説明

セラミックハロゲン化金属ランプ

【課題】効率が高く、演色性が良好で、光束維持率が高い電気ランプを提供する。
【解決手段】ハロゲン化金属ランプ(10)は、セラミック材料で形成することができる放電管(12)を含む。放電管は、内部空間(16)を画定する。イオン性充填材が、内部空間に配置される。イオン性充填材は、不活性ガスおよびハロゲン化物成分を含む。ハロゲン化物成分は、ハロゲン化ナトリウム、ハロゲン化セリウム、ハロゲン化タリウムおよびハロゲン化インジウムの少なくとも一方、ならびに場合によってハロゲン化セシウムを含む。ハロゲン化セリウムは、ハロゲン化物成分の少なくとも約9モル%である。電流が充填材に印加されると、それを通電させるように、少なくとも1つの電極(18、20)が放電管内に配置される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、効率が高く、演色性が良好で、光束維持率が高い電気ランプに関する。
【背景技術】
【0002】
放電ランプは、2つの電極間に電弧を通しながら、希ガスとハロゲン化金属と水銀の混合物の如き蒸気充填材をイオン化することによって光を生成する。電極および充填材は、通電した充填材の圧力を維持し、放射光がそこを通ることを可能にする半透明または透明の放電チャンバ内に密封される。「ドース(Dose)」としても知られる充填材は、電弧による励起に応答して所望のスペクトルエネルギー分布を放射する。例えば、ハロゲン化物は、広範な光特性、例えば色温度、演色性および光源効率を提供する。
【0003】
従来、放電ランプにおける放電チャンバは、軟化状態まで加熱した後に所望の幾何学構造に成形される溶融石英の如きガラス質材料から形成されていた。しかし、溶融石英には、高動作温度におけるその反応特性によって生じるいくつかの欠点がある。例えば、石英ランプでは、約950〜1000℃を上回る温度において、充填ハロゲン化物は、ガラスと反応して、封入構成成分の欠乏をもたらす珪酸塩およびハロゲン化珪素を生成する。高温はまた、ナトリウムに石英壁を透過させ、充填物の欠乏を引き起こす。いずれの欠乏も、時間が経つにつれて色ずれを引き起こし、ランプの耐用寿命を短くする。演色性指数(CRIまたはRa)で測定される演色性は、既存の石英ハロゲン化金属(QMH)ランプでは中程度で、典型的には65〜70CRIの範囲にあり、典型的には67〜70%の中程度の光束維持率、および100〜150ルーメン/ワット(LPW)の中から高効率性を有する傾向にある。米国特許第3,786,297号および米国特許第3,798,487号には、CRIを犠牲にして130LPWの比較的高い効率を達成するために高濃度のヨウ化セリウムを充填材に使用する石英ランプが開示されている。これらのランプは、石英発光管で達成可能な最大壁温度により性能が制限されている。
【0004】
従来のハロゲン化金属ランプは、光透過性石英管に、水銀と、不活性ガス、例えばアルゴンと、少なくとも1種類の希土類ハロゲン化物およびハロゲン化アルカリ金属を含むハロゲン化物混合物とを充填し、管を密封することによって。
【0005】
セラミック放電チャンバは、色温度、演色性および光源効率を向上させながら、充填材との反応を有意に低下させるための高温動作のために開発された。概して、CMHランプは、交流電圧電源上で動作され、周波数は、電磁安定器上で動作される場合は50または60Hzであり、電子安定器上で動作される場合はより高くなる。供給電圧の極性変化毎に、放電が消え、続いてランプにおいて再点火する。
【0006】
米国特許第6,583,563号には、150ワット超で動作することが可能なセラミックハロゲン化金属ランプが開示されている。本体部は、内径が約9.5mmで、外径が約11.5mmである。米国特許第6,555,962号には、同様の電力定格の高圧ナトリウム(HPS)ランプに対する既存の安定器に使用される200W以上の電力定格を有するハロゲン化金属ランプが開示されている。内径Dおよび内長Lは、3と5の間のアスペクト比L/Dを与えるように選択される。2004年3月4日に出願された米国出願第10/792,996号には、ランプが、少なくとも85のCRIおよび少なくとも90ルーメン/ワットの効率で、250〜400Wの範囲で動作することが可能であるように長さおよび直径が選択されるセラミック発光管を有するCMHランプが開示されている。
【0007】
高ワット数の商用ハロゲン化金属ランプでは、光束維持率(100時間におけるルーメンに対するランプの平均寿命において保持されるルーメンの百分率として測定される)は、極めて低く、典型的には約65%以下にすぎず、しばしば約50%にすぎない。したがって、従来の400Wランプは、高い初期ルーメン出力を有することができるが、約8000〜10000時間までの平均寿命の新しい250Wランプと同等のルーメン出力を有するにすぎない。
【特許文献1】米国特許第3,786,297号公報
【特許文献2】米国特許第3,798,487号公報
【特許文献3】米国特許第6,583,563号公報
【特許文献4】米国特許第6,555,962号公報
【特許文献5】米国出願第10/792,996号公報
【特許文献6】米国出願公開第2003/0222596号公報
【特許文献7】米国出願公開第2003/0222595号公報
【特許文献8】米国特許第6,731,068号公報
【発明の開示】
【発明が解決しようとする課題】
【0008】
本発明は、高い効率および良好なランプ光束維持率を有する、高または低出力で動作することが可能な新規の改良型ハロゲン化金属ランプを提供する。
【課題を解決するための手段】
【0009】
例示的な実施形態において、セラミック金属ハライドランプが提供される。ランプは、内部空間を画定する、セラミック材料で形成された放電管を含む。イオン性充填材は、内部空間内に配置される。イオン性充填材は、不活性ガスおよびハロゲン化物成分を含む。ハロゲン化物成分は、ハロゲン化ナトリウム、ハロゲン化セリウム、ハロゲン化タリウム、ならびに場合によってハロゲン化インジウムおよびハロゲン化セシウムの少なくとも一方を含む。ハロゲン化セリウムは、ハロゲン化物成分の少なくとも9モル%を構成してもよい。ハロゲン化ナトリウムは、充填材におけるハロゲン化物の少なくとも47モル%を構成してもよい。電流が充填材に印加されると、それを通電させるように、少なくとも1つの電極が放電管内に配置される。
【0010】
他の例示的な実施形態において、照明組立品が提供される。該組立品は、安定器、およびそれに電気的に接続されたランプを含む。ランプは、イオン性材料の充填材と、電流が充填材に印加されると、それを通電させるように放電管内に配置された少なくとも1つの電極とを含む放電管を含む。放電管は、内部空間を画定する本体部を含む。本体部は、放電管の中心軸に平行な内長、および内長に垂直な内径を有する。内長の内径に対する比は、1.5から3.5の範囲である。充填材は、不活性ガスおよびハロゲン化物成分を含む。ハロゲン化物成分は、少なくとも1つのハロゲン化アルカリ金属および少なくとも1つのハロゲン化土類金属、ならびに場合によって少なくとも1つのIIIa族ハロゲン化物を含み、希土類ハロゲン化物は、ハロゲン化物成分の少なくとも9%のモル百分率でハロゲン化セリウムを含む。
【0011】
他の例示的な実施形態において、ランプを形成する方法が提供される。該方法は、本体部と、本体部から延びる第1および第2の脚部とを含む実質的に円筒形の放電管を設ける工程を含む。イオン性充填材は、本体部に配置され、不活性ガスおよびハロゲン化物成分を含む。ハロゲン化物成分は、ハロゲン化ナトリウム、ハロゲン化セリウム、ハロゲン化タリウム、ならびに場合によってハロゲン化インジウムおよびハロゲン化セシウムの少なくとも一方を含む。ハロゲン化セリウムは、ハロゲン化物成分の少なくとも9モル%であってもよい。ハロゲン化ナトリウムは、ハロゲン化セリウムのモル百分率の少なくとも2倍のモル百分率で存在してもよい。電極は、放電管内に配置され、電流が充填材に印加されると、それを通電させる。
【0012】
本発明の少なくとも1つの実施形態の1つの利点は、性能および光束維持率が改善されたセラミック発光管を提供することである。
【0013】
本発明の少なくとも1つの実施形態の他の利点は、電子安定器上で動作することが可能なランプを提供することである。
【0014】
本発明の少なくとも1つの実施形態の他の利点は、発光管の寸法の如き構造要素の間の関係を最適にすることである。
【0015】
本発明のさらなる利点は、好ましい実施形態の以下の詳細な説明を読み、理解すれば、当業者にとって明らかになるであろう。
【0016】
本明細書に用いられているように、「発光管壁負荷」(WL)は、発光管電力(ワット)を発光管表面積(平方ミリメートル)で割ったものである。WLを計算する目的で、表面積は、末端皿を含むが、脚を除く全外面積であり、発光管電力は、電極電力を含む全発光管電力である。
【0017】
「セラミック壁厚」(ttb)は、発光管本態の中央部における壁材料の厚さ(mm)である。
【0018】
「アスペクト比」(L/D)は、発光管内長を発光管内径で割ったものと定義される。
【0019】
「ハロゲン化物重量」(HW)は、発光管におけるハロゲン化物の重量(mg)と定義される。
【発明を実施するための最良の形態】
【0020】
様々な用途に対応する放電ランプは、高い効率および良好な光束維持率を有する。本明細書では、(約150Wを上回る)高ワット数におけるランプの動作に特に言及しているが、該ランプは、150W未満の動作を含む様々な用途における使用に対応する。一実施形態において、該ランプは、水平燃焼した場合の130ボルトと190ボルトの間に変換される、垂直燃焼した場合の約120ボルトと180ボルトの間の開始電圧、ならびに200ワットを上回る電力、例えば約250Wと400Wの間の電力を有する。また、該ランプは、約2500Kと約4500K、例えば約3500Kと4500Kの間の補正色温度(CCT)を与えることができる。該ランプは、Ra>70、例えば75<Ra<85の演色性指数を有することができる。演色性指数は、ランプの光によって色を区別する人間の目の能力の測度である。本発明人らは、工業および高区画倉庫型店舗の如き多くの用途について、高いCRIを有することは重要でないこと、緑色光の割合がより高い(すなわち、標準的な黒色体放射線に対するy軸方向の曲線より上である)ランプは、Raが幾分高いが、緑色光の割合がより低い同等のランプより有利であることを見いだした。可視「緑色」スペクトルの光に対する目の応答がより高いため、「緑色」光からより多くのルーメンが知覚される。
【0021】
一実施形態において、100時間の動作におけるランプのルーメン/ワット(LPW)は、少なくとも100であり、1つの具体的な実施形態においては少なくとも110である。8000時間におけるルーメンとして測定される光束維持率は、少なくとも約80%でありうる。
【0022】
100時間におけるルーメン
本ランプ設計では、これらの範囲のすべてを同時に満たすことができる。
【0023】
80%またはそれ上の光束維持率は、典型的なハロゲン化金属ランプ、特に高ワット数のランプの場合よりはるかに高い。次の3つの要因が、予想外に高い光束維持率に寄与していると考えられる。
【0024】
ランプ設計−特にL/D比および三部構成(以下に説明する)。
【0025】
発光管充填材−発光管腐食を低減するように処方されている。
【0026】
安定器−ランプは、電子安定器上で動作するように設計されており、その始動特性は、長寿命および光束維持率向上に有利である。
【0027】
光束維持率における有益性を達成するのに、これらのすべての要因がランプに存在する必要はないことを理解されたい。例えば、発光管充填特性のみを用いて、光束維持率における有益性を確認することが可能である。
【0028】
例えば、本設計による250Wセラミックハロゲン化金属(CMH)ランプは、従来の400W石英ハロゲン化金属(QMH)ランプに代用され、有意に低減された電力消費量で、ランプの平均寿命にわたって同等の平均ルーメン出力を与えることができる。図1は、従来の400WのQMHランプと比較して、本実施形態の250WのCMHランプにおける80%の光束維持率の有益性を実証する図である。第1に、400WのQMHランプは、ワット数が高いために高いルーメン出力を有するが、約8000時間までには、曲線が交差し、より長い時間が経過すると、CMHランプが、QMHランプより高いルーメン出力を有するようになる。したがって、ランプの平均寿命にわたって平均をとると、CMH250Wランプは、従来の400WのQMHランプより高くなくても同等のルーメン出力を有し、電力消費量の有意な節約になる。
【0029】
図2を参照すると、照明組立品は、ハロゲン化金属放電ランプ10を含む。該ランプは、放電空間16を囲む、セラミックまたは他の好適な材料で形成された壁14を有する放電管または発光管12を含む。放電空間は、イオン性充填材を含む。電極18、20は、発光管の両端22、24を貫通し、発光管に電位差を供給するとともに発光管12を支持する導電体26、28から電流を受ける。発光管12は、ランプが主電圧の如き電源34に接続された一端にランプキャップ32が設けられている外電球30に囲まれている。照明組立品は、ランプのスイッチがオンされたときにスタータとして作用する安定器36をも含む。安定器は、ランプおよび電源を含む回路に配置される。発光管と外電球の間の空間を排気することができる。場合によって、発光管が破壊した場合に、見込まれる発光管断片を収容するために、石英または他の好適な材料から形成された遮壁(図示されず)が、発光管を囲む、または部分的に囲む。
【0030】
安定器36は、ランプの動作ワット数で動作するように設計された任意の好適なタイプでありうる。1つの特に好適な安定器は、電子安定器である。電子安定器は、一般には、半ブリッジインバータと、変流器と、放電ランプを含む負荷回路とを含む。変流器は、検出巻線およびフィードバック巻線を含む。フィードバック巻線は、半ブリッジインバータの切換要素の駆動信号を生成する。このタイプの例示的な電子安定器は、General ElectricによりULTRAMAX HID(商標)という商品名で販売されている。他の好適な安定器は、デルタパワー安定器(Delta Power Supply,Inc.)である。他の好適な電子安定器は、例えば、Chenらの米国出願公開第2003/0222596号および米国出願公開第2003/0222595号に記載されている。米国出願公開第2003/0222595号に記載されている安定器は、例えば、第1のバスおよび第2のバスに接続され、高周波数電圧信号を出力するように構成された切換部を含む単段高輝度放電(HID)安定器である。ブリッジ変換器部は、2つの縦列接続ブリッジダイオードをそれぞれ含む2本の脚を有し、各脚は、各バスに接続される。変換器は、入力信号を電源から受け取り、入力信号を、切り換え部により使用可能な形態に変換するように構成されている。ブリッジ変換器部は、切り換え部と一体化されて、使用可能な信号を切換部に提供し、切換部の動作に寄与する。活性切換システムは、入力電力と出力電力の間の所望のバランスを提供する。
【0031】
他のタイプの安定器は、パルスアーク(PA)安定器および高圧ナトリウム(HPS)安定器の如き磁気安定器である。これらの安定器を200W以上、ならびにより低いワット数で動作するように構成することが可能である。パルスアークまたは「PA」安定器(パルス開始安定器としても知られる)は、ランプ始動を開始させるイグナイタパルス形成網(パルス化回路)を含み、スタータ電極およびそれに伴う部品(二金属スイッチおよび抵抗器)の必要性をなくしている。PA安定器は、公称Vop=135±15Vおよび約0.91の公称発光管出力係数で動作するランプによる動作に対応する。HPS安定器は、高圧ナトリウムランプに広く使用され、最初に100±20Vの公称動作電圧VOPで動作することが可能であるランプに使用することができる。これらの安定器への使用に対応するランプは、電流×電圧で割った約0.87の動作出力と定義される公称発光管出力係数をも有する。しかし、上記のように、ランプ寿命および光束維持率が重要な要因である場合は、電子安定器は、磁気安定器より有利に機能することができる。
【0032】
動作時は、電極18、20は、充填材をイオン化して、放電空間にプラズマを生成するアークを生成する。生成される光の放射特性は、主に、充填材の構成成分、電極の電圧、チャンバの温度分布、チャンバ内の圧力、およびチャンバの幾何学構造に依存する。
【0033】
セラミックハロゲン化金属ランプでは、充填材は、銀と、アルゴンの如き不活性ガスと、クリプトンまたはキセノンと、スカンジウム、イットリウム、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユーロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウムおよびルテチウムから選択される希土類金属(RE)の1つまたは複数のハロゲン化物を含むハロゲン化物成分との混合物を含む。加えて、ハロゲン化物成分は、ナトリウムおよびセシウムの如きアルカリ金属の1つまたは複数のハロゲン化物、ならびにインジウムおよびタリウムの如き元素の周期表の第3a族から選択される1つまたは複数のハロゲン化金属を含むことができる。場合によって、ハロゲン化物成分は、カルシウム、ストロンチウムおよびバリウムの如き1つまたは複数のハロゲン化アルカリ土類金属を含む。
【0034】
水銀量(mercury Dose)は、発光管体積1cc当たり約3から20mgを含むことができる。典型的には、ハロゲン化物要素は、塩化物、臭化物およびヨウ化物から選択される。ヨウ化物は、発光管の腐食が同等の臭化物または塩化物より低いため、より高い光束維持率を与える傾向にある。ハロゲン化物化合物は、化学量論的関係を通常表すことになる。例示的なハロゲン化金属としては、NaI、TlI、DyI、HoI、TmI、InI、CeI、CaIおよびCsI、およびそれらの組合せが挙げられる。
【0035】
水銀重量は、選択された安定器から電力を引き出すための所望の発光管動作電圧(Vop)を与えるように調整される。
【0036】
ハロゲン化金属発光管は、始動を容易にするために不活性ガスが裏込め充填される。不活性ガスとしては、キセノンは、原子がより大きく、ランプがより長く持続するようにタングステン電極の蒸発を抑制するため、発火ガスとしてアルゴンより有利である。一実施形態において、CMHランプに対応して、Kr85を少量添加することによりランプにXeを裏込め充填する。放射活性Kr85は、始動を助けるイオン化をもたらす。低温充填圧力は、約60〜300トルでありうる。一実施形態において、少なくとも約120トルの低温充填圧力が用いられる。他の実施形態において、低温充填圧力は、約240トルまでである。圧力が高すぎると、始動が損なわれうる。圧力が低すぎると、耐用期間にわたるルーメンの低下が大きくなりうる。
【0037】
一実施形態において、ハロゲン化物成分は、Na、Ce、Tlならびに場合によってInおよび/またはCsのハロゲン化物を含む。ハロゲン化セリウム、例えば臭化セリウムは、充填材におけるハロゲン化物の少なくとも9%の濃度で存在してもよい。ハロゲン化ナトリウムは、ハロゲン化セリウムのモル百分率の少なくとも2倍のモル百分率、すなわち充填材におけるハロゲン化物の少なくとも約47モル%で存在してもよい。
【0038】
1つの例示的な実施形態において、充填ガスは、ArまたはXe、および微量のKr85、Hgおよびハロゲン化物成分を含む。例えば、ハロゲン化物成分は、表1に列記されている成分を含むことが可能である。
【0039】
例えば、35〜65%のNaI、25〜45%のCeI、5〜10%のT1I、1〜5%のInIおよび0〜10%のCsIを単独でまたは少量の他のハロゲン化物とともに含むハロゲン化物充填材は、75を上回る演色指数(Ra)、100LPWを上回る効率、および電子安定器上での4000K以下の色補正温度(CCT)を達成するのに好適である。当該ランプは、少なくとも16000時間、一実施形態においては約20000時間の平均寿命を有し、100から1000時間の範囲における早期故障はほとんどない。
【0040】
一実施形態において、Na、Ce、Tl、InおよびCs以外のハロゲン化物も合計10重量%以下で存在する。これらの他のハロゲン化物は、スカンジウム、イットリウム、ランタン、プラセオジム、ネオジム、プロメチウム、サマリウム、ユーロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウムおよびルテチウムから選択される希土類金属(RE)の1つまたは複数のハロゲン化物、および/またはハロゲン化カルシウム、ストロンチウムおよびバリウムの如き1つまたは複数のハロゲン化アルカリ土類金属を含むことができる。
【0041】
CeIおよびTlIは、不快な外観をもたらすことなく、光のわずかに緑色の外観に寄与する。これらは、CsIの存在によって克服されうるプラズマ中でのある程度の不安定性を発揮してもよい。
【0042】
【表1】

また図3を参照すると、例示の発光管12は、三部構造でありうる。具体的には、発光管12は、端部42と44の間に延在する本体部40を含む。本体部は、中心軸xを中心とする好ましくは円筒形または実質的に円筒形である。「実質的に円筒形」とは、本体部の内径Dが、本体部の内長Lの少なくとも40%を占める本体部の中央領域C内で10%より大きく変動しないことを意味する。したがって、本発明の利点のすべてを失うことなくわずかに楕円形の本体を実現することが可能である。一実施形態において、偏差は、5%未満であり、他の実施形態において、偏差は、名目的に円筒形の本体に対するランプ形成方法の公差内である。直径が変動する場合は、Dは、その最も広い点で測定される。端部は、例示の実施形態において、それぞれ一体に形成され、全体的に円板状の壁部46、48、およびそれぞれの電極が嵌合される、軸方向に延在する中空脚部50、52を含む。脚部は、示されるように円筒形であってもよいし、図3の陰影線で示されるように本体部40から離れるに従って外径が小さくなるように先細であってもよい。
【0043】
壁部46、48は、放電空間の壁表面54、56、および外端壁表面58、60を画定する。発光管の軸xに平行な線に沿って測定される内表面54と56の間の最大距離はLとして定められ、外壁表面58と60の間の距離は、LEXTとして定められる。円筒形の壁40は、内径D(Cによって定められる中央領域において測定される最大直径)および外径DEXTを有する。
【0044】
発光管電力範囲250〜400Wでは、比L/Dは、約1.5から3.5であり、一実施形態において約2.0から約3.0でありうる。1つの具体的な実施形態において、L/Dは、2.2から2.8である。L/D比は、特に色温度が特に重要でないと思われる場合は、これらの範囲外でありうる。
【0045】
端部42、44は、焼結継手によって円筒壁40に気密に締結される。末端壁部は、それぞれの脚部50、52を介して軸穴66、68の内端に画定された開口部62、64をそれぞれ有する。穴66、68は、シール80、82を介してリード線70、72を受けいれる。リード線、そして導体に電気的に接続される電極18、20は、典型的には、タングステンを含み、長さが約8〜10mmである。リード線70、72は、典型的には、アルミナ脚部に対する熱誘導応力を低減するためにアルミナの熱膨張係数に近い熱膨張係数を有するニオビウムおよびモリブデンを含み、例えばMo−Alで形成されたハロゲン化物抵抗スリーブを有することができる。
【0046】
ハロゲン化物重量(HW)(mg)は、約20から約70mgの範囲でありうる。HWが、小さすぎると、ハロゲン化物は、意図的に発光管本体より低温になっているセラミック脚に閉じ込められる傾向があり、所望の発光管性能を与えるのに不十分なハロゲン化物蒸気圧になる傾向がある。HWが大きすぎると、ハロゲン化物は、発光管上で凝縮し、光を遮断する傾向があり、セラミック材料の寿命を制限する腐食をもたらす恐れがある。当該条件下では、多結晶アルミナ(PCA)は、特に、凝縮液に溶解する傾向があり、後にランプのより低温の部分に堆積する。HWが大きいと、ハロゲン化物のコストにより、製造コストが上昇する傾向もある。本ランプにおいて、端壁はより高温であるため、壁上のハロゲン化物の量が減少し、腐食が最小限になり、または全くなくなる。
【0047】
円筒部40において測定される、(Dext−D)/2と同等のセラミック壁厚(ttb)は、好ましくは、250〜400Wの範囲で動作する発光管に対して少なくとも1mmである。一実施形態において、厚さは、この範囲で動作する発光管に対して1.8mm未満である。ttbが低すぎると、熱伝導を介する壁における熱拡散が不十分になる傾向がある。これは、アークの対流プルーム上方の高温局所スポットをもたらし、それがひび割れ、ならびにWLに対する制限を引き起こしうる。壁がより厚いと、熱が拡散し、ひび割れが低減され、より高いWLが可能になる。概して、最適なttbは、発光管のサイズとともに増加する。より高いワット数は、より厚い壁を有するより大きい発光管によるものである。一実施形態において、発光管電力が250〜400Wの範囲にある場合は、1.1mm<ttb<1.5mmである。当該発光管については、壁負荷WLは、式0.10<WL<0.20W/mmを満たすことができる。WLが高すぎると、発光管材料が熱くなりすぎて、石英の場合は軟化を、またはセラミックの場合は蒸発をもたらしうる。WLが低すぎると、ハロゲン化物温度が低すぎて、ハロゲン化物蒸気圧の低下および性能の低下をもたらす。1つの具体的な実施形態において、1.3<ttb<1.5である。端壁46、48の厚さtteは、好ましくは、本体40の厚さと同じ、すなわち一実施形態では1.1mm<tte<1.5mmである。より低いワット数、例えば約200W未満のワット数については、壁厚ttbを幾分小さくすることが可能である。
【0048】
アークギャップ(AG)は、電極18と20の先端同士の距離である。アークギャップは、ttsが、電極先端から、発光管本体の内端を画定するそれぞれの表面54、56までの距離である関係式AG+2tts=Lによって内部発光管長Lに関連づけられる。ttsを最適化すると、末端構造が、所望のハロゲン化物圧力を与えるのに十分高温であるが、セラミック材料の腐食を引き起こすほど高温にならない。一実施形態において、ttsは、約2.9〜3.3mmである。他の実施形態において、ttsは、3.1mm以下である。
【0049】
発光管脚50、52は、発光管性能にとって望ましいより高いセラミック本体末端温度と、脚の末端にシール80、82を維持するのに望ましいより低い温度との間の熱転移を与える。脚の最小内径は、電極−導体の直径に依存し、強いては始動および連続動作時に支持されるアーク電流に依存する。例示的な実施形態において、電力が250〜400Wの範囲にある場合は、約1.52mmの外部導体の直径を採用することが可能である。したがって、その内径および外径が、それぞれ1.6および4.0mmであるセラミック脚50、52は、当該導体70、72に好適である。これらの選択された直径を用いると、15mmを上回る外部セラミック脚長Yは、一般には、シールひび割れを回避するのに十分である。一実施形態において、脚50、52は、それぞれ約20mmの脚長を有する。
【0050】
発光管本体40をその脚50、52に接合する端壁部46、48の断面形状は、図3に示されるように、端壁部46、48と脚との交差点にシャープな隅角が形成される形状でありうる。しかし、図4に示されるように、代替的に、交差点の領域における隅肉90が設けられる。外端と脚と端壁部の間の円滑な隅肉の移行は、交差点における応力集中を低減するのに役立つ。
【0051】
端壁部には、熱を拡散するのに十分に大きいが、光の遮断を防止または最小限にするのに十分小さい厚さが与えられる。個々の内部隅角100は、ハロゲン化物濃度に対して好ましい位置を提供する。端壁部46、48の構造は、より有利な最適化、有意にはより低いL/Dを伴う最適化を可能にする。以下の特徴、すなわち1)応力集中を低減するような外端と脚の間の円滑な隅肉の移行、2)熱を拡散するのに十分に大きいが、光の遮断を防止または最小限にするのに十分小さい末端厚、および3)ハロゲン化物濃度に対して好ましい位置を提供する個々の隅角は、単独でまたは組み合わせて、性能を最適化するのに役立つことがわかった。
【0052】
シール80、82は、典型的には、ジスプロシア−アルミナ−シリカガラスを含み、リード線70、72の一方の付近に環状のガラスフリットを配置し、発光管12を垂直に配置し、フリットを溶融することによって形成されうる。次いで、溶融したガラスは、脚50、52に流入して、導体と脚の間にシール80、82を形成する。次いで、発光管を逆さまにして、充填材を充填した後に他の脚を密封する。
【0053】
図5に示される例示的な本体およびプラグ部材120、122、124は、プラグ部材120、124が、脚部材126および端壁部材128、および単一部品として形成された、軸方向を向くフランジ130を含むため、放電チャンバの製造を極めて容易にすることが可能である。放射状に延在するフランジ132は、本体122の両端に圧接するように構成される。図5に示される部品は、放電チャンバを、各プラグ部材120、124と本体部材122の間の単一接着で構成することを可能にする。フランジ130は、組立中に本体内に配置され、組み立てられた発光管に本体の厚い壁部134(図3)を形成する。フランジ130の内縁は、充填材が壁134と本体部の間の接合部付近に沈降しないように、本体部の内部と接触して、最も高い外縁に合わせて配置される上方テーパ136を有する。
【0054】
発光管を1または5の部品の如きより少ないまたは多い部品から構成できることが理解されるであろう。5部品構造において、プラグ部材は、組立時に互いに接着される個別的な脚および端壁部材に代えられる。
【0055】
本体部材122およびプラグ部材120、124は、セラミック粉末と結着剤の混合物を金型プレスして固体円筒物とすることによって構成されうる。典型的には、該混合物は、95〜98重量%のセラミック粉末、および2〜5重量%の有機結着剤を含む。セラミック粉末は、純度が少なくとも99.98%で、表面積が約2〜10m/gのアルミナ(Al)を含むことができる。アルミナ粉末にマグネシアを、アルミナに対して0.03〜2%に等しい量、一実施形態では0.05%の量でドープして、粒成長を抑制することができる。使用できる他のセラミック材料としては、酸化イットリウム、酸化ルテチウムおよび酸化ハフニウムの如き非反応耐火性酸化物およびオキシナイトライド、ならびにそれらの固体溶液、およびイットリウム−アルミニウム−ガーネットおよびアルミニウムオキシナイトライドの如きアルミナとの化合物が挙げられる。個々にまたは組み合わせて使用できる結着剤としては、ポリオール、ポリビニルアルコール、酢酸ビニル、アクリレート、セルロース系材料およびポリエステルが挙げられる。
【0056】
固体円筒物を金型プレスするのに使用できる例示的な組成物は、Baikowski International、Charlotte、N.C.から製品番号CR7として入手可能な、表面積が7m/gの97重量%のアルミナを含む。アルミナ粉末にマグネシアをアルミナの重量に対して0.1%の量でドープした。例示的な結着剤は、2.5重量%のポリビニルアルコール、およびInterstate Chemicalから入手可能な1/2重量%のCarbowax600を含む。
【0057】
金型プレスに続いて、結着剤を典型的には熱分解によって緑色部から除去して、ビスク焼部品を形成する。例えば、緑色部を室温から約900〜1100℃の最大温度まで4〜8時間にわたって空気中で加熱し、次いで1〜5時間にわたって最大温度を保持し、次いで該部を冷却することによって、熱分解を実施することができる。熱分解後、ビスク焼部品の気孔率は、典型的には約40〜50%になる。
【0058】
次いで、ビスク焼部品を機械加工する。例えば、図4のプラグ部120、124の穴66、68を与える固体円筒物の軸に沿って小穴を掘ることができる。より大径の穴をプラグ部の軸の部分に沿って掘って、フランジ130を画定することができる。最後に、本来固体の円筒物の外側部分を例えば旋盤で軸の一部に沿って機械切削して、プラグ120、124の外表面を形成することができる。
【0059】
機械加工された部品120、122、124は、焼結工程で部品を互いに接着することができるように、典型的には焼結前に組み立てられる。例示的な接着方法によれば、本体部材122およびプラグ部材120、124を形成するのに使用されるビスク焼部品の密度は、焼結工程中に異なる収縮度を達成するように選択される。表面積が異なるセラミック粉末を使用することによって、ビスク焼部品の異なる密度を達成することができる。例えば、本体部材122を形成するのに使用されるセラミック粉末の表面積は、6〜10m/gであってもよく、プラグ部材120、124を形成するのに使用されるセラミック粉末の表面積は、2〜3m/gであってもよい。本体部材122における粉末がより細かいと、ビスク焼本体部材122が、より粗い粉末から構成されるビスク焼プラグより小さい密度を有することになる。本体部材122のビスク焼密度は、アルミナの理論密度(3.986g/cm)の典型的には42〜44%であり、プラグ部材120、124のビスク焼密度は、アルミナの理論密度の典型的には50〜60%である。ビスク焼本体部材122は、ビスク焼プラグ部材120、124より低密度であるため、本体部材122は、焼結中にプラグ部材120、124より高度に(例えば3〜10%)収縮して、フランジ130のまわりにシールを形成する。3つの部品120、122、124を焼結前に組み立てることによって、焼結工程で2つの部品が互いに接着されて、放電チャンバが形成される。
【0060】
露点が約10から15℃の水素中でビスク焼部品を加熱することによって、焼結工程を実施することができる、典型的には、温度を室温から1850〜1880℃まで段階的に上昇させ、次いで約3〜5時間にわたって1850〜1880℃に保持する。最後に、クールダウン期間に温度を室温まで下げる。マグネシアをセラミック粉末に含めると、典型的には、粒径が75ミクロンより大きくなることが抑制される。得られたセラミック材料は、密に焼結された多結晶アルミナを含む。
【0061】
他の接着方法によれば、加熱により2つの部品を互いに接着する、例えば耐火ガラスを含むガラスフリットを本体部材122とプラグ部材120、124の間に配置することが可能である。この方法によれば、組立前に部品を独立に焼結することが可能である。
【0062】
本体部材122およびプラグ部材120、124は、典型的には、焼結後にそれぞれ0.1%以下、好ましくは0.01%未満の気孔率を有する。気孔率は、気孔が占める物品の全体積の割合として従来定義されている。0.1%以下の気孔率では、アルミナは、典型的には、好適な光透過率または透光性を有する。透過率または透光性は、放電チャンバ内部の小形白熱ランプの透過光束を裸白熱ランプからの透過光束で割った「全透過率」として定義されうる。0.1%の気孔率では、全透過率は、典型的には95%以上である。
【0063】
他の例示的な構成方法によれば、放電チャンバの構成部品は、約45体積%のセラミック材料および約55〜40体積%の結着剤を含む混合物を射出成型することによって形成される。セラミック材料は、表面積が約1.5から約10m/g、典型的には3〜5m/gのアルミナ粉末を含むことが可能である。一実施形態によれば、アルミナ粉末は、少なくとも99.98%の純度を有する。アルミナ粉末をマグネシアで、例えば0.03%から0.2%に等しい量、例えばアルミナに対して0.05重量%の量でドープして、粒成長を抑制することができる。結着剤は、ワックス混合物またはポリマー混合物を含むことができる。
【0064】
射出成型のプロセスにおいて、セラミック材料と結着剤の混合物を加熱して、高粘度混合物を形成する。次いで、混合物を好適な形状の金型に注入し、続いて冷却して、成型部品を形成する。
【0065】
射出成型に続いて、結着剤を典型的には熱処理によって成型部品から除去して、脱着部品を形成する。成型部品を空気中、または制御環境中、例えば真空、窒素、希ガス中で最大温度まで加熱し、次いで最大温度を保持することによって熱処理を実施することができる。例えば、温度を室温から160℃の温度まで1時間当たり約2〜3℃ずつ徐々に上昇させることができる。次に、温度を900〜1100℃の最大温度まで1時間当たり約100℃ずつ上昇させる。最後に、温度を約1〜5時間にわたって900〜1100℃に保持する。続いて、部品を冷却する。熱処理工程の後の気孔率は、約40〜50%である。
【0066】
ビスク焼部品は、典型的には、上記と同様にして、焼結工程で部品を互いに接着できるように、焼結の前に組み立てられる。
【0067】
ランプについて形成された試験において、少なくとも200Wの電力、そして300〜400Wでありうる電力で動作可能であり、L/Dが関係式2.0<L/D<3.00を満たすときに最適化されるランプを形成できることが見いだされた。一実施形態において、壁厚は、1.1mmより大きい。他の実施形態において、壁負荷は、0.20W/mmである。当該条件下では、約150Vの公称動作電圧を有する電子安定器で動作されるランプは、約75のRa、および少なくとも100LPWの効率、場合によっては110の高効率、および少なくとも約75%、一実施形態では少なくとも80%の光束維持率を有することが可能である。
【0068】
ランプは、約0.010から0.030、例えば0.022のDccyを有することが可能である。Dccyは、Y軸(CCY)上の色点の色度と、標準的な黒体曲線の色度の差である。
【0069】
以下の実施例は、本発明の範囲を限定せずに、性能が向上したセラミック管を使用するランプの形成を実証するものである。

図5に示されるように、3つの構成部品から図3に示される形状に従って発光管を形成する。内径Dは、約11.0mであり、内長Lは、約27.0mmである。NaIが49〜59%、CeIが5%、TlIが2%、CsIが4%の重量比率の50mgのハロゲン化物を含む充填材を使用する。ハロゲン化金属発光管に、ArまたはXeおよび少量添加のKr85を含む希ガスを裏込め充填する。低温充填圧力は、120〜240トルである。発光管は、外側真空ジャケットと、見込まれる発光管破壊を阻止するための石英遮壁とを有し、ULTRAMAX HID(商標)電子安定器上で動作するランプに組み立てられる。発光観客幾何学構造、リード線設計、シールパラメータおよび外側ジャケットは、試験されたすべてのランプについて同一である。
【0070】
上述のようにして形成されたランプを、250Wにおいてランプキャップを最上に配置して垂直方向に(すなわち図3に示されるように)動作させる。表2は、ランプの特性を示す。表3は、100時間後に得られた結果を示す。CCXおよびCCYは、標準CIE図のそれぞれ色度XおよびYである。結果は4〜5個のランプの平均である。
【0071】
【表2】

【0072】
【表3】

好ましい実施形態を参照しながら本発明を説明した。明らかに、先述の詳細な説明を読み、理解すれば、修正および変更が想起されるであろう。本発明は、当該すべての修正および変更を含むものと見なされることが意図される。
【図面の簡単な説明】
【0073】
【図1】従来の400WのQMHランプと、本発明に従って形成された250Wランプとの比較についてのルーメンと時間の理論的プロットである。
【図2】本発明によるランプの斜視図である。
【図3】本発明の第1の実施形態による図2のランプの放電管の概略軸断面図である。
【図4】本発明の第2の実施形態による図2のランプの放電管の概略軸断面図である。
【図5】図2のランプの分解斜視図である。

【特許請求の範囲】
【請求項1】
内部空間を画定する、セラミック材料で形成された放電管と、
前記内部空間に配置され、不活性ガスおよびハロゲン化物成分を含み、前記ハロゲン化物成分は、ハロゲン化ナトリウム、ハロゲン化セリウム、ハロゲン化タリウム、ならびに場合によってハロゲン化インジウムおよびハロゲン化セシウムの少なくとも一方を含み、前記ハロゲン化セシウムは、前記ハロゲン化物成分の少なくとも9モル%を含み、前記ハロゲン化ナトリウムは、前記ハロゲン化物成分の少なくとも47モル%を含むイオン性充填材と、
前記充填材に電流が印加されると、それを通電させるように前記放電管内に配置された少なくとも1つの電極とを含むセラミックハロゲン化金属ランプ。
【請求項2】
前記ハロゲン化ナトリウムは、前記充填材におけるハロゲン化物の少なくとも59モル%である請求項1記載のランプ。
【請求項3】
前記ハロゲン化セリウムは、前記充填材におけるハロゲン化物の少なくとも12モル%である請求項1記載のランプ。
【請求項4】
ハロゲン化インジウムは、少なくとも1モル%である請求項1記載のランプ。
【請求項5】
ハロゲン化タリウムは、少なくとも1.2モル%である請求項1記載のランプ。
【請求項6】
ハロゲン化セシウムは、少なくとも1.5モル%である請求項1記載のランプ。
【請求項7】
ナトリウム、セリウム、タリウム、インジウムおよびセシウムのハロゲン化物は、存在する場合は、前記充填材におけるハロゲン化物の重量の少なくとも90%を含む請求項1記載のランプ。
【請求項8】
前記ハロゲン化物成分は、58〜83モル%のハロゲン化ナトリウム、9〜22モル%のハロゲン化セリウム、2〜8モル%のハロゲン化タリウム、1〜4モル%のハロゲン化インジウム、および1.5〜10.0モル%のハロゲン化セシウムを含む請求項1記載のランプ。
【請求項9】
前記放電管は、実質的に円筒形である本体を含む請求項1記載のランプ。
【請求項10】
前記放電管は、前記放電管の中心軸に平行な内長、および前記内長に垂直な内径を有する本体部を含み、前記内長の前記内径に対する比は、1.5〜3.5の範囲である請求項1記載のランプ。
【請求項11】
前記内長の前記内径に対する比は、2.0〜3.0の範囲である請求項10記載のランプ。
【請求項12】
前記不活性ガスは、キセノンおよびアルゴンの少なくとも一方を含む請求項1記載のランプ。
【請求項13】
前記充填圧力は、少なくとも60トルである請求項1記載のランプ。
【請求項14】
a)前記ランプは、少なくとも75の演色性指数を有すること、
b)前記ランプは、100時間において少なくとも100ルーメン/ワットの効率を有すること、
c)前記ランプは、少なくとも80%の光束維持率を有すること
の条件の少なくとも1つが満たされる請求項1記載のランプ。
【請求項15】
前記ランプは、少なくとも75の演色性指数、および100時間における少なくとも110ルーメン/ワットの効率を有する請求項14記載のランプ。
【請求項16】
前記ランプは、少なくとも150Wの電力で動作することが可能である請求項1記載のランプ。
【請求項17】
請求項1記載のランプと、安定器とを有する照明組立品。
【請求項18】
前記安定器は、電子安定器である請求項17記載の照明組立品。
【請求項19】
安定器と、それに電気的に接続されたランプとを含み、前記ランプは、イオン性材料の充填材を含む放電管と、前記充填材に電流が印加されると、それを通電させるように前記放電管内に配置された少なくとも1つの電極とを含み、前記放電管は、
内部空間を画定する本体部を含み、前記本体部は、前記放電管の中心軸に平行な内長、および前記内長に垂直な内径を有し、前記内長の前記内径に対する比は、1.5〜3.5の範囲であり、
前記充填材は、
不活性ガスと、ハロゲン化物成分とを含み、前記ハロゲン化物成分は、少なくとも1つのハロゲン化アルカリ金属および少なくとも1つのハロゲン化希土類金属、ならびに場合によって少なくとも1つの第IIIa族ハロゲン化物を含み、前記希土類ハロゲン化物は、前記ハロゲン化物成分の少なくとも9%のモル百分率でハロゲン化セリウムを含む照明組立品。
【請求項20】
前記ハロゲン化アルカリ金属は、ハロゲン化ナトリウムを含み、前記第IIIa族ハロゲン化物は、ハロゲン化インジウムおよびハロゲン化タリウムの少なくとも一方を含む請求項19記載の照明組立品。
【請求項21】
前記充填材の前記ハロゲン化物成分は、ナトリウム、セリウム、タリウム、インジウムおよび場合によってセシウムを含む請求項19記載の照明組立品。
【請求項22】
ナトリウム、セリウム、タリウム、インジウムおよびセシウムのハロゲン化物は、存在する場合は、前記充填材におけるハロゲン化物の重量の少なくとも90%を含む請求項21記載の照明組立品。
【請求項23】
前記ハロゲン化アルカリ金属は、前記ハロゲン化セリウムのモル%の少なくとも2倍のモル%で存在する請求項19記載の照明組立品。
【請求項24】
前記ハロゲン化物成分は、59〜83モル%のハロゲン化ナトリウム、9〜22モル%のハロゲン化セリウム、2〜8モル%のハロゲン化タリウム、1〜4モル%のハロゲン化インジウム、および1.5〜10.0モル%のハロゲン化セシウムを含む請求項19記載の照明組立品。
【請求項25】
前記本体は、実質的に円筒形である請求項19記載の照明組立品。
【請求項26】
前記内長の前記内径に対する比は、2.0〜3.0の範囲である請求項19記載の照明組立品。
【請求項27】
前記充填圧力は、少なくとも60トルである請求項19記載の照明組立品。
【請求項28】
a)前記ランプは、少なくとも75の演色性指数を有すること、
b)前記ランプは、100時間において少なくとも100ルーメン/ワットの効率を有すること、
c)前記ランプは、少なくとも80%の光束維持率を有すること
の条件の少なくとも1つが満たされる請求項19記載の照明組立品。
【請求項29】
前記ランプは、少なくとも75の演色性指数、および100時間における少なくとも110ルーメン/ワットの効率を有する請求項28記載の照明組立品。
【請求項30】
前記安定器は、電子安定器である請求項19記載の照明組立品。
【請求項31】
前記ランプは、少なくとも約150Wの電力で動作する請求項19記載の照明組立品。
【請求項32】
前記ランプは、少なくとも約250Wの電力で動作する請求項31記載の照明組立品。
【請求項33】
ランプを形成する方法であって、
本体部と、前記本体部から延びる第1および第2の脚部とを含む実質的に円筒形の放電管を設ける工程と、
不活性ガスとハロゲン化物成分とを含むイオン性充填材を前記本体部に配置する工程であって、前記ハロゲン化物成分は、ハロゲン化ナトリウム、ハロゲン化セリウム、ハロゲン化タリウム、ならびに場合によってハロゲン化インジウムおよびハロゲン化セシウムの少なくとも一方を含み、前記ハロゲン化セリウムは、前記ハロゲン化物成分の少なくとも9モル%を含み、前記ハロゲン化ナトリウムは、前記ハロゲン化セリウムのモル百分率の少なくとも2倍のモル百分率で存在する工程と、
電流が前記充填材に印加されると、それを通電させる電極を前記放電管内に配置する工程とを含む方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公表番号】特表2008−529220(P2008−529220A)
【公表日】平成20年7月31日(2008.7.31)
【国際特許分類】
【出願番号】特願2007−552208(P2007−552208)
【出願日】平成18年1月18日(2006.1.18)
【国際出願番号】PCT/US2006/001562
【国際公開番号】WO2006/078632
【国際公開日】平成18年7月27日(2006.7.27)
【出願人】(390041542)ゼネラル・エレクトリック・カンパニイ (6,332)
【氏名又は名称原語表記】GENERAL ELECTRIC COMPANY
【Fターム(参考)】