説明

コンロ

【課題】 本発明の目的は、清掃性や美観を優れたものとしながら、被加熱物を加熱するバーナにより正しく火炎が形成されているか否かを正確且つ迅速に検知することができるコンロを提供する点にある。
【解決手段】 被加熱物Nを加熱するバーナ30と、バーナ30により形成される火炎Fを検知する火炎検知手段21とを備えたコンロであって、バーナ30が形成する火炎Fから放射された赤外線の赤外線強度を測定する赤外線強度測定手段40を備え、火炎検知手段21が、赤外線強度測定手段40により測定される赤外線強度に基づいて火炎を検知するように構成されている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、被加熱物を加熱するバーナと、前記バーナにより形成される火炎を検知する火炎検知手段とを備えたコンロに関する。
【背景技術】
【0002】
上記のように天板の上方に載置された鍋などの被加熱物を加熱するバーナを備えたコンロでは、バーナにより形成される火炎を検知する火炎検知手段を設けることで、バーナの点火時や作動中に火炎が正しく形成されているか否かを検知することができ、例えば、火炎が正しく形成されていない場合には点火不良や立ち消え等が発生したとして、バーナへのガスの供給を遮断するなどのバーナの作動制御を行うことができる。
このように火炎を検知することができる従来のコンロとしては、バーナが形成する火炎に晒される形態で設置された熱電対を設置し、その熱電対の起電力に基づいて火炎を検知するように構成されたコンロが知られている(例えば、特許文献1を参照。)。
【0003】
【特許文献1】特開2004−144424号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
上記特許文献1に記載の従来のコンロでは、火炎を検知するための熱電対をバーナに晒される形態で設置する必要があるため、熱電対の過剰昇温や煮零れ等の汚物の付着による動作不良や、清掃性や美観の悪化等の問題があった。
【0005】
また、上記のような熱電対は、若干の熱容量を有することから応答性が比較的悪いため、点火不良や立ち消え等が発生して火炎が正しく形成されない場合でも、それを迅速に検知することができないという問題があった。
【0006】
本発明は、上記の事情に鑑みて、清掃性や美観を優れたものとしながら、被加熱物を加熱するバーナにより正しく火炎が形成されているか否かを正確且つ迅速に検知することができるコンロを提供する点にある。
【課題を解決するための手段】
【0007】
上記目的を達成するための本発明に係るコンロは、被加熱物を加熱するバーナと、前記バーナにより形成される火炎を検知する火炎検知手段とを備えたコンロであって、その第1特徴構成は、前記バーナが形成する火炎から放射された赤外線の赤外線強度を測定する赤外線強度測定手段を備え、
前記火炎検知手段が、前記赤外線強度測定手段により測定される赤外線強度に基づいて前記火炎を検知するように構成されている点にある。
【0008】
上記第1特徴構成によれば、バーナにより形成される火炎により天板の上方に載置された鍋等の被加熱物を直火加熱するコンロにおいて、その被加熱物の底部付近に形成される火炎からは赤外線が放射されていることから、上記赤外線強度測定手段により、その火炎から放射された赤外線の赤外線強度を測定して、上記火炎検知手段により、その測定された赤外線強度に基づいて火炎を検知することができる。
そして、このような赤外線強度測定手段は、火炎に対して非接触に設置することができるので、過剰昇温や汚物の付着による動作不良を防止し、更に、上記赤外線強度測定手段を、火炎が形成される部分に突出させることなく、天板の下方側等に設置して、清掃性や美観を優れたものとすることができる。
また、上記赤外線強度測定手段で測定される赤外線強度は、火炎の有無に対して迅速に追従して変化することから、点火不良や立ち消え等が発生して火炎が正しく形成されない場合において、上記火炎検知手段によりそれを迅速に検知することができ、バーナへのガスの供給を遮断するなどのバーナの作動制御を行うことができる。
したがって、本発明により、清掃性や美観を優れたものとしながら、天板の上方に載置された被加熱物を加熱するバーナにより正しく火炎が形成されているか否かを正確且つ迅速に検知することができるコンロを実現することができる。
【0009】
本発明に係るコンロの第2特徴構成は、上記第1特徴構成に加えて、前記赤外線強度測定手段が、前記被加熱物から放射された赤外線の波長範囲内にある互いに異なる複数の温度導出用波長域夫々についての赤外線強度を測定するように構成され、
前記赤外線強度測定手段により測定される前記複数の温度導出用波長域夫々についての赤外線強度の関係に基づいて、前記被加熱物の温度を求める温度導出手段を備えた点にある。
【0010】
上記第2特徴構成によれば、上記温度導出手段により、被加熱物から放射された赤外線の波長範囲内にある互いに異なる複数の温度導出用波長域夫々についての赤外線強度の関係に基づいて、被加熱物の放射率の違いに依存することなく被加熱物の温度を求めるにあたり、その複数の温度導出用波長域夫々についての赤外線強度を測定するための赤外線強度測定手段を、上述した火炎検知手段による火炎検知用の赤外線強度を測定するための赤外線強度測定手段と共通化することができ、火炎検知と被加熱物温度導出との両方を合理的に行うことができる。
また、上記温度導出用波長域は、火炎からの放射が無い又は放射強度が弱い波長域に設定することで、上記温度導出手段により火炎の影響を抑制した形態で高精度に被加熱物の温度を求めることができる。
【0011】
本発明に係るコンロの第3特徴構成は、上記第2特徴構成に加えて、前記赤外線強度測定手段が、少なくとも1つの前記温度導出用波長域についての赤外線強度として、前記火炎からの放射強度が弱い火炎影響波長域についての赤外線強度を測定し、
前記火炎検知手段が、前記火炎影響波長域についての赤外線強度に基づいて、前記火炎を検知するように構成されている点にある。
【0012】
上記第3特徴構成によれば、上記赤外線強度測定手段により測定された赤外線強度を用いて、上記火炎検知手段による火炎検知と、上記温度測定手段による被加熱物温度導出との両方を行う場合において、その赤外線強度測定手段により、被加熱物から放射された赤外線の波長範囲内にあり火炎からの放射強度が弱い火炎影響波長域についての赤外線強度を測定することにより、その火炎影響波長域についての赤外線強度を、上記温度導出手段による温度導出用の複数の温度導出用波長域夫々についての赤外線強度の少なくとも1つとして用いると共に、上記火炎検知手段による火炎検知用の赤外線強度として用いることができる。よって、赤外線強度測定手段で測定すべき互いに異なる複数の波長域の赤外線強度の数を減らして、応答性を向上すると共に、装置構成を簡略化することができる。
【0013】
本発明に係るコンロの第4特徴構成は、上記第2特徴構成に加えて、前記赤外線強度測定手段が、前記複数の温度導出用波長域夫々についての赤外線強度とは別に、前記火炎から放射された赤外線の波長範囲内にある火炎検知用波長域についての赤外線強度を測定し、
前記火炎検知手段が、前記火炎検知用波長域についての赤外線強度に基づいて、前記火炎を検知するように構成されている点にある。
【0014】
上記第4特徴構成によれば、上記赤外線強度測定手段により、上記温度測定手段による被加熱物温度導出用の複数の温度導出用波長域夫々についての赤外線強度とは別に、上記火炎検知手段による火炎検知用の上記火炎検知用波長域についての赤外線強度を測定することで、上記複数の温度導出用波長域については火炎からの放射強度が殆ど無い波長域に設定して、上記温度導出手段により火炎の影響を排除した形態で極めて高精度に被加熱物の温度を求めることができる。
【0015】
本発明に係るコンロの第5特徴構成は、上記第2乃至第4特徴構成の何れかに加えて、前記赤外線強度測定手段が、赤外線強度を測定する単一の測定部と、前記測定部に入射する赤外線の波長域を切り換える切換部とで構成されている点にある。
【0016】
上記第5特徴構成によれば、上記赤外線強度測定手段において、上記切換部により測定部に入射される赤外線の波長域を切り換えることで、複数の波長域夫々についての赤外線強度を上記単一の測定部により測定するように構成することができ、装置構成を簡略化することができる。
即ち、上記赤外線強度測定手段において、上記切換部により、上記測定部に入射する赤外線の波長域を各温度導出用波長域に逐次切り換えて、単一の上記測定部により、互いに異なる複数の温度導出用波長域夫々についての赤外線強度を各別に測定することができる。更には、上記第4特徴構成の如く、上記温度導出用波長域とは別の火炎検知用波長域についての赤外線強度を測定する場合には、上記切換部により、上記測定部に入射する赤外線の波長域を上記温度導出用波長域と火炎検知用波長域とに逐次切り換えて、単一の上記測定部により、温度導出用波長域についての赤外線強度と火炎検知用波長域についての赤外線強度とを各別に測定することができる。
【発明を実施するための最良の形態】
【0017】
〔第1実施形態〕
本発明に係るコンロの第1実施形態について、図面に基づいて説明する。
図1に示すように、第1実施形態のコンロは、円形の加熱口1aを有する平板状の天板1、加熱口1aの上方に離間させて鍋等の被加熱物Nを載置可能な載置部としての五徳2、その五徳2上に載置される被加熱物Nを加熱するバーナ30、五徳2の下方側箇所に設置されて、バーナ30により形成される火炎Fが放射する赤外線及び被加熱物Nの底部から放射される赤外線が入射され該赤外線の赤外線強度を測定する赤外線強度測定装置40(赤外線強度測定手段の一例)、バーナの作動を制御する制御装置20等を備えて構成されている。
また、この制御装置20は、詳細については後述するが、赤外線強度測定装置40の測定結果に基づいて火炎を検知する火炎検知部21(火炎検知手段の一例)、同測定結果に基づいて被加熱物Nの温度を求める温度導出部22(温度導出手段の一例)、火炎検知部21の火炎検知結果や温度導出部22の導出温度に基づいて、バーナ30の作動を制御する作動制御部23として構成される。
【0018】
以下、コンロの各部について説明を加える。
先ず、前記バーナ30について説明を加えると、前記バーナ30は、ブンゼン燃焼式の内炎式に構成してある。
つまり、その内炎式のバーナ30は、燃料供給路5を通じて供給される燃料ガスGを噴出するガスノズル31、そのガスノズル31から燃料ガスGが噴出されると共に、その燃料ガスGの噴出に伴う吸引作用により一次燃焼用空気Aが供給される混合管32、及び、内周部に混合気を噴出する複数の炎口33を備えて、前記混合管32から混合気が供給される環状の内炎用ケーシング部材34等を備えて構成してある。
そして、前記バーナ30を、前記加熱口1aの下方に位置させて設けてある。
【0019】
この内炎式のバーナ30においては、混合管32から内炎用ケーシング部材34内に供給された燃料ガスGと一次燃焼用空気Aとの混合気が炎口33から内炎用ケーシング部材34の中心に向けて略水平方向に噴出され、その噴出された燃料ガスGと一次燃焼用空気Aとの混合気が燃焼して、火炎Fが前記加熱口1aを通って上向きに形成される。
【0020】
前記燃料供給路5には、前記ガスノズル31への燃料ガスGの供給を断続する燃料供給断続弁6と、ガスノズル31への燃料ガスGの供給量を調節する燃料供給量調節弁7を設けてある。
また、バーナ30の内炎用ケーシング部材34内の下方には、加熱口1aを介して落下した煮零れ等を受けるための汁受け皿8を設けてある。
【0021】
更に、その汁受け皿8には、その上縁部に沿って、前記二次空気取入口14を形成するための複数の切り欠き8aを、間隔を開けて形成してある。
そして、前記内炎用ケーシング部材34の底面と前記複数の切り欠き8aとにより、複数の前記二次空気取入口14を、バーナ30の内炎用ケーシング部材34の下方に入り込んだ箇所に、周方向に沿って間隔を開けて形成してある。
【0022】
次に、前記赤外線強度測定装置40による赤外線の強度測定、及び、前記温度導出部22による被加熱物Nの温度導出について説明を加える。
赤外線強度測定装置40は、複数の二次空気取入口14のうちの一つの二次空気取入口14からの二次燃焼用空気の通流域に、バーナ30の内炎用ケーシング部材34の下方に入り込ませた状態で且つカバー部材46を被加熱物Nの底部に対して斜め上向きに臨ませた状態で設けてある。
そして、この赤外線強度測定装置40は、被加熱物Nから放射される赤外線の波長範囲内にある互いに異なる2つの温度導出用波長域夫々についての赤外線強度を測定するように構成してある。
又、前記温度導出部22を、前記赤外線強度測定装置40にて検出される前記2つの温度導出用波長域夫々についての赤外線強度の比(前記複数の温度導出用波長域夫々についての赤外線強度の関係に相当し、以下、赤外線強度比と記載する場合がある)に基づいて、被加熱物Nの温度を求めるように構成してある。
【0023】
前記2つの温度導出用波長域は、被加熱物Nから放射される赤外線の波長範囲内において前記バーナ30の火炎からの放射が無い又は放射強度が弱い範囲内に設定してある。
【0024】
赤外線強度測定装置40について、更に説明を加える。
図2に示すように、赤外線強度測定装置40は、通過させる赤外線の波長域が互いに異なる2個のバンドパスフィルタ41a,41bと、それら2個のバンドパスフィルタ41a,41bを通過した赤外線の赤外線強度を各別に測定する2個の赤外線素子42a,42bとを備えて構成して、被加熱物Nから放射される赤外線における互いに異なる2つの温度導出用波長域夫々についての赤外線強度を測定するように構成してある。ちなみに、前記バンドパスフィルタ41a,41bは、所定の温度導出用波長域の赤外線のみを選択的に透過させるように構成されている。
【0025】
更に、説明を加えると、光入射用の開口部44を備えたパッケージング43内に、前記開口部44を通じて入射する赤外線の赤外線強度を測定可能なように、前記2個の赤外線素子42a,42bを並べて設け、前記開口部44における一方の赤外線素子42aに対して赤外線が入射する部分に一方のバンドパスフィルタ41aを設け、前記開口部44における他方の赤外線素子42bに対して赤外線が入射する部分に他方のバンドパスフィルタ41bを設けてある。
又、パッケージング43内には、前記2個の赤外線素子42a,42bを駆動させる駆動部45を設けてある。
更に、前記2個のバンドパスフィルタ41a,41bの表面の全面を覆うように、赤外線を透過可能なカバー部材46を設けて、そのカバー部材46にて、前記2個のバンドパスフィルタ41a,41bを保護するように構成してある。
【0026】
以下、前記2つの温度導出用波長域の設定の仕方について説明する。
図3に、実際のバーナ30にて形成される火炎から放射される赤外線の放射強度スペクトル分布を示す。図3に示すように、赤外線の波長範囲のうち、1.5μm以上且つ1.8μm以下の範囲、2.0μm以上且つ2.4μm以下の範囲、3.1μm以上且つ4.2μm以下の範囲、及び、8.0μm以上且つ12.0μm以下の範囲では、火炎からの放射が無い又は放射強度が弱い。
従って、前記2つの温度導出用波長域を、1.5μm以上且つ1.8μm以下の範囲内、2.0μm以上且つ2.4μm以下の範囲内、3.1μm以上且つ4.2μm以下の範囲内、及び8.0μm以上且つ12.0μm以下の範囲内に設定することにより、前記2つの温度導出用波長域を、赤外線の波長範囲内において前記バーナ30の火炎からの放射が無い又は放射強度が弱い範囲内に設定することができる。
そして、例えば、前記2つの温度導出用波長域を、3.1μm以上且つ4.2μm以下の範囲内において、3.1μmの波長域と、3.9μmの波長域とに設定してある。
【0027】
以下、前記赤外線素子42a,42bについて説明する。
PbS(硫化鉛)又はPbSe(セレン化鉛)を赤外線セルとして用いて構成した赤外線素子42a,42bは、1.5μmから5.0μmの範囲内の赤外線を常温(300K)の動作温度にて検出可能であり、しかも、3.1μm以上且つ4.2μm以下の範囲内の赤外線に対する感度が比較的高くて検出出力が大きい。
従って、上述のように、前記2つの温度導出用波長域を3.1μm以上且つ4.2μm以下の範囲内に設定する場合、赤外線素子42a,42bを、PbS(硫化鉛)又はPbSe(セレン化鉛)を赤外線セルとして用いて構成するのが好ましい。
【0028】
次に、前記温度導出部22により被加熱物の温度を求める温度導出処理について、説明する。尚、以下の説明では、前記2つの温度導出用波長域をλ1,λ2にて示す。ちなみに、温度導出用波長域λ2の方が温度導出用波長域λ1よりも長波長側になる。
図4に、予め実験により求めた前記赤外線強度測定装置40における前記2つの温度導出用波長域λ1,λ2夫々についての出力値(赤外線強度に対応する)と被加熱物の温度との関係を示す。ちなみに、この図4に示す関係は、放射率が0.92の被加熱物を用いて得たものである。
又、図5に、被加熱物の温度と、赤外線強度測定装置40における温度導出用波長域λ2に対応する出力値と温度導出用波長域λ1に対応する出力値との比である出力比(前記赤外線強度比に対応する)との関係(以下、温度対赤外線強度比の関係と記載する場合がある)を示す。
【0029】
ちなみに、この図5に示す温度対赤外線強度比の関係は、以下のようにして求めたものである。
即ち、放射率εの異なる複数の被加熱物夫々について、被加熱物の温度を複数の温度に異ならせて、複数の温度夫々について前記出力比を得る。そして、そのように放射率εの異なる複数の被加熱物について得たデータに基づいて、温度と出力比との関係の近似式を求めて、その求めた近似式を温度対赤外線強度比の関係としてある。
従って、放射率εが種々に異なる被加熱物N夫々の温度対赤外線強度比の関係を、共通の1つの温度対赤外線強度比の関係とすることができるのである。
【0030】
上述のように求めた図5に示す如き温度対赤外線強度比の関係を、前記温度導出部22の記憶部(図示省略)に記憶させてある。
【0031】
そして、前記温度導出部22は、赤外線強度測定装置40における温度導出用波長域λ2に対応する出力値と温度導出用波長域λ1に対応する出力値との出力比(前記赤外線強度比に対応する)を求め、記憶している温度対赤外線強度比の関係から被加熱物Nの温度を求めるように構成してある。
従って、被加熱物Nの温度をその被加熱物Nの放射率に依存することなく正確に求めることができる。
【0032】
前記温度導出部22にて求められた温度は、前記作動制御部23に出力され、この作動制御部23は、前記温度導出部22にて求められた温度に基づいて、前記燃料供給断続弁6、前記燃料供給量調節弁7等を制御することにより、被加熱物Nの自動温度制御、被加熱物Nの過昇温時の緊急消火制御等を行うように構成してある。
【0033】
前記自動温度制御及び緊急消火制御については、公知の各種制御を採用することが可能であるので、詳細な説明を省略して、一例を上げて簡単に説明する。
前記作動制御部23は、前記自動温度制御では、前記温度導出部22にて求められた被加熱物Nの温度が温度設定部(図示省略)等により設定された目標温度になるように、前記燃料供給量調節弁7の開度を調節することにより、前記バーナ30の火力を調節する。
前記作動制御部23は、前記緊急消火制御では、前記温度導出部22にて求められた被加熱物Nの温度が過昇温防止用のハイカット温度に達すると、前記燃料供給断続弁6を閉弁することにより、前記バーナ30を消火する。
【0034】
次に、前記火炎検知部21による火炎Fの検知について説明を加える。
火炎検知部21は、赤外線強度測定装置40により測定される赤外線強度に基づいて火炎Fを検知するように構成されている。
即ち、赤外線強度測定装置40によりある一定以上の赤外線強度を測定したことを火炎Fが存在するとして検知するように構成されている。
【0035】
また、赤外線強度測定装置40は、上述した複数の温度導出用波長域のうちの少なくとも1つの赤外線強度として、バーナ30により形成される火炎Fからの放射強度が弱い火炎影響波長域についての赤外線強度を測定するように構成されている。
即ち、赤外線強度測定装置40は、被加熱物Nから放射された赤外線の波長範囲内において、火炎Fからの放射強度が弱い波長域、言い換えれば火炎Fからの放射により若干影響される波長域を、上記火炎影響波長域に設定し、その火炎影響波長域についての赤外線強度を測定する。
具体的には、例えば図3に示す火炎Fから放射される赤外線の放射強度スペクトル分布を参照して、上記火炎影響波長域は、火炎Fの影響が僅かにある例えば3.1μm以上且つ3.3μm以下の範囲内や4.0μm以上且つ4.2μm以下の範囲内等に設定することができ、本実施形態では、上記火炎影響波長域を3.1μmに設定している。
【0036】
そして、上記火炎検知部21は、例えばバーナ30の点火時から一定時間経過するまでに、上記火炎影響波長域についての赤外線強度が一定以上上昇したことを、火炎Fが正しく形成されているものとして火炎Fを検知することができ、もし火炎Fが検知できなかった場合には、作動制御手段23は、点火不良が発生したとして、上述した緊急消火制御を実行して、燃料供給断続弁6を閉弁することにより、前記バーナ30を消火することができる。
【0037】
〔第2実施形態〕
以下、本発明に係るコンロの第2実施形態について、図面に基づいて説明する。
第2実施形態のコンロは、上記第1実施形態のコンロと同様の構成については説明を割愛するが、赤外線強度測定装置40及び火炎検知部22の構成が、上記第1実施形態とは異なる。
【0038】
即ち、第2実施形態の赤外線強度測定装置40は、複数の温度導出用波長域夫々についての赤外線強度とは別に、火炎Fから放射された赤外線の波長範囲内にある火炎検知用波長域についての赤外線強度を測定するように構成してある。
具体的には、図6に示すように、赤外線強度測定装置40は、上記第1実施形態と同様に、2つの温度導出用波長域夫々の赤外線を通過させる2個のバンドパスフィルタ41a,41bと、その2個のバンドパスフィルタ41a,41bを通過した赤外線の赤外線強度を各別に測定する2個の赤外線素子42a,42bを備え、それに加えて、上記火炎検知用波長域の赤外線を通過させるバンドパスフィルタ41cと、そのバンドパスフィルタ41cを通過した赤外線の強度を測定する赤外線素子42cを備える。
【0039】
よって、火炎検知部21は、上記赤外線素子42cで測定した火炎検知用波長域についての赤外線強度がある一定以上である場合には、火炎Fが形成されているものとして検知することができる。
そして、作動制御手段23は、バーナ30の点火時から一定時間経過するまでに、又は、バーナ30の作動中に、上記火炎検知部21により火炎Fが検知できなかった場合には、点火不良や立ち消えが発生したとして、燃料供給断続弁6を閉弁することにより、前記バーナ30を消火することができる。
【0040】
また、上記火炎検知用波長域は、火炎Fから放射される赤外線の波長範囲内であればどの波長域でも構わないが、例えば図3に示すように、火炎Fの放射による影響が極めて高い4.2μmよりも大きく且つ8.0μmよりも小さい範囲内、更に好ましくは4.2μmよりも大きく且つ4.7μmよりも小さい範囲内に設定すれば、火炎検知部21において高精度に火炎Fを検知することができる。
また、上記バンドパスフィルタ41cを省略したり、このバンドパスフィルタ41cを全ての波長域の赤外線を通過させるものに変更するなどしても構わない。
【0041】
〔第3実施形態〕
以下、本発明に係るコンロの第3実施形態について、図面に基づいて説明する。
第3実施形態のコンロは、上記第2実施形態のコンロと同様の構成については説明を割愛するが、赤外線強度測定装置40の構成が、上記第2実施形態とは異なる。
【0042】
即ち、第3実施形態の赤外線強度測定装置40は、赤外線強度を測定する単一の測定部としての単一の赤外線素子42と、その赤外線素子42に入射する赤外線の波長域を切り換える切換部47とで構成されている。
【0043】
具体的には、図7に示すように、赤外線強度測定装置40は、上記第2実施形態と同様に、2つの温度導出用波長域夫々の赤外線を通過させる2個のバンドパスフィルタ41a,41bと、上記火炎検知用波長域の赤外線を通過させるバンドパスフィルタ41cとを備えるのであるが、この3個のバンドパスフィルタ41a,41b,41cが、開口部44と赤外線素子42との間で左右に変位自在なようにパッケージング43に支持されたフィルタ配置板41に併設されている。
そして、切換部47が、このフィルタ配置板41を左右に摺動自在なアクチュエータで構成されており、このフィルタ配置板41を左右に変位させて、開口部44と赤外線素子42との間に夫々のバンドパスフィルタ41a,41b,41cを逐次位置させることで、赤外線素子42に入射される赤外線の波長域を切り換えることができる。
【0044】
〔第4実施形態〕
以下、本発明に係るコンロの第4実施形態について、図面に基づいて説明する。
第4実施形態のコンロは、上記第3実施形態のコンロと同様に、赤外線強度測定装置40が、赤外線強度を測定する単一の測定部としての単一の赤外線素子42と、その赤外線素子42に入射する赤外線の波長域を切り換える切換部47とで構成されている。
具体的には、図8(a)及び(b)に示すように、上記フィルタ配置板41を円盤型に形成して、3個のバンドパスフィルタ41a,41b,41cをそのフィルタ配置板41の周方向に配置し、切換部47を、このフィルタ配置板41を回転自在なアクチュエータで構成することで、赤外線素子42に入射される赤外線の波長域を切り換えるように構成されている。
【0045】
〔別実施形態〕
次に別実施形態を説明する。
(1) 上記の各実施形態において、バーナ30をブンゼン燃焼式の内炎式に構成したが、別に、図9に示すように、バーナ30を、ブンゼン燃焼式の外炎式に構成しても構わない。
つまり、バーナ30は、上記実施形態と同様のガスノズル31及び混合管32と、円周状の外周部に混合気を噴出する複数の炎口35を備えて、前記混合管32から混合気が供給される外炎用ケーシング部材36を天板1の上方に突出する形態で備えて構成してある。
【0046】
この外炎式のバーナ30においては、混合管32から外炎用ケーシング部材36内に供給された燃料ガスGと一次燃焼用空気Aとの混合気が炎口35から外炎用ケーシング部材36の径方向外方に向けて噴出され、その噴出された燃料ガスGと一次燃焼用空気Aとの混合気が燃焼して、火炎Fが形成される。
【0047】
そして、このような外炎式のバーナ30に対しては、赤外線測定装置40を、天板1に形成された窓部50を介して、被加熱物Nや火炎Fから放射された赤外線が入射する形態で、天板1の下方に設けることができる。
尚、上記窓部50は、赤外線を透過する部材で封鎖されていても開口部であっても構わない。
【0048】
(2) 上記の各実施形態においては、前記赤外線強度測定装置40を、被加熱物Nから放射される赤外線における互いに異なる2つの温度導出用波長域夫々についての赤外線強度を測定するように構成し、温度導出部22において、その測定した2つの温度導出用波長域夫々についての赤外線強度を用いて被加熱物Nの温度を求めるように構成したが、別に、赤外線強度測定装置40により単一又は3つ以上の温度導出用波長域についての赤外線強度を測定して、上記温度導出部22により、その単一又は3つ以上の赤外線強度を用いて被加熱物Nの温度を求めるように構成しても構わない。
【0049】
即ち、前記赤外線強度測定装置40を、被加熱物Nから放射される赤外線における互いに異なる複数の波長域夫々についての赤外線強度を測定するように構成する場合、前記温度導出部22による前記温度導出処理の具体的な構成は、上記の各実施形態において例示した構成、即ち、前記被加熱物の温度を前記2つの波長域夫々についての赤外線強度の比に基づいて求める構成に限定されるものではない。
例えば、予め、放射率の異なる複数の被加熱物Nを用いて、被加熱物Nの温度を複数の温度に異ならせて、複数の温度夫々について、前記複数の波長域夫々についての赤外線強度を得て、そのように得た前記複数の波長域夫々についての赤外線強度を、前記複数の温度夫々に対応させた状態でマップデータにして記憶させておく。
そして、前記マップデータから、前記赤外線強度測定装置40にて検出される前記複数の波長域夫々についての赤外線強度の関係に一致する又は類似する赤外線強度の関係を求めると共に、その求めた赤外線強度の関係に対応する温度を求め、その求めた温度を被加熱物の温度とするように構成する。
尚、これら被加熱物Nの温度導出のための構成を省略しても構わない。
【図面の簡単な説明】
【0050】
【図1】第1実施形態におけるコンロの概略構成図
【図2】赤外線強度測定装置の縦断面図
【図3】火炎から放射される赤外線の放射強度スペクトル分布を示す図
【図4】被加熱物の温度と赤外線強度測定装置の出力との関係を示す図
【図5】被加熱物の温度と赤外線強度測定装置の出力比との関係を示す図
【図6】第2実施形態における赤外線強度測定装置の縦断面図
【図7】第3実施形態における赤外線強度測定装置の縦断面図
【図8】第4実施形態における赤外線強度測定装置の縦断面図(a)及びフィルタ配置板の平面図(b)
【図9】別実施形態におけるコンロの概略構成図
【符号の説明】
【0051】
21:火炎検知部(火炎検知手段)
22:温度導出部(温度導出手段)
30:バーナ
40:赤外線強度測定装置(赤外線強度測定手段)
42,42a,42b,42c:赤外線素子(測定部)
47:切換部

【特許請求の範囲】
【請求項1】
被加熱物を加熱するバーナと、前記バーナにより形成される火炎を検知する火炎検知手段とを備えたコンロであって、
前記バーナが形成する火炎から放射された赤外線の赤外線強度を測定する赤外線強度測定手段を備え、
前記火炎検知手段が、前記赤外線強度測定手段により測定される赤外線強度に基づいて前記火炎を検知するように構成されているコンロ。
【請求項2】
前記赤外線強度測定手段が、前記被加熱物から放射された赤外線の波長範囲内にある互いに異なる複数の温度導出用波長域夫々についての赤外線強度を測定するように構成され、
前記赤外線強度測定手段により測定される前記複数の温度導出用波長域夫々についての赤外線強度の関係に基づいて、前記被加熱物の温度を求める温度導出手段を備えた請求項1に記載のコンロ。
【請求項3】
前記赤外線強度測定手段が、少なくとも1つの前記温度導出用波長域についての赤外線強度として、前記火炎からの放射強度が弱い火炎影響波長域についての赤外線強度を測定し、
前記火炎検知手段が、前記火炎影響波長域についての赤外線強度に基づいて、前記火炎を検知するように構成されている請求項2に記載のコンロ。
【請求項4】
前記赤外線強度測定手段が、前記複数の温度導出用波長域夫々についての赤外線強度とは別に、前記火炎から放射された赤外線の波長範囲内にある火炎検知用波長域についての赤外線強度を測定し、
前記火炎検知手段が、前記火炎検知用波長域についての赤外線強度に基づいて、前記火炎を検知するように構成されている請求項2に記載のコンロ。
【請求項5】
前記赤外線強度測定手段が、赤外線強度を測定する単一の測定部と、前記測定部に入射する赤外線の波長域を切り換える切換部とで構成されている請求項2〜4の何れか一項に記載のコンロ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate