説明

コールドトラップ、及びコールドトラップの再生方法

【課題】再生時間を短縮する。
【解決手段】コールドトラップ10は、排気流路14に露出して配置されたコールドパネル20と、コールドパネル20に熱的に接続されコールドパネル20を冷却する冷凍機22と、コールドパネル20の表面に凍結した気体を気化して真空ポンプ12で外部に排出する再生処理において冷凍機22を制御することにより、コールドパネル表面に凍結した気体が融解することなく気化することが保証されている非液化温度範囲を超える温度にコールドパネル20を昇温し、かつ当該温度においてコールドパネル20表面に凍結した気体が融解することなく気化するように排気流路14の圧力を調節する制御部24と、を備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、コールドトラップ及びその再生方法に関する。
【背景技術】
【0002】
コールドトラップは、表面に気体を凍結させて捕捉することにより雰囲気から除去する装置である。コールドトラップには通常、冷却用流体の供給系統や極低温冷凍機などの冷却装置が付随して設けられており、コールドトラップ表面が極低温に冷却される。
【0003】
例えば特許文献1には、例えばターボ分子ポンプ等のドライポンプにコールドトラップを併用することが記載されている。ドライポンプを主排気ポンプとする真空チャンバの内部にコールドトラップが設けられている。水蒸気等の分子量の小さい気体がコールドトラップにより氷結捕集され、その他の比較的分子量の大きい気体がターボ分子ポンプにより排気されて、高い真空度を得ることができるとされている。所定時間の排気運転の後に、氷結捕集した水分子を解氷・放出する再生運転が行われる。ヒータで加熱された冷剤によりコールドトラップが加熱される。これにより、氷結捕集された水蒸気は液化され、コールドトラップ直下に設けられているドレン配管から排出される。
【特許文献1】特開平9−313920号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
しかし、液化した水分や氷がターボ分子ポンプに滴下した場合には、ターボ分子ポンプに悪影響を与える可能性がある。例えば最悪の場合にはターボ分子ポンプを破損するおそれがある。また、コールドトラップの再生にかかる時間は、真空チャンバにとってはダウンタイムとなるため、できるだけ短いことが望ましい。
【0005】
そこで、本発明は、ターボ分子ポンプなどの他の真空機器への影響を抑えるとともに再生時間の短縮を可能とするコールドトラップ及びコールドトラップの再生方法を提供する。
【課題を解決するための手段】
【0006】
本発明のある態様は、コールドトラップである。このコールドトラップは、排気対象容積を真空ポンプに接続する排気流路に配置され、該排気対象容積から該排気流路を通じて該真空ポンプへと吸入されて排気される気体の一部を表面に凍結して捕捉するコールドトラップであって、排気流路に露出して配置されたコールドパネルと、コールドパネルに熱的に接続されコールドパネルを冷却する冷凍機と、コールドパネルの表面に凍結した気体を気化して真空ポンプで外部に排出する再生処理において冷凍機を制御することにより、コールドパネル表面に凍結した気体が融解することなく気化することが保証されている非液化温度範囲を超える温度にコールドパネルを昇温し、かつ当該温度においてコールドパネル表面に凍結した気体が融解することなく気化するように排気流路の圧力を調節する制御部と、を備える。
【0007】
この態様によれば、非液化温度範囲を超える比較的高い温度においてコールドトラップが再生されるので、再生時間を短縮することができる。また、コールドトラップ表面に捕捉されている氷が融解することなく気化するようにコールドトラップの雰囲気圧力が制御されるので、液体の水による周囲の機器類への悪影響を防ぐことができる。
【0008】
制御部は、排気流路の圧力がコールドパネルに凍結した気体の三重点の圧力を超えないように冷凍機を制御してもよい。
【0009】
制御部は、排気流路の圧力が真空ポンプの許容吸入圧力を超えないように冷凍機を制御してもよい。
【0010】
制御部は、排気流路の圧力が上限圧力を超えた場合に、コールドパネルを冷却することにより排気流路の圧力を上限圧力以下に復帰させてもよい。
【0011】
制御部は、排気流路の圧力が許容圧力範囲を超えた場合に非液化温度範囲から選択される待機温度にコールドパネルを冷却してもよい。
【0012】
制御部は、待機温度において排気流路の圧力が許容圧力範囲を下回った場合に、非液化温度範囲を超える温度にコールドパネルを昇温してもよい。
【0013】
制御部は、非液化温度範囲を超える温度においては非液化温度範囲における昇温速度よりも遅い昇温速度でコールドパネルを昇温してもよい。
【0014】
制御部は、非液化温度範囲から選択される圧力判定温度にコールドパネルを昇温し、昇温後に排気流路の圧力が基準圧力を超えているか否かを判定し、排気流路の圧力が基準圧力を超えている場合には非液化温度範囲から選択される温度にコールドパネルを冷却し、排気流路の圧力が基準圧力を超えていない場合には非液化温度範囲を超える温度にコールドパネルを昇温してもよい。
【0015】
再生処理において排気流路に生じ得る全圧力範囲を計測範囲に含み、排気流路の圧力を測定するように配置され、測定値を制御部に出力するよう制御部に接続された圧力センサをさらに備えてもよい。制御部は、圧力センサの測定値に基づいて排気流路の圧力を制御してもよい。
【0016】
本発明の別の態様は再生方法である。この方法は、コールドトラップの表面に捕捉した氷を気化して外部に排出するコールドトラップの再生方法であって、コールドトラップ表面に捕捉されている氷が融解することなく気化することが保証されている非液化温度範囲を超える温度にコールドトラップを昇温する昇温工程と、非液化温度範囲を超える温度においてコールドトラップ表面に捕捉されている氷が融解することなく気化するようにコールドトラップの雰囲気圧力を制御する排出工程と、を備える。
【0017】
排出工程は、水の三重点の圧力を超えないようにコールドトラップの雰囲気圧力を制御してもよい。
【0018】
排出工程は、気化した水蒸気をターボ分子ポンプで外部に排出することを更に含み、該ターボ分子ポンプの許容吸入圧力を超えないようにコールドトラップの雰囲気圧力を制御してもよい。
【0019】
排出工程は、コールドトラップの雰囲気圧力が上限圧力を超えた場合に、コールドトラップを冷却することにより雰囲気圧力を上限圧力以下に復帰させてもよい。
【0020】
排出工程は、コールドトラップの雰囲気圧力が許容圧力範囲を超えた場合に非液化温度範囲から選択される待機温度にコールドトラップを冷却してもよい。
【0021】
排出工程は、待機温度においてコールドトラップの雰囲気圧力が許容圧力範囲を下回った場合に、非液化温度範囲を超える温度にコールドトラップを昇温してもよい。
【0022】
昇温工程は、非液化温度範囲を超える温度においては非液化温度範囲における昇温速度よりも遅い昇温速度でコールドトラップを昇温してもよい。
【0023】
昇温工程は、非液化温度範囲から選択される圧力判定温度にコールドトラップを昇温し、昇温後に雰囲気圧力が基準圧力を超えているか否かを判定し、雰囲気圧力が基準圧力を超えている場合には非液化温度範囲から選択される温度で氷を昇華させて外部に排出し、雰囲気圧力が基準圧力を超えていない場合には非液化温度範囲を超える温度にコールドトラップを昇温してもよい。
【0024】
昇温工程の開始から排出工程の完了までコールドトラップの雰囲気圧力を共通の圧力センサで測定してもよい。
【0025】
本発明のさらに別の態様は、再生制御装置である。この装置は、コールドトラップの表面に凍結した気体を気化して外部に排出する再生処理を実行する再生制御装置であって、コールドトラップ表面に凍結した気体が融解することなく気化することが保証されている非液化温度範囲を超える温度にコールドトラップを昇温し、当該温度においてコールドトラップ表面に凍結した気体が融解することなく気化するようにコールドトラップの雰囲気圧力を制御する。
【0026】
本発明のさらに別の態様は、再生方法である。この方法は、コールドトラップの表面に凍結した気体を気化して外部に排出するコールドトラップの再生方法であって、再生中にコールドトラップの雰囲気圧力をモニタし、モニタされた雰囲気圧力が許容圧力範囲を超える場合にコールドトラップを一時的に冷却する。
【発明の効果】
【0027】
本発明によれば、ターボ分子ポンプなどの他の真空機器への影響を抑えるとともに再生時間の短縮を可能とするコールドトラップ及びコールドトラップの再生方法が提供される。
【発明を実施するための最良の形態】
【0028】
一実施形態においては、コールドトラップの再生を高温で行うことにより再生時間を短くすることができる。典型的な再生方法においてはコールドトラップ表面に凍結された気体を液体状態を経ることなく気化させるために低温(例えば260K以下)で再生が行われる。液体を避けるのは、例えば周囲の真空機器(例えばターボ分子ポンプ等)への影響を防ぐためである。これに対して本実施形態では、凍結した気体が融解することなく気化する圧力範囲に再生中のコールドトラップ雰囲気圧力を調節する。このため捕捉された気体の液体状態を避けつつ高温で再生することが可能となる。
【0029】
また、典型的な再生方法においてはコールドトラップを再生温度に一度加熱したら排気が完了するまでその再生温度が維持される。再生中にコールドトラップを冷却するという技術思想は従来存在しない。しかし本実施形態においては例えば、凍結した気体が融解し得る圧力にコールドトラップ雰囲気圧力が到達しないようにコールドトラップを一時的に冷却することを許容する。これにより、コールドトラップからの気体の昇華速度が低減され雰囲気圧力の上昇を抑えることができる。本発明者は、コールドトラップの一時的冷却を組み合わせて高温再生を行うことにより、従来の低温再生よりも再生時間を相当短縮することができることを実験的に確認した。
【0030】
一実施形態においては、コールドトラップは再生処理を制御する制御部を備える。制御部は、非液化温度範囲を超える温度にコールドトラップを昇温する。これにより、コールドトラップ表面に凍結した気体が再気化され、外部に排出される。このとき制御部は、コールドトラップ表面に凍結した気体が融解することなく気化するようにコールドトラップの雰囲気圧力を制御する。非液化温度範囲は、コールドトラップ表面に凍結した気体が融解することなく気化することが保証されている温度範囲であり、例えばその気体の状態図に基づいて定められる。
【0031】
制御部は例えば、限界圧力を超えることがないようにコールドトラップの雰囲気圧力を制御する。限界圧力は例えば、排気されるべき気体の三重点の圧力であってもよい。また、再気化された気体をターボ分子ポンプで外部に排出する場合には、限界圧力はターボ分子ポンプの許容吸入圧力であってもよい。許容吸入圧力はターボ分子ポンプの仕様として定められている値であり、ターボ分子ポンプの吸入口において許容される最大の圧力である。コールドトラップの雰囲気圧力が限界圧力を超えないようにするために、制御部は例えば、限界圧力よりも小さい所定の上限圧力とこの上限圧力よりも小さい所定の下限圧力とにより定まる許容圧力範囲にコールドトラップの雰囲気圧力が維持されるようにコールドトラップの温度を制御する。
【0032】
一実施形態においては、制御部は、コールドトラップを所定の再生温度へと昇温する昇温工程と、コールドトラップに捕捉された気体を再気化して外部に排出する排出工程と、コールドトラップを再冷却するクールダウン工程とを順に実行して再生処理を行う。制御部は、予め設定されている複数の異なる再生温度のうちいずれかを選択する。非液化温度範囲を超える第1再生温度と非液化温度範囲から選択される第2再生温度とが少なくとも設定されていてもよい。第1再生温度は例えば冷凍機の耐熱温度以下に設定されてもよい。第2再生温度は非液化温度範囲の上限温度または上限温度よりも若干低い温度に設定されてもよい。
【0033】
制御部は、昇温工程においてコールドトラップを圧力判定温度に昇温し、コールドトラップの雰囲気圧力が基準圧力を超えているか否かを判定してもよい。圧力判定温度は例えば非液化温度範囲から選択される。圧力判定温度は第2再生温度と等しくてもよい。基準圧力は例えば上述の限界圧力よりも低圧に設定される。基準圧力は例えば上述の許容圧力範囲の上限圧力に等しくてもよい。制御部は、コールドトラップ雰囲気圧力が基準圧力を超えていると判定した場合には非液化温度範囲から選択される温度(例えば第2再生温度)で排出工程を行い、コールドトラップ雰囲気圧力が基準圧力を超えていないと判定した場合には非液化温度範囲を超える温度(例えば第1再生温度)で排出工程を行ってもよい。
【0034】
また、制御部は、昇温工程において、非液化温度範囲の昇温速度よりも非液化温度範囲を超える温度での昇温速度を遅くしてもよい。例えば、上述の圧力判定温度までの昇温速度よりも圧力判定温度から第1再生温度までの昇温速度を遅くしてもよい。また、制御部は、昇温するにつれて段階的または連続的に昇温速度を低下させてもよい。制御部は、コールドトラップ雰囲気圧力をモニタし、雰囲気圧力が所定圧を超えたときに昇温速度を低下させるようにしてもよい。このようにすれば、コールドトラップ雰囲気圧力の昇温工程における急激な上昇を避けることができる。その結果、コールドトラップに凍結した気体が融解することも避けることができる。
【0035】
制御部は、排出工程においてコールドトラップの雰囲気圧力が上限圧力を超えた場合に、雰囲気圧力を上限圧力以下に復帰させるようにコールドトラップを冷却してもよい。例えば、制御部は、コールドトラップの雰囲気圧力が許容圧力範囲を超えた場合にコールドトラップを待機温度に冷却してもよい。また、制御部は、待機温度においてコールドトラップの雰囲気圧力が許容圧力範囲を下回った場合に、非液化温度範囲を超える再生温度(例えば第1再生温度)にコールドトラップを昇温してもよい。このように、制御部は、排出工程においてコールドトラップの雰囲気圧力を許容圧力範囲に維持するようにコールドトラップを一時的に冷却することが許容されている。
【0036】
待機温度は例えば非液化温度範囲から選択される。待機温度は例えば第2再生温度に等しくてもよい。待機温度を低温とすることによりコールドトラップ雰囲気圧力を速やかに許容圧力範囲に復帰させることができる。しかし、コールドトラップに凍結した気体の三重点圧力よりもコールドトラップ雰囲気圧力の許容圧力範囲上限値が充分に低い値に設定されている場合には、待機温度は非液化温度範囲を超える温度から選択されてもよい。許容圧力範囲上限値が三重点圧力よりも充分に低ければ、雰囲気圧力が許容圧力範囲を超えたとしてもコールドトラップに凍結した気体が融解しないと考えられるからである。またコールドトラップの温度が高温に保たれることにより再生時間をより短くすることができる。よって、待機温度は、コールドトラップ雰囲気圧力に対する制御性や再生時間への影響等を考慮して最適に設定することが望ましい。
【0037】
本実施形態に係るコールドトラップは例えばインライン型のコールドトラップである。すなわちコールドトラップは、真空チャンバ等の排気対象容積を真空ポンプへと接続する排気流路に配置される。コールドトラップは、排気対象容積から排気流路を通じて真空ポンプへと吸入されて排気される気体の一部を表面に凍結して捕捉する。この場合、排気流路の圧力がコールドトラップの雰囲気圧力に相当する。真空ポンプは例えばターボ分子ポンプやディフュージョンポンプであり、この場合コールドトラップの運転温度は主として水蒸気を捕捉するように設定される。ターボ分子ポンプは排気運転中だけではなくコールドトラップの再生中にも運転され、再気化した気体を外部に排出するために利用されてもよい。
【0038】
一実施形態においては、コールドトラップは、雰囲気圧力を測定する圧力センサを備えてもよい。圧力センサは例えば上述の排気流路の圧力を測定するように配置される。圧力センサは、再生処理中に生じ得る全圧力範囲を計測範囲に含んでもよく、例えばクリスタルゲージであってもよい。圧力センサは、具体的には例えば、排出工程の完了判定圧力と上述の限界圧力の双方を計測範囲に含んでもよい。圧力センサは、再生処理の開始から完了までを通じてコールドトラップの雰囲気圧力をモニタしてもよい。制御部は、圧力センサの測定値に基づいてコールドトラップの温度を調整してもよい。
【0039】
本実施形態に係るコールドトラップは、表面に気体を捕捉するコールドパネルと、コールドパネルに熱的に接続されコールドパネルを冷却する冷凍機と、を備える。本実施形態においては冷凍機は、コールドパネルを冷却する通常運転(以下では正転運転と称する場合もある)と、コールドパネルを加熱する逆転運転とを行うことができる。冷凍機は通常運転においては内部に吸入した作動気体を膨張させて吐出する熱サイクルによって寒冷を発生させる。一方、逆転運転においては、通常運転における熱サイクルを逆転させた熱サイクルによって熱を発生させる。制御部は冷凍機の通常運転と逆転運転とを切り替えることによってコールドパネルの温度を調節する。制御部は、通常運転または逆転運転における熱サイクルの周波数を制御することでコールドパネルの温度を調節してもよい。
【0040】
一実施形態においては、制御部は、コールドパネルの温度及び雰囲気圧力をともに許容範囲に収めるように冷凍機の運転状態を決定する。しかし、コールドパネルの雰囲気圧力が許容圧力範囲から逸脱した場合または逸脱が予測される場合には、制御部は、コールドパネル温度を許容温度範囲に収めることよりもコールドパネル雰囲気圧力を許容圧力範囲に収めることを優先して冷凍機の運転状態を決定してもよい。例えば、制御部は、排気工程においてコールドパネル雰囲気圧力が許容圧力範囲を超えた場合にはコールドパネル温度を許容温度範囲よりも低温に冷却するように冷凍機の運転状態を逆転運転から通常運転に切り替えてもよい。あるいは、制御部は、コールドパネル雰囲気圧力が許容圧力範囲を下回った場合にはコールドパネル温度を許容温度範囲よりも高温に加熱するように冷凍機の運転状態を通常運転から逆転運転に切り替えてもよい。
【0041】
以下、図面を参照しながら、本発明を実施するための最良の形態について更に詳細に説明する。図1は、本発明の一実施形態に係る真空排気システムを模式的に示す図である。この真空排気システムは、コールドトラップ10とターボ分子ポンプ12とを備える。ターボ分子ポンプ12は排気流路14を通じて真空処理装置の真空チャンバ16に接続されている。コールドトラップ10は排気流路14においてターボ分子ポンプ12の手前に配置されている。コールドトラップ10は、ターボ分子ポンプ12の鉛直方向上方に配置されている。
【0042】
また、排気流路14には真空排気システムを真空チャンバ16から遮断するためのゲートバルブ18が設けられている。ゲートバルブ18は真空チャンバ16の開口部とコールドトラップ10との間に設けられている。ゲートバルブ18を開くことにより真空チャンバ16を排気可能に真空排気システムが連通され、ゲートバルブ18を閉じることにより真空チャンバ16から真空排気システムが遮断される。コールドトラップ10を再生する際には通常ゲートバルブ18は閉じられる。なおゲートバルブ18は真空排気システムの一部として構成されていてもよいし、真空処理装置の一部として真空チャンバ16の開口部に設けられていてもよい。
【0043】
コールドトラップ10は、コールドパネル20、冷凍機22、及び制御部24を含んで構成される。コールドパネル20は全体が排気流路14に露出されており、冷凍機22により冷却されることにより排気流路14を流れる気体の一部を表面に凍結して捕捉する。コールドパネル20は、排気流路14における気体流通方向(図1においては上下方向)に垂直な面に沿って配置されている。コールドパネル20は、排気流路14の気体流通方向に垂直な断面積の例えば大半を占有するように気体流通方向に関する投影面積が設定されている。
【0044】
コールドパネル20は、例えば複数の金属製の羽板を有するルーバーである。各羽板はそれぞれ径の異なる円すい台の側面の形状に形成されて同心円状に配列されている。なおコールドパネル20はシェブロン形状に形成されていてもよいし格子状等他の形状に形成されていてもよい。
【0045】
コールドパネル20は、その外周部から突出する棒状の伝熱部材26により冷凍機22の冷却ステージ28に熱的に接続されている。排気流路14には伝熱部材26に対応する位置に開口が形成されており、その開口には伝熱部材26を収容しかつ排気流路14と冷凍機ハウジング30とを接続する接続ハウジング32が取り付けられている。接続ハウジング32により排気流路14の内部空間と冷凍機ハウジング30の内部空間とは気密に接続される。よって、冷凍機ハウジング30の内部圧力は排気流路14における圧力に等しくなる。
【0046】
冷凍機22は、ギフォード・マクマホン式冷凍機(いわゆるGM冷凍機)である。また冷凍機22は単段式の冷凍機であり、冷却ステージ28、シリンダ34、及び冷凍機モータ36を有する。シリンダ34の一端に冷却ステージ28が取り付けられ、他端に冷凍機モータ36が設けられている。シリンダ34にはディスプレーサ(図示せず)が内蔵され、ディスプレーサの内部には蓄冷材が組み込まれている。冷凍機モータ36は、ディスプレーサがシリンダ34の内部の往復動可能とするようにディスプレーサに接続される。また、冷凍機モータ36は、冷凍機22の内部の内部に設けられている可動バルブ(図示せず)を正逆回転可能とするように当該バルブに接続される。
【0047】
冷凍機22には、高圧配管及び低圧配管を介して圧縮機(図示せず)が接続される。冷凍機22は、圧縮機から供給される高圧の作動気体(例えばヘリウム等)を内部で膨張させて吐出する熱サイクルを繰り返すことにより冷却ステージ28及びコールドパネル20に寒冷を発生させる。この熱サイクルを実現するように冷凍機モータ36は可動バルブを所定方向に回転させる。圧縮機は、冷凍機22から吐出された作動気体を回収し再び加圧して冷凍機22に供給する。また、冷凍機モータ36が可動バルブを逆方向に回転することにより、上述の熱サイクルを逆転させた熱サイクルが実現され、冷却ステージ28及びコールドパネル20は加熱される。なお、冷凍機22の逆転運転の代わりに、または逆転運転に併用してヒータ等の加熱手段を用いて冷却ステージ28またはコールドパネル20を加熱してもよい。
【0048】
冷凍機22の冷却ステージ28には温度センサ38が設けられている。温度センサ38は冷却ステージ28の温度を周期的に測定し、測定温度を示す信号を制御部24に出力する。温度センサ38はその出力を通信可能に制御部24に接続されている。冷却ステージ28とコールドパネル20とは熱的に一体に構成されているから、温度センサ38の測定温度はコールドパネル20の温度を表す。なお温度センサ38は、コールドパネル20に設けてもよいし伝熱部材26に設けてもよい。
【0049】
また、冷凍機ハウジング30の内部に圧力センサ40が設けられている。圧力センサ40は、冷凍機ハウジング30の内部圧力すなわち排気流路14の圧力を周期的に測定し、測定圧力を示す信号を制御部24に出力する。圧力センサ40はその出力を通信可能に制御部24に接続されている。圧力センサ40はコールドトラップ10の再生処理の実行中に限って圧力を測定し制御部24に出力するようにしてもよい。圧力センサ40の測定値はコールドパネル20の周囲の圧力つまり雰囲気圧力を表す。なお圧力センサ40は接続ハウジング32の内部に設けてもよいし排気流路14に設けてもよい。
【0050】
圧力センサ40は、大気圧から約0Paまでの広い計測範囲を有する。少なくとも再生処理中に生じ得る圧力範囲を計測範囲に含むことが望ましい。圧力センサ40は、排気流路14における気体流れが少なくとも粘性流である場合に圧力を測定可能である圧力センサであることが望ましい。圧力センサ40は、排気流路14における気体流れが粘性流である場合にも分子流である場合にも圧力を測定可能である圧力センサであってもよい。一般に排気流路14における圧力が数Paよりも大きい場合には気体流れは粘性流となり、10−1〜−2Paよりも圧力が小さい場合には分子流となる。そのような圧力センサとして、本実施形態では例えばクリスタルゲージを使用することが好ましい。クリスタルゲージとは、水晶振動子の振動抵抗が圧力によって変化する現象を利用して圧力を測定するセンサである。また膜圧真空計を用いることも可能である。なお典型的なコールドトラップにおいては圧力センサを有しないか、分子流レベルの圧力のみを測定可能とする圧力センサ(例えばT/Cゲージ)が使用されているにすぎない。
【0051】
制御部24は、CPUを含むマイクロプロセッサとして構成されており、CPUの他に各種プログラムを記憶するROM、データを一時的に記憶するRAM、入出力ポートおよび通信ポート等を備える。制御部24は、真空処理装置の制御部とも通信可能に接続されており、真空処理装置の制御部からの指令に応じて適切な制御を実行することも可能である。制御部24は、温度センサ38及び圧力センサ40から入力される測定値に基づいて冷凍機22を制御する。制御部24は冷凍機22の冷凍機モータ36に通信可能に接続されている。制御部24と冷凍機モータ36との間には例えばインバータ(図示せず)が設けられており、制御部24がインバータに指令を与えることにより、冷凍機モータ36の回転数が制御される。冷凍機モータ36の回転数が変更されることにより、冷凍機22における熱サイクルの周波数が変更され、冷却ステージ28及びコールドパネル20の温度が変化する。
【0052】
図1に示される真空排気システムは、排気処理と再生処理とを交互に繰り返す。排気処理においては、ゲートバルブ18を開放しターボ分子ポンプ12を動作させることにより真空チャンバ16を排気して真空度を所望のレベルへと高める。このときコールドトラップ10は、排気流路14を流れる水蒸気を捕捉可能とする温度(例えば100K)に冷却される。ターボ分子ポンプ12は通常水蒸気の排気速度が比較的小さいが、コールドトラップ10を併用することにより大きな排気速度を実現することができる。
【0053】
排気処理においては、制御部24は、コールドパネル20の温度が目標温度(例えば100K)に一致するように温度センサ38の測定温度に基づいて冷凍機モータ36を制御する。制御部24は例えば、温度センサ38の測定温度と目標温度との偏差を最小化するように冷凍機モータ36の回転数を決定する。制御部24は例えば、測定温度が目標温度を上回る場合には冷凍機モータ36の回転数を増加させ、測定温度が目標温度を下回る場合には冷凍機モータ36の回転数を減少させる。このようにしてコールドパネル20の温度は目標温度に維持される。
【0054】
排気処理が継続されることによりコールドトラップ10には凍結した気体が蓄積されていく。本実施形態においては主として水蒸気が固化して形成された氷の量が増大していく。よって、蓄積した氷を外部に排出するために、排気処理が開始されてから所定時間が経過したときにコールドトラップ10の再生が行われる。再生処理は通常、ゲートバルブ18を閉弁してコールドトラップ10を真空チャンバ16から分離して行う。排気処理中のコールドトラップ温度よりも高温である再生温度にコールドトラップ10を昇温し、表面に凍結した気体を再気化する。再気化した気体はターボ分子ポンプ12を動作させることにより外部に排出される。なお、ターボ分子ポンプ以外の真空ポンプを再生処理用に設け、その真空ポンプにより気体を外部に排出することも可能である。
【0055】
本実施形態に係る再生処理においては、排気流路14における圧力をモニタして再生処理の開始から完了まで限界圧力を超えないように制御する。限界圧力は例えば気体の三重点圧力としてもよい。本実施形態ではコールドトラップ10により主として水分が排気されるので、水の三重点圧力を限界圧力として設定することができる。図2は水の状態図である。図2によれば、水の三重点圧力は611Paである。よって、限界圧力を611Paに設定してもよい。これにより、再生中の圧力が三重点圧力以下に制御されるので、氷を直接水蒸気へと昇華させることができる。液体状態をとらないので、コールドトラップ10の直下に配置されているターボ分子ポンプ12に水や氷が滴下することがない。よって、ターボ分子ポンプ12の破損をさけることができる。また、液体の水は、捕捉されている他の気体と化学変化をして有害な組成物を生成するおそれがある。液体の水を生じさせないことにより、有害な組成物の生成も抑制することができる。
【0056】
また、ターボ分子ポンプ12の許容吸入圧力を限界圧力として設定してもよい。ターボ分子ポンプ12の許容吸入圧力は例えば数Paないし数百Pa程度であり、100ないし200Paである場合がある。本実施形態においては例えば100Paである。ターボ分子ポンプ12の許容吸入圧力のほうがコールドトラップ10の排気対象気体の三重点圧力よりも低い場合には許容吸入圧力を限界圧力に設定することが好ましい。このようにすれば、再生処理中におけるターボ分子ポンプ12内部の過熱を防ぐことができる。
【0057】
図3は、本実施形態に係る再生処理を説明するためのフローチャートである。図3に示される処理は、再生処理の開始指令が制御部24に入力されたときに開始される。再生処理の開始指令は、例えば真空処理装置の制御部において生成されて制御部24に入力される。あるいは、制御部24に付随して設けられている入力インターフェースから制御部24に再生処理の開始指令が直接入力されてもよい。なお、制御部24は、再生処理開始指令を受けてから所定の遅延時間経過後に再生処理を開始するように設定されていてもよい。
【0058】
制御部24は、まず第1昇温工程を実行する(S10)。第1昇温工程においては、制御部24は、コールドパネル20を圧力判定温度へと昇温する。圧力判定温度は水の非液化温度範囲から選択される温度であり、予め設定されて制御部24に記憶されている。本実施形態では圧力判定温度は例えば260Kに設定される。第1昇温工程については図4及び図5を参照して詳しく後述する。
【0059】
水の非液化温度範囲は、図2に示される状態図から設定することができる。水の非液化温度範囲は、再生処理中に生じ得る圧力範囲においてコールドパネル20の表面の氷が昇華により気化することが保証されている温度範囲である。水の状態図に基づいて、水の非液化温度範囲は例えば270K以下の温度範囲と設定することができる。なお図2に示されるように、水の場合には融解曲線の傾きが負であるため非液化温度範囲は三重点温度である273.16Kよりも若干低い温度よりも低温とすることが好ましいが、融解曲線の傾きが正である気体の場合には三重点温度よりも低温の温度範囲を非液化温度範囲とすることができる。
【0060】
制御部24は、第1昇温工程の次に第1圧力判定処理を行う(S12)。制御部24は、第1昇温工程の終了後のコールドトラップ雰囲気圧力が基準圧力よりも高圧であるか否かを判定する。基準圧力は予め設定されて制御部24に記憶されている。基準圧力は例えば上述の限界圧力に等しく設定してもよいし、限界圧力よりも適切なマージンだけ低圧に設定してもよい。本実施形態においては基準圧力は例えばターボ分子ポンプ12の許容吸入圧力である100Paに設定される。
【0061】
第1昇温工程の終了後のコールドトラップ雰囲気圧力が基準圧力よりも高圧であると判定された場合には(S12のYes)、制御部24は低温排気工程を実行する(S14)。すなわち、非液化温度範囲から選択される第2再生温度で再生処理を継続する。この場合にはコールドトラップ雰囲気圧力が相当高い状態であるので、非液化温度範囲を保つことにより再生時間の短縮よりも液体状態の水を生じさせないことを優先する。第2再生温度と圧力判定温度とは例えば等しい値に設定してもよい。よって、本実施形態では第2再生温度は260Kに設定される。再生時間を短くするために、第2再生温度は非液化温度範囲の上限温度または上限温度よりも所定のマージンだけ低温に設定することが望ましい。このマージンは、コールドパネル20のいかなる位置においても非液化温度範囲から逸脱しないように例えば温度制御誤差や伝熱特性等を考慮して適宜設定することができる。低温排気工程が終了すると、制御部24は、クールダウン工程を実行して(S24)、再生処理を完了する。
【0062】
第1昇温工程の終了後のコールドトラップ雰囲気圧力が基準圧力以下であると判定された場合には(S12のNo)、制御部24は第2昇温工程を実行する(S16)。第2昇温工程においては、制御部24は、コールドパネル20を圧力判定温度から第1再生温度へと昇温する。第1再生温度は水の非液化温度範囲を超える温度であり、予め設定されて制御部24に記憶されている。本実施形態では第1再生温度は例えば320Kに設定される。第1再生温度は冷凍機22の耐熱温度よりも低い温度であることが好ましく、冷凍機耐熱温度から所定のマージンだけ低温に設定することが望ましい。このマージンは、冷凍機22のいかなる位置においても耐熱温度を超えないように例えば温度制御誤差や伝熱特性等を考慮して適宜設定することができる。第2昇温工程については図6ないし図9を参照して詳しく後述する。
【0063】
制御部24は、第1昇温工程における昇温速度を第2昇温工程における昇温速度よりも速くしてもよい。第1昇温工程においては速い昇温速度で昇温することにより再生時間の短縮を図ることができる。第2昇温工程においては緩やかに昇温することによりコールドトラップ雰囲気圧力の急激な上昇を抑えることができる。具体的には制御部24は例えば、第1昇温工程よりも第2昇温工程における冷凍機22の熱サイクル周波数を小さくする。つまり、制御部24は、冷凍機モータ36の回転数を第2昇温工程において第1昇温工程よりも少なくする。
【0064】
制御部24は、第2昇温工程の次に第2圧力判定処理を行う(S18)。制御部24は、第2昇温工程の終了後のコールドトラップ雰囲気圧力が排気完了圧力よりも低圧であるか否かを判定する。排気完了圧力は予め設定されて制御部24に記憶されている。本実施形態では排気完了圧力は例えば5Paに設定される。排気完了圧力はコールドトラップ10に蓄積された気体が完全に排出されたと考えることができる圧力であり、経験的または実験的に適宜設定することができる。また、良好な精度で測定されるように、排気完了圧力は、使用される圧力センサ40の最低測定可能圧力よりも大きい値に設定することが望ましい。
【0065】
第2昇温工程の終了後のコールドトラップ雰囲気圧力が排気完了圧力よりも低圧であると判定された場合には(S18のYes)、制御部24は、そのまま第1再生温度で所定時間待機し(S20)、クールダウン工程を実行して(S24)、再生処理を完了する。雰囲気圧力が排気完了圧力よりも低圧である場合には気体が完全に排出されているから、再生処理を終了してもよい。第1再生温度で所定時間待機することにより、仮にコールドパネル20に氷が残されていたとしても排出することができる。本実施形態では例えば数分ないし10分程度待機する。なお、再生時間の短縮を優先する場合には、この待機時間を省略してもよい。クールダウン工程においては、制御部24は、排気処理におけるパネル目標温度(例えば100K)へとコールドパネル20を冷却する。クールダウン工程については図11を参照して詳しく後述する。
【0066】
第2昇温工程の終了後のコールドトラップ雰囲気圧力が排気完了圧力よりも高圧であると判定された場合には(S18のNo)、制御部24は、高温排気工程を実行する(S22)。高温排気工程においては、制御部24は、非液化温度範囲よりも高温である第1再生温度で再生処理を継続する。しかし、コールドトラップ雰囲気圧力が許容範囲を超えたときにはコールドパネル20を一時的に冷却することにより雰囲気圧力を許容範囲へと復帰させる。高温排気工程については図10を参照して詳しく後述する。高温排気工程が終了すると、制御部24は、クールダウン工程を実行して(S24)、再生処理を完了する。
【0067】
図4は、本実施形態に係る第1昇温工程(図3のS10)を説明するためのフローチャートである。制御部24は、まずコールドパネル温度Tが圧力判定温度(例えば260K)を超えるか否かを判定する(S30)。コールドパネル温度Tが圧力判定温度を超えると判定された場合には(S30のNo)、制御部24は、第1昇温工程を終了し第1圧力判定処理を行う(図3のS12)。つまり第1昇温工程が省略される。例えば、真空排気システムの排気運転終了後に相当時間が経過したときに再生処理を開始した場合には、コールドパネル温度が自然に昇温して圧力判定温度を超えていることがある。このような場合には第1昇温工程を省略することにより再生時間を短縮することができる。
【0068】
コールドパネル温度Tが圧力判定温度以下であると判定された場合には(S30のYes)、制御部24は、圧力判定温度を目標温度とする温調制御を開始する(S32)。この温調制御を以下では低温温調制御と称する場合がある。また、本実施形態では圧力判定温度が260Kであるので260K温調制御と称することもある。制御部24は、260K温調制御を開始してからコールドパネル温度Tが260Kに達したか否かを判定する(S34)。コールドパネル温度Tが260Kに達していないと判定された場合には(S34のNo)、制御部24は、次の制御タイミングで再度コールドパネル温度Tが260Kに達しているか否かを判定する(S34)。
【0069】
コールドパネル温度Tが260K以上であると判定された場合には(S34のYes)、制御部24は、260K温調制御を所定の待機時間継続する(S36)。コールドパネル温度の上昇に比べてコールドトラップ雰囲気圧力の上昇には遅れが生じると考えられるからである。よって、この待機時間は、コールドトラップ雰囲気圧力の上昇の遅れを考慮して経験的または実験的に設定すればよい。本実施形態では例えば待機時間を数分ないし10分程度に設定してもよい。制御部24は、待機時間の経過後に第1昇温工程を終了して第1圧力判定処理を行う(図3のS12)。
【0070】
制御部24は、例えば図5に示される温度テーブルに従って260K温調制御を行う。制御部24は、冷凍機22の直前の運転状態とコールドパネル温度Tとに基づいて冷凍機22の運転状態を決定する。具体的には、制御部24は、冷凍機22の運転状態を逆転運転、運転停止、正転運転のいずれとするかを決定するとともに冷凍機22の運転周波数を決定する。制御部24はその決定を運転指令として冷凍機モータ36に出力する。なお図5において「−」という記号は直前の運転状態をそのまま継続することを表している。これは他の図においても同様である。
【0071】
図5に示される温度テーブルによれば、制御部24は、コールドパネル温度Tが許容温度範囲を下回る場合、許容温度範囲に含まれる場合、及び許容温度範囲を超える場合の3つの場合を区別して冷凍機22の運転状態を決定する。許容温度範囲は、温調制御の目標温度に所定の温度幅を持たせるように設定される。本実施形態では温調制御の目標温度は260Kであり、許容温度範囲は10Kの温度幅が与えられて250Kから260Kの範囲に設定されている。なお、ここでは目標温度を許容温度範囲の上限温度としているが、目標温度を中心として許容温度範囲を設定してもよいし、目標温度を許容温度範囲の下限温度としてもよい。
【0072】
コールドパネル温度Tが許容温度範囲を下回る場合すなわち250Kに満たない場合には(図5の左欄)、制御部24は、冷凍機の直前の運転状態にかかわらず次の運転状態を逆転運転とする。コールドパネル温度Tが許容温度範囲に含まれる場合すなわち250K以上260K未満である場合には(図5の中央欄)、冷凍機の直前の運転状態にかかわらずそのまま運転状態を継続する。コールドパネル温度Tが許容温度範囲を超える場合すなわち260K以上である場合には(図5の右欄)、制御部24は、冷凍機の直前の運転状態にかかわらず次の運転状態を正転運転とする。これにより、コールドパネル温度Tが許容温度範囲を下回っている場合には逆転運転によりコールドパネルは昇温され、コールドパネル温度Tが許容温度範囲を上回っている場合には正転運転によりコールドパネルは冷却される。
【0073】
ここで、制御部24は、逆転運転中の冷凍機22の運転周波数を正転運転中よりも大きくしてもよく、好ましくは逆転運転中は最大の運転周波数で冷凍機22を運転するようにしてもよい。このようにすれば、迅速に目標温度(例えば圧力判定温度)へとコールドパネル温度を昇温することができる。また、本実施形態では正転運転中は最低の運転周波数で冷凍機22を運転するようにしてもよい。目標温度が低温であるためパネル温度は低下しやすいからである。よって、正転運転の代わりに冷凍機22の運転を停止してもよい。
【0074】
したがって、本実施形態に係る第1昇温工程においては260K温調制御が開始されると、まず冷凍機22の最大出力の逆転運転により速やかにコールドパネル20が圧力判定温度である260Kまで昇温される。260Kまで昇温すると、冷凍機22は正転運転に切り替えられて250Kへと冷却される。250Kに達すると再度260Kへと昇温される。これを待機時間が経過するまで繰り返す。
【0075】
図6は、本実施形態に係る第2昇温工程(図3のS16)を説明するためのフローチャートである。第1圧力判定処理(図3のS12)においてコールドトラップ雰囲気圧力が基準圧力以下であると判定された場合には(図3のS12のNo)、制御部24は、第1再生温度を目標温度とする温調制御を開始する(S40)。この温調制御を以下では高温温調制御と称する場合がある。また、本実施形態では第1再生温度が320Kであるので320K温調制御と称することもある。
【0076】
制御部24は、320K温調制御を所定の待機時間継続する。制御部24は、320K温調制御を開始してからの経過時間が設定された待機時間に達したか否かを判定する(S42)。コールドパネル温度の上昇に比べてコールドトラップ雰囲気圧力の上昇には遅れが生じると考えられるからである。よって、この待機時間は、コールドトラップ雰囲気圧力の上昇の遅れを考慮して経験的または実験的に設定すればよい。本実施形態では例えば待機時間を数分ないし10分程度に設定してもよい。
【0077】
待機時間が経過していないと判定された場合には(S42のNo)、制御部24は、次の制御タイミングで再度待機時間が経過したか否かを判定する(S42)。待機時間が経過したと判定された場合には(S42のYes)、制御部24は、第2圧力判定処理(図3のS18)を行う。なお、320K温調制御においては比較的緩やかに昇温させるので、待機時間が経過した時点においてコールドパネル温度が320Kに達していない場合もありうる。
【0078】
制御部24は、図7から図9に示された制御テーブルに従って320K温調制御を行う。図7は320K温調制御のための圧力テーブルであり、図8は320K温調制御のための温度テーブルである。図9は最終的な出力を決定するための最終出力テーブルである。320K温調制御においては、制御部24は、まず、温度テーブル及び圧力テーブルのそれぞれを使用して冷凍機22の運転状態を出力する。そして、制御部24は、最終出力テーブルを使用して、温度テーブルからの出力及び圧力テーブルからの出力のうちいずれかを最終出力として決定する。制御部24は、決定された最終出力によって冷凍機22を制御する。
【0079】
図7に示される圧力テーブルによれば、制御部24は、コールドトラップ雰囲気圧力Pが許容圧力範囲を下回る場合、許容圧力範囲に含まれる場合、及び許容圧力範囲を超える場合の3つの場合を区別して冷凍機22の運転状態を決定する。許容圧力範囲の上限値は限界圧力以下に例えば設定され、許容圧力範囲の下限値は上限値よりも所定の圧力幅だけ低圧に設定される。本実施形態では限界圧力が100Paであることから、許容圧力範囲の上限値及び下限値を100Pa及び80Paに設定する。
【0080】
コールドトラップ雰囲気圧力Pが許容圧力範囲を下回る場合すなわち80Paに満たない場合には(図7の左欄)、制御部24は、冷凍機の直前の運転状態にかかわらず次の運転状態を逆転運転とする。コールドトラップ雰囲気圧力Pが許容圧力範囲に含まれる場合すなわち80Pa以上100Pa未満である場合には(図7の中央欄)、冷凍機の直前の運転状態にかかわらずそのまま運転状態を継続する。コールドトラップ雰囲気圧力Pが許容圧力範囲を超える場合すなわち100Pa以上である場合には(図7の右欄)、制御部24は、冷凍機の直前の運転状態にかかわらず次の運転状態を正転運転とする。これにより、コールドトラップ雰囲気圧力Pが許容圧力範囲を下回っている場合には逆転運転によりコールドパネルが昇温されて圧力が増加され、コールドトラップ雰囲気圧力Pが許容圧力範囲を上回っている場合には正転運転によりコールドパネルが冷却されて圧力が減少される。
【0081】
制御部24は、コールドトラップ雰囲気圧力Pが許容圧力範囲を超えた場合における冷凍機22の正転運転は目標温度を所定の待機温度とする。この待機温度は例えば非液化温度範囲から選択され、本実施形態では260Kに設定される。この場合の正転運転においては、制御部24は、冷凍機22を最大の運転周波数で運転する。これにより、コールドパネル温度Tを急速に低下させ、コールドトラップ雰囲気圧力Pも速やかに許容圧力範囲へと復帰させることができる。
【0082】
制御部24は、コールドパネル温度Tが待機温度である260Kに充分近づくか260Kに達したときに冷凍機22を待機運転状態とする。待機運転状態においては例えば、コールドトラップ10への熱負荷と冷凍機22の冷凍能力とがバランスしてコールドパネル温度Tが待機温度に維持されるように冷凍機22の運転周波数が選択される。例えば待機運転状態においては冷凍機22を安定的に運転させるための最小の運転周波数で運転するようにしてもよい。
【0083】
なお、図7に示される圧力テーブルにおいては、冷凍機22の運転状態を「運転停止」と出力することはない。これは、コールドトラップ雰囲気圧力Pが上昇したときには、冷凍機22の運転停止による自然冷却ではなく、冷凍機22の正転運転により積極的にコールドパネル20を冷却することが望ましいからである。
【0084】
また、図8に示される温度テーブルによれば、制御部24は、コールドパネル温度Tが許容温度範囲を下回る場合、許容温度範囲に含まれる場合、及び許容温度範囲を超える場合の3つの場合を区別して冷凍機22の運転状態を決定する。許容温度範囲は、図5に示される260K温調制御用の温度テーブルと同様に設定される。320K温調制御においては目標温度が320Kであるから、許容温度範囲は310Kから320Kの範囲に設定される。
【0085】
コールドパネル温度Tが許容温度範囲を下回る場合すなわち310Kに満たない場合には(図8の左欄)、制御部24は、冷凍機の直前の運転状態にかかわらず次の運転状態を逆転運転とする。コールドパネル温度Tが許容温度範囲に含まれる場合すなわち310K以上320K未満である場合には(図8の中央欄)、冷凍機の直前の運転状態にかかわらずそのまま運転状態を継続する。コールドパネル温度Tが許容温度範囲を超える場合すなわち320K以上である場合には(図8の右欄)、制御部24は、冷凍機の直前の運転状態にかかわらず次の運転状態を運転停止とする。これにより、コールドパネル温度Tが許容温度範囲を下回っている場合には逆転運転によりコールドパネルは昇温され、コールドパネル温度Tが許容温度範囲を上回っている場合には運転停止によりコールドパネルは自然冷却される。
【0086】
なお、図8に示される温度テーブルにおいては、冷凍機22の運転状態を「正転運転」と出力することはない。コールドパネル温度Tのほうが周囲の温度よりも高いので、運転停止によりコールドパネル20は自然に冷却される。よって、正転運転により積極的に冷却しなくてもよいからである。
【0087】
図9に示される最終出力テーブルによれば、制御部24は、圧力テーブルの出力が正転運転である場合には温度テーブルからの出力にかかわらず圧力テーブルの出力を最終出力とする。これにより、コールドトラップ雰囲気圧力Pが許容圧力範囲を超えた場合に確実に冷凍機22を正転運転状態とすることができる。その結果、コールドトラップ雰囲気圧力Pに復帰させることができる。一方、制御部24は、圧力テーブルの出力が逆転運転であり温度テーブルの出力が運転停止である場合には、温度テーブルの出力である運転停止を最終出力とする。温度テーブルの出力が運転停止となったのはコールドパネル温度Tが許容温度範囲よりも高温であるから、更に昇温する必要がないからである。また、制御部24は、圧力テーブルの出力及び温度テーブルの出力がともに逆転運転である場合には、逆転運転を最終出力とする。
【0088】
したがって、本実施形態に係る第2昇温工程においては320K温調制御が開始されると、まず冷凍機22の逆転運転によりコールドパネル20が第1再生温度である320Kまで昇温される。このとき冷凍機22の運転周波数は260K温調制御での逆転運転中の運転周波数よりも小さいので比較的緩やかに昇温されていく。320Kまで昇温すると、冷凍機22は運転停止とされ310Kまで自然冷却される。310Kに達すると再度320Kへと昇温される。コールドトラップ雰囲気圧力Pが許容圧力範囲内にある限りは、これを高温排気工程の終了まで繰り返す。
【0089】
ところが、コールドトラップ雰囲気圧力Pが許容圧力範囲を超えた場合には、冷凍機22の最大出力で待機温度である260Kへとコールドパネル20は急速に冷却される。待機温度は非液化温度範囲にあるので、コールドトラップ雰囲気圧力Pが許容圧力範囲を超えていたとしてもパネル上に凍結した気体が液化することがないかまたは最小限に抑制される。コールドトラップ雰囲気圧力Pが許容圧力範囲を下回るまでコールドパネル温度Tは待機温度に保持される。雰囲気圧力の許容圧力範囲への復帰後に通常の320K温調制御が再開され、コールドパネル温度Tは冷凍機22の逆転運転により第1再生温度である320Kへと昇温される。
【0090】
図10は、本実施形態に係る高温排気工程(図3のS22)を説明するためのフローチャートである。高温排気工程においては上述の第2昇温工程と同様に320K温調制御が継続されている。制御部24は、最大排気時間が経過したか否かを判定し(S50)、コールドトラップ雰囲気圧力が排気完了圧力よりも低圧であるか否かを判定する(S52)。なお、この2つの判定はいずれを先に行ってもよい。最大排気時間が経過しておらず(S50のNo)、かつコールドトラップ雰囲気圧力が排気完了圧力以上である場合には(S52のNo)、制御部24は次の制御タイミングで再度これらの判定を繰り返す。
【0091】
最大排気時間が経過したと判定された場合には(S50のYes)、制御部24は高温排気工程を終了してクールダウン工程(図3のS24)を実行する。最大排気時間は、高温排気工程に許容された時間の最大値であり仕様として予め設定されて制御部24に記憶されている。最大排気時間が経過した場合にはコールドパネル上の氷が完全に排出されたか否かにかかわらず再生処理を終了する。なお最大排気時間は通常、コールドパネル上の氷を完全に排出するのに充分な時間に設定される。
【0092】
また、コールドトラップ雰囲気圧力が排気完了圧力よりも低圧であると判定された場合には(S52のYes)、所定時間待機する(S54)。待機時間は予め設定されて制御部24に記憶されており、例えば数分程度に設定されている。待機時間の経過後に、制御部24は、コールドトラップ雰囲気圧力が排気完了圧力よりも低圧であるか否かを再度判定する(S56)。このように待機時間経過後に排気完了圧力の再判定を行うことにより、初回の排気完了判定(S52)の際に瞬間的に圧力が落ち込んだにすぎない場合を排気完了と誤認することを避けることができる。再判定においてコールドトラップ雰囲気圧力が排気完了圧力以上であると判定された場合には(S56のNo)、制御部24は、もう一度所定時間待機し(S54)、排気完了判定(S56)を行う。再判定においてコールドトラップ雰囲気圧力が排気完了圧力よりも低圧であると判定された場合には(S56のYes)、制御部24は高温排気工程を終了してクールダウン工程を実行する(図3のS24)。
【0093】
なお、低温排気工程(図3のS14)も上述の高温排気工程と概ね同様に行われる。ただし、低温排気工程は260K温調制御のもとで行われる点が高温排気工程とは異なる。また、低温排気工程における最大排気時間は高温排気工程よりも長く設定される点も異なる。
【0094】
図11は、本実施形態に係るクールダウン工程(図3のS24)を説明するためのフローチャートである。クールダウン工程においては、制御部24はまず、コールドトラップ10の排気運転温度への温調制御を開始する(S60)。制御部24は、排気運転温度とコールドパネル温度との偏差を最小化するように冷凍機22の運転周波数を決定する。排気運転温度は再生温度よりも低温であるからコールドトラップ10は冷却されていく。排気運転温度は例えば100Kである。
【0095】
制御部24は、コールドパネル温度が圧力センサ40のゼロ点調整温度に到達したか否かを判定する(S62)。コールドパネル温度が圧力センサ40のゼロ点調整温度に到達していないと判定された場合には(S62のNo)、制御部24は次の制御タイミングで再度判定する(S62)。コールドパネル温度が圧力センサ40のゼロ点調整温度まで冷却されたと判定された場合には(S62のYes)、制御部24は、圧力センサ40のゼロ点調整を行う(S64)。
【0096】
さらに制御部24は、コールドパネル温度がクールダウン完了温度に到達したか否かを判定する(S66)。コールドパネル温度がクールダウン完了温度に到達していないと判定された場合には(S66のNo)、制御部24は次の制御タイミングで再度判定する(S66)。コールドパネル温度がクールダウン完了温度まで冷却されたと判定された場合には(S66のYes)、制御部24は、再生処理が完了したと判定し再生処理を終了する(S68)。
【0097】
ここで、クールダウン完了温度は例えば上述の排気運転温度に等しく設定される。また、ゼロ点調整温度は例えば、クールダウン工程が終了する前にゼロ点調整を完了することができる程度にクールダウン完了温度よりも所定温度高温に設定される。圧力センサのゼロ点調整はクールダウン工程において必ず行うようにしてもよいし、毎回ではなく適宜の頻度で実行するようにしてもよいし、完全に省略してもよい。またゼロ点調整は、コールドトラップ雰囲気圧力が排気完了圧力よりも低圧となったことが確認されてクールダウン工程が開始された場合に行うようにしてもよい。
【0098】
以上説明した本実施形態に係る再生方法によれば、コールドトラップに捕捉された気体が融解し得る比較的高い再生温度において当該気体が融解しないように雰囲気圧力が制御される。これにより、従来の低温再生に比較して再生時間を相当短縮することができる。例えば、260K温調制御による低温再生の場合に再生時間が160分であるときに低温再生に代えて本実施形態に係る再生方法を採用した場合には、およそ半分の85分で再生を完了することが実験的に確認された。この場合のコールドパネル温度及びコールドトラップ雰囲気圧力の時間変動を図12に示す。
【0099】
図12に示される実施例においては、コールドトラップ雰囲気圧力の許容圧力範囲の上限値及び下限値をそれぞれ100Pa及び80Paとして上述の再生処理を行った。図12の縦軸はコールドパネル温度及びコールドトラップ雰囲気圧力を示し、横軸は再生処理開始からの経過時間を示す。
【0100】
図12においては、再生開始から時点Bまでが第1昇温工程(図3のS10、図4)である。再生処理が開始されると冷凍機22は最大出力で逆転運転されコールドパネル温度は圧力判定温度(260K)に向けて急速に昇温されていく。時点Aにおいてコールドパネル温度は260Kに達し、以降は待機時間(図4のS36)が経過するまで260K温調制御用温度テーブル(図5)に従ってコールドパネル温度は250Kから260Kの許容温度範囲に保持される。
【0101】
待機時間が経過した時点Bにおいて第1昇温工程は終了され第1圧力判定処理(図3のS12)が実行される。時点Bにおいてコールドトラップ雰囲気圧力はまだ0Pa程度であり基準圧力(100Pa)よりも低圧であるので、引き続いて第2昇温工程が実行される(図3のS16、図6)。時点Bから時点Cまでが第2昇温工程である。第2昇温工程においては第1昇温工程よりも緩やかな昇温速度でコールドパネル20は昇温されていく。第2昇温工程においてコールドトラップ雰囲気圧力は上昇を開始する。図示されるようにコールドパネル温度の昇温に比べてコールドトラップ雰囲気圧力の上昇には遅れが生じる。
【0102】
そして待機時間(図6のS42)が経過した時点Cにおいて第2昇温工程は終了され第2圧力判定処理(図3のS18)が実行される。コールドパネル温度は時点Cにおいては約290Kであり第2昇温工程の目標温度(320K)にはまだ達していない。時点Cにおいてコールドトラップ雰囲気圧力は約25Paであり排気完了圧力(5Pa)よりも高圧であるので、引き続いて高温排気工程が実行される(図3のS22、図10)。
【0103】
時点Cから時点Eまでが高温排気工程である。高温排気工程においては第2昇温工程と同様に320K温調制御が実行されている。よって、図7ないし図9に示した圧力テーブル、温度テーブル、及び最終出力テーブルに従って冷凍機22の運転状態が決定されコールドパネル温度が制御される。この実施例においては、コールドトラップ雰囲気圧力が最大でも約90Paであり許容圧力範囲の上限圧を超えていない。よって、時点Dにおいてコールドトラップ雰囲気圧力が排気完了圧力(5Pa)よりも低圧となるまで(図10のS52)、320K温調制御用温度テーブル(図8)からの出力が最終出力テーブル(図9)により最終出力となり、コールドパネル温度は310Kから320Kの許容温度範囲に保持される。
【0104】
そして待機時間(図10のS54)が経過した時点Eにおいてもコールドトラップ雰囲気圧力は排気完了圧力よりも低圧であるから(図10のS56)、時点Eにおいて高温排気工程は終了されクールダウン工程(図3のS24、図11)が実行される。クールダウン工程においては冷凍機22は最大出力で正転運転されコールドパネル温度は排気運転温度(100K)に向けて急速に冷却されていく。時点Fにおいてコールドパネル温度は100Kに到達し、再生処理は終了する。再生処理は従来のおよそ半分であるわずか約85分で完了した。
【0105】
図13は、本実施形態に係る再生処理における温度及び圧力の変動の他の一例を示すグラフである。図13に示される実施例においては、コールドトラップ雰囲気圧力の許容圧力範囲の上限値及び下限値をそれぞれ80Pa及び60Paとして上述の再生処理を行った。図13に示される実施例は許容圧力範囲以外は図12に示される実施例と同様である。図12と同様に、図13の縦軸はコールドパネル温度及びコールドトラップ雰囲気圧力を示し、横軸は再生処理開始からの経過時間を示す。
【0106】
図13に示される実施例においては、高温排気工程において待機温度への一時的冷却が行われている点で図12に示される実施例とは異なる。図において時点Gから時点Kまでが高温排気工程である。時点Gから時点Hまでは第1再生温度(320K)へ向けてコールドパネル温度が昇温されている。このときは320K温調制御用温度テーブル(図8)からの出力が最終出力テーブル(図9)により最終出力となり、冷凍機22の逆転運転によりコールドパネル20は昇温されている。
【0107】
ところが時点Hにおいてコールドトラップ雰囲気圧力が上限圧である80Paに達している。このため、320K温調制御用圧力テーブル(図7)からの出力が最終出力テーブルにより最終出力となり(図9)、冷凍機22の運転状態は正転運転に切り替えられてコールドパネル温度は待機温度(260K)へと急速に冷却される。そして時点Iにおいてコールドパネル温度が待機温度まで冷却されると冷凍機22は待機運転状態とされコールドパネル温度は待機温度に保持される。その後時点Jにおいてコールドトラップ雰囲気圧力が下限圧である60Paに達している。このときコールドパネル温度は待機温度であるから許容温度範囲を下回っている。よって、320K温調制御用圧力テーブル(図7)からの出力は逆転運転となり、かつ320K温調制御用温度テーブル(図8)からの出力も逆転運転となる。よって、冷凍機22の運転状態は逆転運転に切り替えられて再度第1再生温度へと昇温される。時点Kにおいてコールドトラップ雰囲気圧力は排気完了圧力よりも低圧となり高温排気工程は終了される。図13に示される実施例においても再生時間は従来の低温再生よりも相当短い約93分で完了した。また、更なる一例として、許容温度範囲の上限圧及び下限圧を更に下げてそれぞれ60Pa及び40Paとした場合においても、約93分で再生が完了した。
【0108】
以上のように本実施形態によれば、温度及び圧力をモニタしながらコールドトラップ10を再生することにより、従来の低温再生よりも大幅に再生時間を短縮することができる。また、コールドトラップ10に凍結した気体が再生中に融解しないように温度及び圧力を制御しているので、コールドトラップ10からターボ分子ポンプ12等の他の機器類に液体が滴下することがなく機器類への悪影響を防ぐことができる。例えば、融解により液体とともに固体が落下して機器類を破損することを防ぐことができる。
【図面の簡単な説明】
【0109】
【図1】本発明の一実施形態に係る真空排気システムを模式的に示す図である。
【図2】水の状態図である。
【図3】本実施形態に係る再生処理を説明するためのフローチャートである。
【図4】本実施形態に係る第1昇温工程を説明するためのフローチャートである。
【図5】本実施形態に係る温度テーブルの一例を示す図である。
【図6】本実施形態に係る第2昇温工程を説明するためのフローチャートである。
【図7】本実施形態に係る圧力テーブルの一例を示す図である。
【図8】本実施形態に係る温度テーブルの一例を示す図である。
【図9】本実施形態に係る最終出力テーブルの一例を示す図である。
【図10】本実施形態に係る高温排気工程を説明するためのフローチャートである。
【図11】本実施形態に係るクールダウン工程を説明するためのフローチャートである。
【図12】本実施形態に係る再生処理における温度及び圧力の変動の一例を示すグラフである。
【図13】本実施形態に係る再生処理における温度及び圧力の変動の他の一例を示すグラフである。
【符号の説明】
【0110】
10 コールドトラップ、 12 ターボ分子ポンプ、 14 排気流路、 20 コールドパネル、 22 冷凍機、 24 制御部、 36 冷凍機モータ、 38 温度センサ、 40 圧力センサ。

【特許請求の範囲】
【請求項1】
排気対象容積を真空ポンプに接続する排気流路に配置され、該排気対象容積から該排気流路を通じて該真空ポンプへと吸入されて排気される気体の一部を表面に凍結して捕捉するコールドトラップであって、
前記排気流路に露出して配置されたコールドパネルと、
前記コールドパネルに熱的に接続され前記コールドパネルを冷却する冷凍機と、
前記コールドパネルの表面に凍結した気体を気化して前記真空ポンプで外部に排出する再生処理において前記冷凍機を制御することにより、コールドパネル表面に凍結した気体が融解することなく気化することが保証されている非液化温度範囲を超える温度にコールドパネルを昇温し、かつ当該温度においてコールドパネル表面に凍結した気体が融解することなく気化するように前記排気流路の圧力を調節する制御部と、を備えることを特徴とするコールドトラップ。
【請求項2】
前記制御部は、前記排気流路の圧力が前記コールドパネルに凍結した気体の三重点の圧力を超えないように前記冷凍機を制御することを特徴とする請求項1に記載のコールドトラップ。
【請求項3】
前記制御部は、前記排気流路の圧力が前記真空ポンプの許容吸入圧力を超えないように前記冷凍機を制御することを特徴とする請求項1に記載のコールドトラップ。
【請求項4】
前記制御部は、前記排気流路の圧力が上限圧力を超えた場合に、前記コールドパネルを冷却することにより前記排気流路の圧力を前記上限圧力以下に復帰させることを特徴とする請求項1に記載のコールドトラップ。
【請求項5】
前記制御部は、前記排気流路の圧力が許容圧力範囲を超えた場合に前記非液化温度範囲から選択される待機温度に前記コールドパネルを冷却することを特徴とする請求項1に記載のコールドトラップ。
【請求項6】
前記制御部は、前記待機温度において前記排気流路の圧力が許容圧力範囲を下回った場合に、前記非液化温度範囲を超える温度に前記コールドパネルを昇温することを特徴とする請求項5に記載のコールドトラップ。
【請求項7】
前記制御部は、前記非液化温度範囲を超える温度においては前記非液化温度範囲における昇温速度よりも遅い昇温速度で前記コールドパネルを昇温することを特徴とする請求項1に記載のコールドトラップ。
【請求項8】
前記制御部は、前記非液化温度範囲から選択される圧力判定温度に前記コールドパネルを昇温し、昇温後に前記排気流路の圧力が基準圧力を超えているか否かを判定し、
前記排気流路の圧力が前記基準圧力を超えている場合には前記非液化温度範囲から選択される温度に前記コールドパネルを冷却し、前記排気流路の圧力が前記基準圧力を超えていない場合には前記非液化温度範囲を超える温度に前記コールドパネルを昇温することを特徴とする請求項1に記載のコールドトラップ。
【請求項9】
再生処理において前記排気流路に生じ得る全圧力範囲を計測範囲に含み、前記排気流路の圧力を測定するように配置され、測定値を前記制御部に出力するよう前記制御部に接続された圧力センサをさらに備え、
前記制御部は、前記圧力センサの測定値に基づいて前記排気流路の圧力を制御することを特徴とする請求項1に記載のコールドトラップ。
【請求項10】
コールドトラップの表面に捕捉した氷を気化して外部に排出するコールドトラップの再生方法であって、
コールドトラップ表面に捕捉されている氷が融解することなく気化することが保証されている非液化温度範囲を超える温度にコールドトラップを昇温する昇温工程と、
前記非液化温度範囲を超える温度においてコールドトラップ表面に捕捉されている氷が融解することなく気化するようにコールドトラップの雰囲気圧力を制御する排出工程と、を備えることを特徴とする再生方法。
【請求項11】
前記排出工程は、水の三重点の圧力を超えないようにコールドトラップの雰囲気圧力を制御することを特徴とする請求項10に記載の再生方法。
【請求項12】
前記排出工程は、気化した水蒸気をターボ分子ポンプで外部に排出することを更に含み、該ターボ分子ポンプの許容吸入圧力を超えないようにコールドトラップの雰囲気圧力を制御することを特徴とする請求項10に記載の再生方法。
【請求項13】
前記排出工程は、コールドトラップの雰囲気圧力が上限圧力を超えた場合に、コールドトラップを冷却することにより雰囲気圧力を前記上限圧力以下に復帰させることを特徴とする請求項10に記載の再生方法。
【請求項14】
前記排出工程は、コールドトラップの雰囲気圧力が許容圧力範囲を超えた場合に前記非液化温度範囲から選択される待機温度にコールドトラップを冷却することを特徴とする請求項10に記載の再生方法。
【請求項15】
前記排出工程は、前記待機温度においてコールドトラップの雰囲気圧力が前記許容圧力範囲を下回った場合に、前記非液化温度範囲を超える温度にコールドトラップを昇温することを特徴とする請求項14に記載の再生方法。
【請求項16】
前記昇温工程は、前記非液化温度範囲を超える温度においては前記非液化温度範囲における昇温速度よりも遅い昇温速度でコールドトラップを昇温することを特徴とする請求項10に記載の再生方法。
【請求項17】
前記昇温工程は、前記非液化温度範囲から選択される圧力判定温度にコールドトラップを昇温し、昇温後に前記雰囲気圧力が基準圧力を超えているか否かを判定し、
前記雰囲気圧力が前記基準圧力を超えている場合には前記非液化温度範囲から選択される温度で氷を昇華させて外部に排出し、前記雰囲気圧力が前記基準圧力を超えていない場合には前記非液化温度範囲を超える温度にコールドトラップを昇温することを特徴とする請求項10に記載の再生方法。
【請求項18】
前記昇温工程の開始から前記排出工程の完了までコールドトラップの雰囲気圧力を共通の圧力センサで測定することを特徴とする請求項10に記載の再生方法。
【請求項19】
コールドトラップの表面に凍結した気体を気化して外部に排出する再生処理を実行する再生制御装置であって、
コールドトラップ表面に凍結した気体が融解することなく気化することが保証されている非液化温度範囲を超える温度にコールドトラップを昇温し、当該温度においてコールドトラップ表面に凍結した気体が融解することなく気化するようにコールドトラップの雰囲気圧力を制御することを特徴とする再生制御装置。
【請求項20】
コールドトラップの表面に凍結した気体を気化して外部に排出するコールドトラップの再生方法であって、
再生中にコールドトラップの雰囲気圧力をモニタし、
モニタされた雰囲気圧力が許容圧力範囲を超える場合にコールドトラップを一時的に冷却することを特徴とする再生方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate


【公開番号】特開2009−262083(P2009−262083A)
【公開日】平成21年11月12日(2009.11.12)
【国際特許分類】
【出願番号】特願2008−116425(P2008−116425)
【出願日】平成20年4月25日(2008.4.25)
【出願人】(000002107)住友重機械工業株式会社 (2,241)
【Fターム(参考)】