループタイムが大きくなると、その測定区間では測定点時間間隔が開いてしまってクロマトグラムピークを構成するデータ点数が少なくなり、ピーク面積の精度や再現性が低下する。その結果、定量の精度や再現性が低下することになる。一般に、十分なピーク面積再現性を得るためには、1つのクロマトグラムピークあたり10以上のデータ点数が必要であり、要求される定量精度や再現性によってはさらにデータ点数を増やす必要がある。そこで、分析者は要求される定量精度や再現性に応じて化合物毎にループタイムの上限を定め、分析条件で決まるループタイムがその上限値以下になるように測定イベントのパラメータを調整するようにしている。
【0010】
具体的には、上述のようにして化合物テーブルに基づいて分析条件テーブルが自動的に作成されたあとに、分析者は各測定区間のループタイムが予め定めた上限値以下であるか否かを確認し、上限値を超えてしまっている場合には、測定イベントの重なりがないように測定イベントの開始時間や終了時間を調整する。しかしながら、従来のクロマトグラフ質量分析装置では、こうした測定区間の重なりの判断や測定イベントのパラメータ調整は分析者が分析条件テーブル等において手動で行う必要があるため、分析者にとってはかなり煩雑で時間の掛かる作業である。また、誤ったパラメータ設定を行うおそれもあり、そうした場合には適切な定量結果が得られないことになる。
【先行技術文献】
【特許文献】
【0011】
【特許文献1】特開2003−172726号公報
【発明の概要】
【発明が解決しようとする課題】
【0012】
本発明は上記課題を解決するためになされたものであり、その目的とするところは、測定期間全体に亘ってループタイムができるだけ要求値を満たすように、測定イベントのパラメータ値が適切に調整された分析条件テーブルを分析者の手を煩わすことなく作成することができるクロマトグラフ質量分析装置を提供することにある。
【課題を解決するための手段】
【0013】
上記課題を解決するために成された本発明は、試料中の化合物を時間方向に分離するクロマトグラフと、該クロマトグラフで分離された化合物由来のイオンを質量電荷比に応じて分離して検出する質量分析装置と、を組み合わせたクロマトグラフ質量分析装置であって、前記質量分析装置は、目的化合物に対応するクロマトグラムピークの前後で1乃至複数の特定の質量電荷比に対する選択イオンモニタリング(SIM)測定、選択反応モニタリング(SRM)測定、又は多重反応モニタリング(MRM)測定を実行するクロマトグラフ質量分析装置において、
a)測定対象の化合物毎に少なくとも、標準的な予測保持時間、当該化合物を特徴付ける質量電荷比、及び測定点時間間隔の上限値、を示す情報を含む化合物テーブルを記憶しておく化合物テーブル保持手段と、
b)前記化合物テーブルに挙げられている化合物をSIM測定、SRM測定又はMRM測定するために、測定対象の化合物毎に少なくとも測定時間範囲、測定対象の質量電荷比を示す情報を含む分析条件テーブルを、前記化合物テーブルに含まれる情報に基づいて作成する分析条件テーブル作成手段と、
を備え、前記分析条件テーブル作成手段は、前記化合物テーブルに含まれる情報に基づいて分析条件テーブルを一旦作成した後に、各化合物に対する測定点時間間隔が前記化合物テーブルに設定されている測定点時間間隔の上限値に以内に収まるように、各化合物に対する測定時間範囲の開始時間及び終了時間を調整して分析条件テーブルを修正する修正手段を含むことを特徴としている。
【0014】
なお、本発明に係るクロマトグラフ質量分析装置において、分析条件テーブル作成手段が化合物テーブルに含まれる情報に基づいて分析条件テーブルを作成する際には、各化合物の予測保持時間から前後に所定の測定時間幅を確保して測定時間範囲(測定開始時間及び測定終了時間)を求めるようにするが、この測定時間幅は化合物テーブル上で化合物毎に設定できるようにしてもよいし、或いは、一律に決めておくようにしてもよい。いずれにしても、化合物テーブルに含まれる情報に基づいて最初に分析条件テーブルが作成される際には、各化合物に対する測定時間範囲の時間的な重なりは考慮されないため、予測保持時間が近い化合物が多いと、測定時間範囲の重なりが増える。その結果、前述したように測定点時間間隔は広がってしまう。
【0015】
そこで本発明に係るクロマトグラフ質量分析装置において、分析条件テーブル作成手段に含まれる修正手段は作成された分析条件テーブルに従って、各化合物に対する測定点時間間隔(ループタイム)を計算し、その計算値が上限値を超えている場合に、該計算値が上限値以内に収まるように、各化合物に対する測定時間範囲の開始時間及び終了時間を調整する。
【0016】
具体的な一態様として、上記修正手段は、分析条件テーブルで規定される複数の化合物に対する測定期間が時間的に重なっていることによりその重なり区間で測定点時間間隔が前記上限値を超えている場合に、その重なり区間の中で最も早く終了する第1測定期間の終了時間を繰り上げる一方、その重なり区間の中で最も遅く開始する第2測定期間の開始時間を繰り下げることにより、第1測定期間と第2測定期間との時間的な重なりを解消する構成とすることができる。
【0017】
重なり区間の中で最も早く終了する第1測定期間が設定された化合物は時間的に最も早くクロマトグラムピークが出現する筈であり、逆に、重なり区間の中で最も遅く開始する第2測定期間が設定された化合物は時間的に最も遅くクロマトグラムピークが出現する筈である。したがって、第1測定期間の終了時間を繰り上げ、第2測定期間の開始時間を繰り下げても、クロマトグラムピークの発生期間(ピーク開始点から終了点までの期間)が削られる可能性は低い。即ち、上記処理によれば、測定対象である化合物のクロマトグラムピークの取得に影響を与えることなく、測定点時間間隔を上限値以内に収めることができる。それによって、分析者による煩雑な作業をなくしながら、クロマトグラムピーク波形形状の精度や再現性を向上させることができる。
【0018】
さらに上記修正手段は例えば、第1測定期間の終了時間と第2測定期間の開始時間との中間時間を求め、その第1測定期間の終了時間を該中間時間まで繰り上げ、第2測定期間の開始時間を該中間時間まで繰り下げる構成とすることができる。これによれば、簡単な処理で確実に第1測定期間と第2測定期間との重なりを解消できる。
【発明の効果】
【0019】
本発明に係るクロマトグラフ質量分析装置によれば、分析者(ユーザ)が煩雑な計算や操作・作業を行うことなく、測定対象である全ての化合物についての測定点時間間隔が要求される上限値以内にできる限り収まるように分析条件テーブルが自動的に修正される。これにより、分析者の負荷を軽減し入力ミスの発生を防止ししつつ、抽出イオンクロマトグラム上の目的成分のピーク波形形状を高い精度及び再現性で以て得ることができ、それによって、ピーク面積等から求まる定量値の精度や再現性を向上させることができる。
【図面の簡単な説明】
【0020】
【図1】本発明の一実施例であるLC/MSの要部の構成図。
【図2】本実施例のLC/MSにおける分析条件テーブル作成時のフローチャート。
【図3】本実施例のLC/MSにおける化合物テーブルの一例を示す図。
【図4】本実施例のLC/MSにおける各測定区間のループタイムの状況を示す図。
【図5】本実施例のLC/MSにおいて最終的に得られる分析条件テーブルの一例を示す図。
【図6】本実施例のLC/MSにおける測定区間調整処理前の測定区間設定状況を示す図。
【図7】本実施例のLC/MSにおける測定区間調整処理実行中の測定区間設定状況を示す図。
【図8】本実施例のLC/MSにおける測定区間調整処理実行後の測定区間設定状況を示す図。
【図9】一般的な化合物テーブルの一例を示す図。
【図10】一般的な分析条件テーブルの一例を示す図。
【図11】図10に示した分析条件テーブルの条件の下での各測定区間のループタイムの状況を示す図。
【発明を実施するための形態】
【0021】
以下、本発明の一実施例である液体クロマトグラフ質量分析装置(LC/MS)について添付図面を参照して説明する。
【0022】
図1は本実施例によるLC/MSの要部の構成図である。本実施例のLC/MSは、試料中に含まれる各種化合物を時間方向に分離する液体クロマトグラフ(LC)部1と、分離された各種化合物を質量分析する質量分析(MS)部2と、を含む。
【0023】
LC部1は、移動相を貯留した移動相容器11、移動相を吸引して一定流量で送り出す送液ポンプ12、所定タイミングで試料を移動相中に注入するインジェクタ13、試料中の各種化合物を時間方向に分離するカラム14、を含む。
【0024】
MS部2は、カラム14から溶出する化合物を含む溶出液を大気雰囲気中に静電噴霧してイオン化する静電スプレー21、試料中の化合物由来のイオンを真空雰囲気中に案内する加熱キャピラリ22、イオンを収束させつつ後段に輸送するイオンガイド23、24、特定の質量電荷比を持つイオンのみを通過させる四重極マスフィルタ25、及び、四重極マスフィルタ25を通り抜けてきたイオンを検出する検出器26、を含む。
【0025】
MS部2の検出器26で得られる検出信号は図示しないA/D変換器でデジタル値に変換されたあと、データ処理部3に入力される。データ処理部3は所定の演算処理を行うことによりマススペクトルやクロマトグラムを作成したり定量分析を遂行したりする。制御部4はLC部1、MS部2、データ処理部3の動作をそれぞれ制御する。この制御部4は本発明に特徴的な機能ブロックとしての分析条件テーブル生成部41を含み、また制御部4には、化合物テーブルや分析条件テーブルが格納される記憶部5、分析者等のオペレータが操作するキーボードやポインティングデバイスなどの入力部6、オペレータが入力設定した情報や分析結果を表示するための表示部7が接続されている。なお、データ処理部3及び制御部4は、CPU、メモリなどを含んで構成されるパーソナルコンピュータをハードウエアとし、予めインストールされた制御/処理ソフトウエアをパーソナルコンピュータで実行することによりその機能を実現することができる。
【0026】
本実施例のLC/MSにより、試料に含まれる既知化合物の定量分析を行う際の動作の一例を簡単に説明する。この場合、MS部2の四重極マスフィルタ25は、定量対象である化合物(以下、目的化合物という)由来のイオンの質量電荷比を選択的に通過させるようにSIM測定モードで駆動される。
【0027】
送液ポンプ12によりカラム14に一定流量で移動相が送給されている状態で、インジェクタ13はその移動相中に試料を注入する。試料は移動相の流れに乗ってカラム14に導入され、カラム14を通過する間に試料中の各種化合物は時間的に分離される。試料注入時点を基準として所定の時間が経過した時点付近(つまり、目的化合物の保持時間近傍)でカラム14出口から目的化合物は溶出し、該目的化合物はMS部2の静電スプレー21に達して該化合物由来のイオンが生成される。このイオンは加熱キャピラリ22、イオンガイド23、24を経て四重極マスフィルタ25に導入される。四重極マスフィルタ25はその目的化合物由来の特定の質量電荷比をもつイオンのみを選択的に通過させ、通過したイオンは検出器26に到達して検出される。データ処理部3は検出器26から得られる検出信号に基づくデータにより、上記特定の質量電荷比におけるイオン強度と時間経過との関係を示す抽出イオンクロマトグラムを作成する。
【0028】
試料に目的化合物が含まれていれば、上記抽出イオンクロマトグラム上で目的化合物の保持時間近傍にピークが現れる。そこでデータ処理部3は、抽出イオンクロマトグラム上で目的化合物由来のピークを検出してそのピーク面積を算出する。そして、予め求めてあるピーク面積値と目的化合物の含有量(濃度)との関係を示す検量線を参照し、目的化合物の含有量を求める。定量対象の化合物が複数ある場合には、化合物毎に異なる質量電荷比に対する抽出イオンクロマトグラムを作成し、同様にそれぞれピーク面積を求めて面積値から含有量を求めればよい。
【0029】
本実施例のLC/MSにおいて制御部4は、記憶部5の分析条件テーブル格納部52に格納されている分析条件テーブルに従って、LC部1、MS部2及びデータ処理部3の動作を制御する。特に、試料に含まれる多数の化合物を1回の試料注入で分析する場合に、分析条件テーブルを分析者自身が手作業で作成するのは大変煩雑でありミスも生じ易い。そのため、このLC/MSにおいて制御部4は、化合物テーブルから分析条件テーブルを自動的に作成する分析条件テーブル生成部41を備えており、この分析条件テーブル生成部41は従来の分析条件テーブル自動生成とは異なる特徴的な機能を有している。以下、この分析条件テーブル生成部41を中心に実行される、特徴的な分析条件テーブル作成機能について詳細に説明する。
【0030】
図2は本実施例のLC/MSにおける分析条件テーブル作成時のフローチャート、図3は本実施例のLC/MSにおける化合物テーブルの一例を示す図、図4は本実施例のLC/MSにおける各測定区間のループタイムの状況を示す図、図5は本実施例のLC/MSにおいて最終的に得られる分析条件テーブルの一例を示す図、図6〜図8は本実施例のLC/MSにおける測定区間調整処理前、測定区間処理実行中、及び測定区間処理実行後の測定区間設定状況を示す図である。
【0031】
まず、オペレータは入力部6より、図3に示すような化合物テーブルを入力設定する(ステップS1)。入力設定された化合物テーブルは記憶部5の化合物テーブル格納部51に格納される。この化合物テーブルは、図9に示したものと同様に、化合物毎に定量イオンの質量電荷比や確認イオンの質量電荷比などを記載したものであるが、本実施例のLC/MSでは、さらに化合物毎に要求ループタイム(本願発明における測定点時間間隔の上限値に相当)を設定できるようになっている。この例では、要求ループタイムは全ての化合物について200msecに設定されているが、化合物毎に適宜異なる値としてもよい。ループタイムは1つの化合物に対する測定点時間間隔に相当するから、例えば定量精度をあまり重視しない化合物や、抽出イオンクロマトグラム上でのピークの半値幅が広いことが既知である化合物などについては、要求ループタイムを長めに設定することができる。
【0032】
オペレータが入力部6より分析条件テーブル自動作成処理の実行を指示すると(ステップS2)、この指示を受けて分析条件テーブル生成部41は、指定された化合物テーブルに基づいて分析条件テーブルを自動的に作成する(ステップS3)。これにより、図3に示した化合物テーブルから、従来と同様に図10に示した分析条件テーブルが作成される。従来は、この分析条件テーブルが表示部7の画面上に表示され、オペレータが必要に応じて手動で分析条件テーブル中のパラメータを修正する必要があった。これに対し、本実施例のLC/MSでは、分析条件テーブル生成部41においてステップS4以降の処理が実施される。
【0033】
分析条件テーブル生成部41では、図10に示したような分析条件テーブル中の各化合物の測定開始時間及び測定終了時間に基づいて、全測定時間を複数の測定区間に分割し、測定区間毎にループタイムを計算する(ステップS4)。ここでは、各化合物の測定開始時間及び測定終了時間が測定区間の境界となるように測定区間が設定される。図10に示した分析条件テーブルに対しては図6に示すように<1>〜<7>の7つの測定区間が設定される(いま、ここでは測定区間<1>よりも時間的に早い範囲及び測定区間<7>よりも時間的に遅い範囲は考えない)。ループタイムは1つの測定区間中で重なっている(つまり同時並行的に実行される)測定イベントの数で決まる。したがって、図4(a)に示すように、測定区間<1>及び測定区間<7>ではループタイムは100msec、測定区間<2>及び<6>ではループタイムは200msec、測定区間<3>〜<5>ではループタイムは300msecである。
【0034】
次いで、初期化のために化合物指定変数Xを1にセットし(ステップS5)、化合物番号(No)が1である化合物の測定区間のループタイムが化合物テーブル上で当該化合物に対し設定されている要求ループタイム以下であるか否かを判定する(ステップS6)。ステップS5が実行された直後のステップS6では、化合物指定変数Xは1であるから、化合物No.1である化合物Aの測定区間について、それぞれループタイムが要求ループタイム以下であるか否かが判定される。
【0035】
図6に示すように、このときの化合物Aの測定区間は<1>、<2>及び<3>の3つであるが、測定区間<1>ではループタイムが100msec、測定区間<2>ではループタイムが200msecであるのでいずれも要求ループタイム以下である。一方、測定区間<3>ではループタイムが300msecであるため要求ループタイムを超えている。したがって、化合物Aは測定区間<3>についてステップS6でNoと判定されてステップS7へ進み、測定区間調整処理が実行される。
【0036】
測定区間調整処理では、まず、対象となる測定区間において重なっている複数の測定イベントの中から、その測定区間の開始時間に測定終了時間が最も近い測定イベントが抽出される(ステップS71)。このときの測定終了時間をRT1とする。また、対象となる測定区間において重なっている複数の測定イベントの中から、その測定区間の終了時間に測定開始時間が最も近い測定イベントが抽出される。このときの測定開始時間をRT2とする。図6に示した調整処理前の測定区間<3>の開始時間は10.2min、終了時間は11.0minである。この測定区間<3>に重なっている3つの測定イベント#1、#2、#3の中で、測定終了時間が10.2minに最も近いのは測定終了時間が11.0minである測定イベント#1である。また、測定開始時間が11.0minに最も近いのは測定開始時間が10.2minである測定イベント#3である。したがって、この場合には、RT1=11.0min、RT2=10.2min、である。
【0037】
続いて、RT1とRT2との中間の時間RT3を計算する(ステップS72)。RT1=11.0min、RT2=10.2min、である場合、RT3=10.6minとなる。そして、測定イベント#1の測定終了時間RT1、つまり11.0minをRT3、つまり10.6minに置き換えるように測定イベント#1の期間を調整し、測定イベント#3の測定開始時間RT2、つまり10.2minをRT3、つまり10.6minに置き換えるように測定イベント#3の期間を調整する(ステップS73)。それにより、図7に示すように、測定区間<2>と測定区間<3>との境界線が後方に移動し、測定区間<2>は拡大、測定区間<3>は縮小するように調整されることになる。こうして測定区間が変更されたならば、ステップS4と同様に、測定区間毎にループタイムを再度計算し(ステップS74)、ステップS6に戻る。このとき、図4(b)に示すように、測定区間<3>のループタイムは300msecから200msecに短縮されている。
【0038】
ステップS6に戻ったとき、このときの化合物Aの測定区間は<1>及び<2>であるが、これら測定区間のループタイムはいずれも要求ループタイム以下であるためステップS8へと進む。ステップS8では全化合物について処理が終了したか否かを判定し、未処理の化合物があれば、化合物指定変数Xをインクリメントした上で(ステップS9)ステップS6へと戻る。
【0039】
このため、化合物No.1である化合物Aの処理終了後にステップ8、S9からS6に戻ると、化合物No.2である化合物Bの測定区間のループタイムが要求ループタイム以下であるか否かが判定され、要求ループタイムを超えていれば上述したようにステップS7の処理を実行する。具体的には、図7で明らかなように化合物Bの測定区間は<3>、<4>、<5>の3つであり、図4(b)で分かるように測定区間<4>及び<5>においていずれもループタイムが要求ループタイムを超えているから、これら各測定区間についてステップS7(S71〜S74)の処理が実行される。これにより、測定区間<4>、<5>のループタイムが要求ループタイム以下になるように、測定イベントの開始時間や終了時間が調整される。
【0040】
図3及び図10の例では、化合物Noは5までであるから、X=5の時点でステップS6からS8に進むと、全化合物について処理が終了したと判断され、処理が終了する。上記例の最終的な測定区間は図8に示すような区切りとなり、またこのときの各測定区間のループタイムは図4(c)に示すようになる。そして、自動生成された際に図10に示す状態であった分析条件テーブルは、上記処理に伴って測定開始時間及び測定終了時間が順次修正されることで、最終的に図5に示すように変更される。
【0041】
以上のようにして、分析条件テーブル生成部41は、各測定区間のループタイムが要求ループタイム以内に収まるように自動的に各測定イベントの測定開始時間及び測定終了時間を調整して分析条件テーブルを修正する。そうして作成・修正された分析条件テーブルが記憶部5の分析条件テーブル格納部52に保存される。
【0042】
オペレータが入力部6より分析条件テーブル格納部52に保存されている上記分析条件テーブルを指定して分析を実行すれば、化合物A〜Eについてそれぞれ図8に示したような抽出イオンクロマトグラムを取得することができる。このとき、いずれの測定区間でもループタイムは要求ループタイム以下になっているため、クロマトグラムピークを構成するデータ点数は十分に確保され、それ故に、ピーク形状の精度や再現性を十分に確保することができる。
【0043】
図2のフローチャートにおいて説明したステップS7(S71〜S74)における測定区間調整処理の手順は一例であり、上記記載以外の手順も採り得る。
【0044】
例えば、ステップS71の処理を実行することで測定終了時間RT1及び測定開始時間RT2を求めた後に、ステップS72の処理の代わりに、RT1で終了する測定イベントにおける観測対象の化合物の予測保持時間RTPと、RT2から開始される測定イベントにおける観測対象の化合物の予測保持時間RTQとを取得し、両予測保持時間RTP、RTQの中間時間を計算してこれをRT3とする処理を実行するようにしてもよい。
【0045】
また、一般にクロマトグラムピークの時間的な広がりはLC部1におけるカラム14の分離能や移動相の送給条件などに依存し、これらが一定条件を満たしていれば、ピークの広がりは或る時間範囲に抑えられる。そこで、或る測定イベントの測定終了時間を早めたい場合に、その化合物の予測保持時間から所定時間(ピークの広がりを想定したときの或る時間)が経過した時点を測定終了時間としてもよい。測定イベントの測定開始時間を遅らせたい場合も同様である。
【0046】
上記説明は、分析実行前に分析条件テーブルを確定させた上で分析を実行することを前提としていたが、分析実行中に抽出イオンクロマトグラム上に現れるピークをほぼリアルタイムで観測しながら分析条件テーブル中のパラメータを適応的に変更可能な構成では、上記説明とは異なる処理を採り得る。即ち、目的化合物に対応するクロマトグラムピークのピークトップが得られた時点から所定時間が経過した時点で、或いは、目的化合物に対応するクロマトグラムピークのピーク終了点が検出された時点で、その化合物に対応した測定イベントを終了するような制御を行えばよい。なお、定量値を算出するためにピーク面積を求める必要がある場合にはピークの終了点まで測定を続ける必要があるが、ピークトップの高さから定量値を求める場合には、ピークトップが現れたならばすぐにその化合物に対する測定イベントを終了することができる。
【0047】
また、上記実施例は一例であって、本発明の趣旨の範囲で適宜変形や修正、追加を行っても本願特許請求の範囲に包含されることは明らかである。
例えば、上記実施例のLC/MSではMS部2はシングルタイプの四重極型質量分析計であるが、MS部2が三連四重極型の質量分析計である場合に、SIM測定と同様に分析条件を設定する必要があるSRM測定やMRM測定において本願発明を適用できることは当然である。
【符号の説明】
【0048】
1…液体クロマトグラフ(LC)部
11…移動相容器
12…送液ポンプ
13…インジェクタ
14…カラム
2…MS(質量分析)部
21…静電スプレー
22…加熱キャピラリ
23、24…イオンガイド
25…四重極マスフィルタ
26…検出器
3…データ処理部
4…制御部
41…分析条件テーブル生成部
5…記憶部
51…化合物テーブル格納部
52…分析条件テーブル格納部
6…入力部
7…表示部

【特許請求の範囲】
【請求項1】
試料中の化合物を時間方向に分離するクロマトグラフと、該クロマトグラフで分離された化合物由来のイオンを質量電荷比に応じて分離して検出する質量分析装置と、を組み合わせたクロマトグラフ質量分析装置であって、前記質量分析装置は、目的化合物に対応するクロマトグラムピークの前後で1乃至複数の特定の質量電荷比に対する選択イオンモニタリング(SIM)測定、選択反応モニタリング(SRM)測定、又は多重反応モニタリング(MRM)測定を実行するクロマトグラフ質量分析装置において、
a)測定対象の化合物毎に少なくとも、標準的な予測保持時間、当該化合物を特徴付ける質量電荷比、及び測定点時間間隔の上限値、を示す情報を含む化合物テーブルを記憶しておく化合物テーブル保持手段と、
b)前記化合物テーブルに挙げられている化合物をSIM測定、SRM測定又はMRM測定するために、測定対象の化合物毎に少なくとも測定時間範囲、測定対象の質量電荷比を示す情報を含む分析条件テーブルを、前記化合物テーブルに含まれる情報に基づいて作成する分析条件テーブル作成手段と、
を備え、前記分析条件テーブル作成手段は、前記化合物テーブルに含まれる情報に基づいて分析条件テーブルを一旦作成した後に、各化合物に対する測定点時間間隔が前記化合物テーブルに設定されている測定点時間間隔の上限値に以内に収まるように、各化合物に対する測定時間範囲の開始時間及び終了時間を調整して分析条件テーブルを修正する修正手段を含むことを特徴とするクロマトグラフ質量分析装置。
【請求項2】
請求項1に記載のクロマトグラフ質量分析装置において、
前記修正手段は、分析条件テーブルで規定される複数の化合物に対する測定期間が時間的に重なっていることによりその重なり区間で測定点時間間隔が前記上限値を超えている場合に、その重なり区間の中で最も早く終了する第1測定期間の終了時間を繰り上げる一方、その重なり区間の中で最も遅く開始する第2測定期間の開始時間を繰り下げることにより、第1測定期間と第2測定期間との時間的な重なりを解消することを特徴とするクロマトグラフ質量分析装置。
【請求項3】
請求項2に記載のクロマトグラフ質量分析装置において、
前記修正手段は、第1測定期間の終了時間と第2測定期間の開始時間との中間時間を求め、その第1測定期間の終了時間を該中間時間まで繰り上げ、第2測定期間の開始時間を該中間時間まで繰り下げることを特徴とするクロマトグラフ質量分析装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2012−132799(P2012−132799A)
【公開日】平成24年7月12日(2012.7.12)
【国際特許分類】
【出願番号】特願2010−285555(P2010−285555)
【出願日】平成22年12月22日(2010.12.22)
【出願人】(000001993)株式会社島津製作所 (3,708)
【Fターム(参考)】