説明

バックライト

【課題】透過型および反射型の両方に使用でき、さらには暗所でも明るいバックライトを提供する。
【解決手段】バックライトは、観察側から導光式の面発光体2、反射部材7が配置される。面発光体2は光拡散粒子を含有する透明基材を用い、透明基材の厚み方向に光を散乱しながら透明基材の長さ方向に光が導光する。透明基材は、厚み方向のヘイズ値が30%以下の導光板であり、且つ輝度減衰係数E(m−1)を、透明基材の5(mm)厚みあたりのヘイズの値(%)で除した演算値(m−1/%)が0.55(m−1/%)以上10.0(m−1/%)以下となるように形成される。さらに、反射部材7は夜光性顔料を含む。

【発明の詳細な説明】
【技術分野】
【0001】
本発明はバックライトに関する。
【背景技術】
【0002】
薄型の表示装置として、液晶表示装置が広く用いられるようになっている。一般的な液晶表示装置には、透過型液晶表示装置および反射型液晶表示装置がある。
【0003】
透過型液晶表示装置の場合、バックライト装置が必要であり、バックライト装置が点灯しない時は映像を見る事ができない。バックライト光源装置としては、導光板表面に凹凸やドット印刷等で散乱機能を取り付ける構成(特許文献1)、あるいは、導光板に基材の屈折率と光拡散粒子の屈折率との屈折率差Δnが小さい光拡散粒子を内添する構成(特許文献2)が知られている。これらの構成では、光源消灯時に於いて導光板が不透明であるか、または導光板の厚み方向のヘイズ値が大きかった。
【0004】
反射型液晶表示装置の場合は裏面に反射板を設けており、外光を利用する事ができるので、バックライトなしで映像を見る事ができるものの、暗所で利用する事ができない。また透過型液晶表示装置と反射型液晶表示装置の特徴を併せ持った半透過型液晶表示装置も知られている(例えば特許文献3、4)。
【0005】
液晶表示素子の裏面側に光半透過性の金属製反射薄膜を設けた構成(特許文献3)では、反射型液晶表示装置として利用する場合、金属製薄膜の反射率が低いため明るさが不足する、といった問題があった。また透過型液晶表示装置として利用する場合も、金属製薄膜の光透過性が低いため、金属製薄膜の裏面に設けられた光源の光利用効率が低く、やはり明るさが不足する、といった問題があった。
またこのような半透過型液晶表示装置でも暗所では当然バックライトを点灯しなければ表示を見ることはできない。
さらに、紙や樹脂フィルムなど半透明のシートに意匠を印刷、背面に光源を設けたものも、半透過型液晶表示装置と同様の構成と考える事ができる。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開昭57−128383号公報
【特許文献2】特許第3162398号公報
【特許文献3】特開2001−100197号公報
【特許文献4】特表2007−525708号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明は、このような事情に鑑みてなされたものであり、透過型および反射型の両方の液晶装置に使用でき、さらには暗所でも明るいバックライトを提供することを目的とする。
【課題を解決するための手段】
【0008】
上記課題を解決するため、本発明に係るバックライトの一態様は、観察側から導光式面発光体、反射部材を備える。
前記面発光体は、光拡散粒子を含有する透明基材を用い、前記透明基材の厚み方向に光を散乱しながら透明基材の長さ方向に光を導光する。
前記透明基材は、厚み方向のヘイズ値が30%以下の導光板であり、且つ輝度減衰係数E(m−1)を、透明基材の5(mm)厚みあたりのヘイズの値(%)で除した演算値(m−1/%)が0.55(m−1/%)以上10.0(m−1/%)以下となるように形成される。
さらに、反射部材に夜光性顔料を含む。
【0009】
本発明のバックライトは、面発光体の輝度減衰係数Eが特定の範囲であるため、点灯時には明るくムラがない透過型液晶表示装置用バックライトとして使用できる。
また本発明のバックライトは、上述した演算値を満たすような低いヘイズ値の透明基材を用いるため、消灯時には透明板として働く。従って、本発明のバックライトを反射型液晶表示装置用などのバックライトとして使用した場合に明るい。
さらに反射部材に夜光性顔料を含み、かつ面発光体が低いヘイズ値の透明基材であるので、周囲が明るい時に効率よく夜光性顔料に蓄光する事ができる。このため、本発明のバックライトは、消灯時、周囲が暗くなった場合でもバックライトとして動作することができる。
【0010】
また、本発明に係るバックライトの一態様において、透明基材は、基材の屈折率と光拡散粒子の屈折率との屈折率差Δnの絶対値が0.3以上3以下の光拡散粒子を少なくとも含有することが好ましく、光拡散粒子の濃度が0.0001重量%以上0.01重量%であることが好ましく、また、光拡散粒子は、屈折率差Δnの絶対値と、粒子の重量平均直径d(mm)との積が0.0001(mm)以上となる重量平均直径を有する粒子からなることが好ましい。
【0011】
また、透明基材は、厚み方向の粒子層数Sが0.15以内となる様に構成されることが好ましく、透明基材の板厚をt(mm)、透明基材の端面から光を供給する光源の、透明基材の厚み方向における大きさをD(mm)とするとき、板厚tは、D/2≦t≦20Dの範囲にあることが好ましい。
【発明の効果】
【0012】
本発明のバックライトの一態様によれば、面発光体は、光源消灯時には厚み方向、若しくは太さ方向のヘイズ値を低くすることにより透明性を確保し、光源点灯時には板面横断放射発散光を用いることにより、高効率な光放出を可能とすることができる。従って、透過型および反射型の両方の液晶装置に使用できるバックライトを提供することができる。例えば、明るい半透過型液晶表示装置などに用いるバックライトを提供できる。
【図面の簡単な説明】
【0013】
【図1】本発明の実施形態1にかかるバックライトの一例を示す図である。
【図2】実施形態1の面発光体の輝度分布測定系の一例を示す図である。
【図3】実施形態1の面発光体の輝度分布測定結果の一例を示す図である。
【図4】実施形態1の面発光体の輝度分布の対数プロットの一例を示す図である。
【図5】実施形態1の面発光体において、輝度減衰係数Eが異なる場合における、輝度値B(x)と導光距離x(m)との関係例を示す図である。
【図6】実施形態1の面発光体の層数を説明する図である。
【図7A】実施形態1の面発光体において、導光板の厚さ(t)と光拡散粒子の濃度との関係を説明する図である。
【図7B】実施形態1の面発光体において、導光板の厚さ(3t)と光拡散粒子の濃度との関係を説明する図である。
【図8】実施例の面発光体において、輝度減衰係数Eと5mm厚みあたりのヘイズ値との関係を示す図である。
【図9】本発明のバックライトを用いた照明装置付き看板の一例を示す図である。
【発明を実施するための形態】
【0014】
(実施形態1)
図1に本発明の実施形態1にかかるバックライトの一例を示す。バックライトは、少なくとも面発光体2と、反射部材7とを備える。観察側から、面発光体2、反射部材7の順に配置される。図1では、図面上方が観察側となる。また、図1に示すバックライトの構成例では、光源1が、面発光体2の端部に配置されている。さらに、光源1の周囲には光を効率よく利用するための反射カバー6が配置されている。図1では、面発光体2の左側に光源1を配置し、光を面発光体2の入射端面から入射面に対向する端面へ導光させる。
面発光体2については後述する。
【0015】
反射部材7は、夜光性顔料を含む。反射部材7は、例えば導光板と同じ形状の白色シートの導光板側に公知の夜光性顔料を含む塗料を塗布したものを用いる事ができる。反射部材7は、面発光体2と同じ形状であることが好ましい。図1では、反射部材7として、板状のものを示しているが、反射部材7の形状はこれに限られるわけではない。
【0016】
以下では、本実施形態のバックライトに使用する面発光体について詳細に説明する。実施形態1では、板状の面発光体を発光体の一例として説明する。面発光体(導光式面発光体)は、光拡散粒子を含有する導光板を用いる。導光板は、光源から光を供給すると、導光板の厚み方向に光を散乱しながら導光板の長さ方向に光を導光させる。導光板の長さ方向は、光源から光を供給する端面(入射端面)から、対向する端面への方向であり、供給された導光光が直進する方向と平行となる。導光板の厚み方向は、導光板の厚さを示す方向であり、長さ方向と垂直となる。また導光板の長さ方向および導光板の厚さ方向の両方に垂直な方向を導光板の幅方向とする。また、導光板は、板状である場合を用いて説明する。導光板の形状は長さ方向、幅方向にその厚みが変わる形態(断面楔状)であっても良い。
【0017】
また、本実施形態の導光板は、導光板の厚み方向のヘイズ値が30%以下である、という特徴を有する。
さらに、導光板は、輝度に関して、輝度減衰係数E(m−1)を5(mm)厚みあたりのヘイズの値(%)で除した演算値(m−1/%)が0.55(m−1/%)以上10.0(m−1/%)以下である、という特徴を有する。
演算値は、輝度に関する一つの特性を示すものであり、高効率の光放出を実現しながら、透明性が高い導光板を定義する指標となる。演算値は、輝度減衰係数E(m−1)を用いて算出されるため、まず、輝度減衰係数E(m−1)について説明する。
【0018】
本発明における輝度減衰係数E(m−1)とは、面発光体の一端面に配置した光源から光を該端面から入光させたとき、該端面に接する発光面に対して垂直な方向に出射される光の輝度値の対数と、該端面からの距離とをプロットして輝度特性を表した場合の勾配を言う。なお、輝度減衰係数Eは、所定の領域(parts)の輝度を、任意の長さの単位(m)で測定した結果を用いるため、(m−1)もしくは(parts/m)という単位で表すものとする。以降の説明では、(m−1)を用いて説明する。
【0019】
輝度の測定結果は理論上、次に示す式(1)に従う。ここでは、測定した輝度値をU(x)、理論上の輝度値をB(x)で表す。
B(x)=B(0)×exp(−E×x)・・・(1)
ここでx(x≧0)は、入射端面からの距離(導光距離)を示す。
【0020】
また、輝度減衰係数E(m−1)は以下のことに注意して導出するものとする。
1.導光板の背面には例えば黒色の布など、光を吸収する素材を配置する。これは解析を容易にするため、背面側に出射される光を吸収させるものである。ここでは、輝度を測定する側を正面、対向する側を背面としている。
【0021】
2.入射面に対向する端面付近では端面から光の反射の影響により輝度特性が式(1)に従わない場合がある。そこで、この影響を除くために、入射面に対向する端面に吸収処理を施して測定する。吸収処理方法としては、例えば入射面に対向する端面へ黒インクを塗布する等が挙げられる。入射面に対向する端面にミラーを配置している場合は、ミラーを取り除いた後に吸収処理を行う。
【0022】
3.入射端面付近では輝度特性が式(1)従わない場合があるため、輝度減衰係数E(m−1)を導出する際にはその部分は除外する。例えば入射面に対向する端面から、入射端面方向へL/2またはL/3における輝度特性に基づいて輝度減衰係数Eおよび演算値を導出するものとする。ここでLは光源光入射端面から対向する端面までの距離(m)である。入射端面付近で輝度特性が式(1)従わない場合がある理由は明確でない。光拡散粒子添加量が少なく、また屈折率差Δnが大きい構成ほど発生する傾向にあることなどが関係すると考えられる。従って、理由の一つとしては、入射端面付近における導光板内の光の拡散角分布が、入射端面方向へL/2またはL/3における導光板内の光の拡散角分布とは異なると推定される事によるものや、光源の反射カバーでの反射などの影響によるものと推定される。
【0023】
4.輝度減衰係数E(m−1)は、後述する図4に示す輝度特性図を用いて、入射面に対向する端面からL/2(面発光体の中央)またはL/3までの範囲で直線近似によって導出する。
【0024】
図2に面発光体の輝度分布測定系の一例を示す。図2では、光源1、面発光体2、輝度計3を備える。また、面発光体2の背面側には、背面側に出射される光を吸収させる吸収シート4が配置される。面発光体2の入射面に対向する端面には吸収処理5が施されている。さらに、光源1の周囲には光を効率よく利用するための反射カバー6が配置されている。図2では、面発光体2の左側に光源1を配置し、光を面発光体の入射端面から入射面に対向する端面へ導光させる。入射端面の位置を0mとし、入射面に対向する端面までの任意の距離を導光距離とする。図2では、最大導光距離を0.2mとする。輝度計3は、例えば、CCD(Charge Coupled Device)カメラを用いる。図2中、面発光体2(導光板)の板厚をtで示している。
【0025】
また、図2中、面発光体2の両側に示す矢印群は、光が拡散する様子を模式的に示したものである。光源1から面発光体2の入射端面に入光した光は、面発光体2の入射面に対向する端面へ導光される。その間に、該光は、光拡散粒子によって拡散され、面発光体2の正面及び背面から出射される。出射される光の量は導光距離が長くなることに応じて少なくなる。
【0026】
図3に、測定された輝度値U(x)(cd/m)と入射端面からの距離x(m)との例をプロットした図を示す。図4に、輝度値U(x)(cd/m)の対数ln(U(x))と入射端面からの距離x(m)とをプロットした輝度特性図を示す。
ここで理論上の輝度値B(0)(cd/m)は、上述した、輝度値と輝度減衰係数の定義及び輝度減衰係数を算出して輝度特性を導出する輝度特性導出法に基づいて、計算する仮想の輝度値である。具体的には、入射面に対向する端面からL/2(面発光体の中央)までの範囲で直線近似によって求めた近似線をx=0(m)まで延長した時に縦軸と交差した値をln(B(0))とした時に計算される仮想の輝度値である。
【0027】
次に輝度減衰係数E(m−1)と輝度との関係について説明する。輝度減衰係数E(m−1)はその値が大きいほど、導光方向の単位長さあたり、より多くの光を取出せることを表す。
図5に、輝度減衰係数E(m−1)が異なる場合における、理論上の輝度値B(x)と導光距離x(m)との関係例を示す。
【0028】
図5の関係例は、拡散材を基材に添加した面発光体についてその輝度を測定したもので、酸化チタン、酸化亜鉛、硫酸バリウム、酸化アルミニウム、ポリスチレンの中から1種選ばれた粒子直径0.5〜3μmの拡散材を厚み5mmの面発光体に対し0.02〜0.0005重量%添加したものである。いずれの輝度減衰係数Eでも、導光距離を0.2(m)とした場合である。このとき、輝度減衰係数E(m−1)が大きいほどB(x)の減少が大きい。つまりより多く光を面発光体2から取り出した結果、B(x)の減少が大きくなってことが分かる。
【0029】
次に本発明で定義する層数Sについて説明する。層数Sは面発光体2に存在する光拡散粒子の総断面を、その発光面に射影した面積に相当する。これにより光拡散粒子の厚み方向の密度を評価する事ができる。より具体的には、導光板の厚み方向の粒子層数Sは式(2)で定義される。例えば底面に隙間なく敷き詰められる状態の粒子層数Sは1である。図6に、導光板が含有する光拡散粒子の総断面を導光板(面発光体2)の底面に射影した例を示す。
【0030】
【数1】

【0031】
ここで、nは粒子個数密度(/mm)、t(mm)は板厚、Vは粒子体積率、d(mm)は重量平均粒子直径、a(mm)は平均粒子半径である。
なお本発明の実施形態において、粒子直径は、重量平均粒子直径、粒子半径は重量平均粒子半径である。
【0032】
面発光体2において、透明性を確保し、高効率での光放出を可能するためには、この層数Sを小さく保ったまま輝度減衰係数E(m−1)を大きくする必要がある。具体的には、面発光体2の透明性を確保することによって、消灯時に面発光体2が透明板として機能することが可能になる。透明性は、面発光体2を構成する導光板のヘイズ値を小さくすることが必要であり、図6に示す層数Sを小さくすることによって実現できる。また、高効率で光を放出することによって、点灯時に面発光体2が遮光板として機能するが可能になる。高効率の光放出は、上述した輝度減衰係数Eを大きくすることによって実現できる。
【0033】
まず、ヘイズ値を検討する。ヘイズ値が30%より大きくなると透明感を失ってしまう。ヘイズは20%以下が好ましく、10%以下が特に好ましい。下限は特にないが、高い輝度を実現するため、光拡散粒子無添加の透明板の場合が含まれないという意味合いから0.1%以上とする。しかしながら、高効率の光放出が実現できる場合、0.1未満のヘイズ値を有する導光板を用いることが可能である。
本発明の実施形態において、面発光体2の面内でヘイズ値が異なる場合、面発光体2の面のうち、最もヘイズ値の小さい場所でヘイズ値を評価するものとする。
【0034】
次に、輝度に関する演算値について説明する。演算値(m−1/%)は、上述したように、輝度減衰係数E(m−1)を5mm厚みあたりのヘイズ値(%)で除した値である。演算値(m−1/%)が0.55よりも小さいものは導光距離が長いものに好適であるが、光取出し効率が小さいため、点灯時の明るさが十分で無い。
演算値(m−1/%)が10.0よりも大きいものは光取出し効率は大きいため点灯時の明るさは十分であるが、導光距離が短く不十分となる。
本発明の実施形態の面発光体2は光拡散粒子の濃度が厚み方向について一定であっても良いし、例えば光拡散粒子含有層と透明層からなる複層構成、あるいは光拡散粒子含有濃度が異なる2層以上からなる複層構成であっても良い。複層構成である場合も上記と同様に、測定されたヘイズ値を基に5mm厚みあたりのヘイズ値を求める。
【0035】
また、ヘイズ値を30%以下とするためには、層数Sを0.15以下にする事が好ましい。特に0.1以下とする事が好ましい。
【0036】
屈折率差Δnは0.3以上である事が好ましい。屈折率差Δnが0.3より小さい場合、効率よく光を取り出す事ができず、点灯時の明るさの割に透明感が劣る場合がある。また、0.4以上である事がより好ましい。一方、屈折率差Δnが3より大きいと散乱光は後方散乱が支配的になるため、やはり点灯時の明るさの割に透明感が劣る場合がある。
【0037】
本発明の実施形態で使用される拡散粒子の平均直径が小さい場合、レイリー散乱現象に起因すると思われる着色など、色目の変化が起きる場合がある。また、屈折率差Δnが小さい場合でもレイリー散乱現象に起因すると思われる着色など、色目の変化が起きる場合がある。具体的には、光源付近では散乱光が青みを帯び、光源から離れた位置では黄味を帯びる場合がある。
そこで、レイリー散乱現象に起因すると思われる着色を抑制するため、粒子の平均直径(mm)と屈折率差絶対値との積が0.0001(mm)以上であることが好ましい。
【0038】
また、面発光体2の板厚t(mm)は光源の板厚方向の大きさD(mm)に対し、D/2≦t≦20Dの範囲にあることが好ましい。
この理由を、図7A、7Bを用いて説明する。図7Aに、光拡散粒子22の濃度C(重量%)、基板の厚さt(mm)の導光板21aから構成される面発光体2aの模式図を示す。図7Bに、光拡散粒子22の濃度C(重量%)、板厚3t(mm)の導光板bから構成される面発光体2bの例を示す。導光板21bの板厚は、導光板21aの板厚の3倍となっている。
【0039】
導光板21aが含有する光拡散粒子22より、導光板21bが含有する光拡散粒子22の総量が多いため、発光強度も大きいように思われる。しかしながら、図7A、7Bに示す面発光体2a、2bでは、導光光は全反射を繰り返しながら面発光体2a、2bの内部を進む。このため、光拡散粒子の濃度が同じ場合、導光光が光拡散粒子によって拡散される確率は、図7Aおよび図7Bの場合とで同じである。例えば、図7Aでは、光拡散粒子22pによって光が拡散される場合を示し、図7Bでは、光拡散粒子22qによって光が拡散される場合を示している。このように、発光面の輝度は、図7Aと図7Bとで同一となる。
【0040】
一方、図7Aの面発光体2aの板厚tは、図7Bの面発光体2bの板厚3tより薄いため、ヘイズ値が小さく透明感が高い。従って、本発明の面発光体は薄い方が好ましい。
【0041】
しかしながら、板厚が光源の大きさより小さくなると、端面に入射する光の割合が小さくなるため、光の利用効率が小さくなる場合がある。従って、面発光体の板厚t(mm)は光源の板厚方向の大きさD(mm)に対し、D/2≦t≦20Dの範囲にあることが好ましい。D≦t≦15Dの範囲にあることがより好ましい。
また面発光体の基材がアクリル樹脂などの透明プラスチックで構成される場合、その剛性を考慮すると、厚みtは0.5mm以上であることが好ましい。また導光板の長さL(mm)に対し、t≧L/400の範囲にあることがより好ましい。
また本発明の面発光体を例えば押出し成形で製造する場合、製造の容易さからその厚みは20mm以下であることが好ましい。
【0042】
以上説明したように、本発明に係る実施形態1の面発光体の一態様は、光拡散粒子を含有する導光板を用いた面発光体であって、該導光板の厚み方向に光を散乱しながら該導光板の長さ方向に光が導光し、且つ前記導光板の厚み方向のヘイズ値が30%以下であり、且つ輝度減衰係数E(m−1)を、該導光板の5(mm)厚みあたりのヘイズの値(%)で除した演算値(m−1/%)が0.55(m−1/%)以上10.0(m−1/%)以下とする。この面発光体は、消灯時には、低いヘイズ値の導光板を用いることによって透明板として働き、点灯時には、導光板に含有する光拡散粒子によって高効率の光放出を実現する。これにより、バックライトや遮光板として働く表示装置が実現できる。
【0043】
また、本実施形態の面発光体の一態様において、導光板は、導光板の基材の屈折率と光拡散粒子の屈折率との屈折率差Δnの絶対値が0.3以上3以下の光拡散粒子を少なくとも含有することが好ましく、光拡散粒子は、屈折率差Δnの絶対値と、粒子の重量平均直径d(mm)との積が0.0001(mm)以上となる重量平均直径を有する粒子からなることが好ましい。
【0044】
さらに、導光板は、厚み方向の粒子層数Sが0.15以内となる様に構成されることが好ましく、導光板の板厚をt(mm)、導光板の端面から光を供給する光源の、導光板の厚み方向における大きさをD(mm)とするとき、板厚tは、D/2≦t≦20Dの範囲にあることが好ましい。
【0045】
次に、本実施形態の拡散材の種類と輝度との関係について説明する。本実施形態においても、輝度は、実施形態1と同様に、図2の輝度測定系を用いて計測することができる。
【0046】
輝度(cd/m−2)は以下のことに注意して測定するものとする。
1.導光板の背面には例えば黒色の布など、光を吸収する素材を吸収シート4として配置する。これは背面側に出射される光を吸収させ、正面から出射される光のみを測定するためである。ここでは、輝度を測定する側を正面、対向する側を背面としている。
【0047】
2.入射面に対向する端面付近では端面から光の反射の影響により輝度特性が変化する場合がある。そこで、この影響を除くために、入射面に対向する端面に吸収処理5を施して測定する。吸収処理方法としては、例えば入射面に対向する端面へ黒インクを塗布する等が挙げられる。
【0048】
図5に示した、拡散材の種類や濃度が異なる場合における、面発光体の輝度値B(x)と導光距離x(m)との関係例を用いて、拡散材の種類と輝度との関係を検討する。
【0049】
図5の関係例は、拡散材を基材に添加した面発光体についてその輝度を測定したもので、酸化チタン、酸化亜鉛、硫酸バリウム、酸化アルミニウム、ポリスチレンの中から1種選ばれた粒子直径0.5〜3μmの拡散材を厚み5mmの面発光体に対し0.02〜0.0005重量%添加したものである。いずれの例も、導光距離を0.2(m)とした場合である。このとき、拡散材の種類や濃度により輝度特性が大きく変化することが分かる。
【0050】
本発明者等は拡散材の種類や濃度の異なる発光体を種々検討した結果、特定範囲の屈折率差を持ち、特定範囲の濃度を添加した発光体が消灯時の透明性と点灯時の輝度のバランスが優れている事を見出した。
【0051】
屈折率差Δnは0.3以上である事が好ましい。屈折率差Δnが0.3より小さい場合、効率よく光を取り出す事ができず、点灯時の明るさの割に透明感が劣る。また、0.4以上である事がより好ましい。
一方、屈折率差Δnが3より大きいと散乱光は後方散乱が支配的になるため、やはり点灯時の明るさの割に透明感が劣る。
【0052】
このような発光体の基材および拡散材の組み合せとしては、例えばアクリル系樹脂、ポリカーボネート樹脂、スチレン系樹脂などの透明樹脂に酸化チタン、酸化亜鉛などの光拡散材微粒子を採用する事ができる。
【0053】
本発明の実施形態で使用される拡散粒子の平均直径が小さい場合、レイリー散乱現象に起因すると思われる着色など、色目の変化が起きる場合がある。また、屈折率差Δnが小さい場合でもレイリー散乱現象に起因すると思われる着色など、色目の変化が起きる場合がある。具体的には、光源付近では散乱光が青みを帯び、光源から離れた位置では黄味を帯びる場合がある。
そこで、レイリー散乱現象に起因すると思われる着色を抑制するため、粒子の平均直径(mm)と屈折率差絶対値との積が0.0001(mm)以上であることが好ましい。
【0054】
さらに、光拡散粒子の濃度は、0.0001重量%以上0.01重量%以下であることが好ましい。光拡散粒子の濃度が高くなるにつれ、発光体の透明度が低下する。このため、発光体の透明性、例えば板状発光体であれば低いヘイズ値を維持するためには、光拡散粒子の濃度を低く抑えることが必要となる。一方、光拡散粒子の濃度が低すぎる場合、光を十分に散乱させる事ができず、発光体の輝度が小さすぎる場合がある。
【実施例】
【0055】
まず実施例及び比較例で用いる面発光体の参考例の作製条件を以下に示す。面発光体は射出成型機を用いて作製した。
【0056】
<面発光体の参考例の作製条件>
ベース樹脂:PMMA(アクリル樹脂)(株式会社クラレ製「パラペット」)
屈折率:1.494(nD)
サンプルサイズ:5mm厚み × 導光長200mm × 幅70mm
使用光源:日亜化学工業株式会社製 「LED NFSW036BT」
使用個数:7個
配置間隔:10mm
印加電圧:2.8V/1光源
光源1個の大きさ:3mm(発光部)
【0057】
参考例の材料構成と測定結果を表1に示す。また輝度減衰係数E(m−1)と5mm厚みあたりのヘイズ値の関係を図8に示す。横軸のヘイズ値は上述の通り、5mm厚みあたりのヘイズ値である。図8に示す測定結果から、ヘイズ値(%)をx、輝度減衰係数E(m−1)をyとすると、次の関係式が導かれた。
酸化チタン y=1.4797x
酸化亜鉛 y=0.7726x
酸化アルミニウム y=0.3662x
スチレン y=0.1444x
この関係式において、xの係数が演算値(m−1/%)に相当する。
【0058】
また、図8において、演算値が0.55(m−1/%)以上10.0(m−1/%)以下の範囲を、二つの破線で示した。左側の破線は、y=0.55x、右側の破線は、y=10.0xの関係式となる。
参考例1および2では、演算値が約0.77〜約1.48(m−1/%)であり、ヘイズ値は1〜8.6%であった。
参考例3および4では、演算値が約0.14〜約0.37(m−1/%)であり、ヘイズ値は3〜25.3%であった。
また、表1の結果からヘイズ値を30%以下にするためにはSの値を0.15以下とする事が好ましい事が分かった。
【0059】
【表1】

【0060】
これら参考例の面発光体について、消灯時の透明感及び点灯時の明るさを目視評価により5段階評価した。最も優れるものが5、最も劣るものが1であり、本評価では3以上を良好なものとした。その結果を表2にまとめた。表2に示す通り、参考例1および2の面発光体は透明感が優れ、かつ明るいものであった。一方、参考例3および4の面発光体は透明感に劣る、あるいは暗いものであった。
【0061】
【表2】

[実施例1]
【0062】
上記参考例の材料構成の面発光体2を使用し、図9に示すような照明装置付き看板を作製した。
【0063】
表示メディア11は乳白色半透明のポリエステルフィルムに図柄を印刷したものを使用した。
【0064】
反射板10は、アルミニウムシートの表面に、株式会社アサヒペン製「夜光塗料スプレー」を塗布したものを使用した。反射板10は、反射部材の一例である。
[比較例1]
反射板10へ夜光塗料を塗布しなかった以外は実施例1と同様にして照明装置付き看板を作製した。
<評価>
【0065】
面発光体2の光源1を点灯せず、該照明装置付き看板を背面側からの照明なしで、屋外で観察した。実施例1では、参考例のうち「透明感」の評価が3〜5の面発光体を使用した看板は明るい表示であった。一方、参考例のうち「透明感」が3未満の評価の面発光体を使用した看板はやや暗い表示であった。比較例1も同様の結果であった。
【0066】
次に面発光体2の光源1を点灯し、屋内照明のない室内にて該照明装置付き看板を観察した。実施例1及び比較例1ともに、参考例のうち「明るさ」の評価が3〜5の面発光体を使用した看板は明るい表示であった。一方、参考例のうち「明るさ」が3未満の評価の面発光体を使用した実施例1の看板は暗い表示であった。比較例1も同様の結果であった。
【0067】
次に面発光体2の光源1を点灯しない状態で、該照明装置付き看板を屋外の快晴の日照下にそれぞれ10分間放置した。その後、窓や屋内照明のない暗室内において、面発光体2の光源1を点灯しない状態で看板を観察した。実施例1では、参考例のうち「明るさ」が3〜5の面発光体を使用した看板は明るい表示であった。一方、参考例のうち「明るさ」が3未満の面発光体を使用した看板は暗い表示であった。
また、比較例1では、看板はほとんど見えなかった。
【0068】
参考例の材料構成の面発光体のうち、「透明感」及び「明るさ」の評価が3以上である面発光体2と、反射板10とからなるバックライトを用いると、次のような作用が生じることが分かった。
消灯時には、所定の低いヘイズ値の透明基材を面発光体2に用いることによって、面発光体2が透明板として働く。このため、本発明のバックライトを反射型液晶表示装置用などのバックライトとして使用した場合に明るい。
また、面発光体2の輝度減衰係数Eが特定の範囲であるため、面発光体2を、点灯時には明るくムラがない透過型液晶表示装置用バックライトとして使用できる。
さらに、反射板10に夜光性顔料を含み、かつ面発光体2が低いヘイズ値の透明基材であることにより、周囲が明るい時に効率よく夜光性顔料に蓄光する事ができる。このため、本発明のバックライトを、消灯時、周囲が暗くなった場合でもバックライトとして動作させることができる。
【0069】
以上に示したように、本発明によれば、透過型および反射型の両方の液晶表示装置に使用できるバックライトを提供でき、さらに光源を消灯した状態でも明るい表示を提供できる。
【0070】
なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。
【符号の説明】
【0071】
1 光源
2、2a、2b 面発光体
3 輝度計
4 吸収シート
5 吸収処理
6 反射カバー
7 反射部材
10 反射板
11 表示メディア
21a、21b 導光板
22、22p、22q 光拡散粒子

【特許請求の範囲】
【請求項1】
観察側から導光式面発光体、反射部材を備えたバックライトであって、
前記面発光体は光拡散粒子を含有する透明基材を用い、前記透明基材の厚み方向に光を散乱しながら前記透明基材の長さ方向に光が導光し、
前記透明基材は、厚み方向のヘイズ値が30%以下の導光板であり、且つ輝度減衰係数E(m−1)を、透明基材の5(mm)厚みあたりのヘイズの値(%)で除した演算値(m−1/%)が0.55(m−1/%)以上10.0(m−1/%)以下となるように形成され、
前記反射部材は、夜光性顔料を含む事を特徴とするバックライト。
【請求項2】
前記透明基材は、基材の屈折率と前記光拡散粒子の屈折率との屈折率差Δnの絶対値が0.3以上3以下の光拡散粒子を少なくとも含有することを特徴とする請求項1記載のバックライト。
【請求項3】
前記光拡散粒子の濃度が0.0001重量%以上0.01重量%であることを特徴とする請求項1または2記載のバックライト。
【請求項4】
前記光拡散粒子は、前記屈折率差Δnの絶対値と、粒子の重量平均直径d(mm)との積が0.0001(mm)以上となる重量平均直径を有する粒子からなることを特徴とする請求項1乃至3のいずれか一項に記載のバックライト。
【請求項5】
前記透明基材は、前記厚み方向のヘイズ値が30%以下の導光板であることを特徴とする請求項1乃至4のいずれか一項に記載のバックライト。
【請求項6】
前記透明基材は、前記厚み方向の粒子層数Sが0.15以内となる様に構成したことを特徴とする請求項1乃至5のいずれか一項に記載のバックライト。
【請求項7】
前記透明基材の板厚をt(mm)、前記透明基材の端面から光を供給する光源の、前記厚み方向における大きさをD(mm)とするとき、板厚tは、D/2≦t≦20Dの範囲にあることを特徴とする請求項1乃至6のいずれか一項に記載のバックライト。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7A】
image rotate

【図7B】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2012−134022(P2012−134022A)
【公開日】平成24年7月12日(2012.7.12)
【国際特許分類】
【出願番号】特願2010−285344(P2010−285344)
【出願日】平成22年12月22日(2010.12.22)
【出願人】(000001085)株式会社クラレ (1,607)
【Fターム(参考)】