説明

ファイバブラッググレーティング装置

【課題】FBGの動作波長変動を高精度に抑制することができ、且つ、簡易な構造を有するFBG装置を提供すること。
【解決手段】FBGを備える光ファイバデバイスと、光ファイバデバイスを通すスルーホールを備え且つインバー合金からなるケーシングと、スルーホールを充填し且つ光ファイバデバイスをケーシングに固定する固定部と、熱制御素子を備え且つケーシングの内部に配置されたサーモモジュールと、温度センサが設けられ且つサーモモジュールの上に配置された実装プレートと、FBGを実装プレートの表面上においてFBGの伸長方向に移動可能に保持する保持部と、を有することを特徴とするFBG装置。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光符号分割多重伝送において、符号器及び復号器として用いられるファイバブラッググレーティング(FBG:Fiber Bragg Grating)装置に関するものである。
【背景技術】
【0002】
近年において、インターネット普及による通信需要の急速な増大に応じて、光ファイバを用いた高速且つ大容量ネットワークが整備されつつある。このような高速且つ大容量ネットワークにおいては、一本の光ファイバ伝送路に複数通信チャネル分の光パルス信号を一括して伝送する光多重伝送技術が必要不可欠である。
【0003】
光多重伝送技術においては、光時分割多重(OTDM:Optical Time Division Multiplexing)、波長分割多重(WDM:Wavelength Division Multiplexing)、及び光符号分割多重(OCDM:Optical Code Division Multiplexing)について研究が行われている。OCDMは、時間軸上で同一の時間スロットに複数の通信チャネルを設定でき、且つ、波長軸上において同一波長に複数の通信チャネルを設定できる特徴を有している故、上述した種類の中でも特に研究が行われている。
【0004】
OCDMにおいては、送信側においてチャネル毎に異なる符号で変調が行われ、受信側において送信側と同一符号で復号が行われることで多重分離を行う。すなわち、OCDMにおいては、受信側で復号化する場合には、送信側の符号化で用いた符号と同一符号を用いる必要がある故、符号化で用いた符号を知っていなければ復号化を行うことができず、すなわち、情報の安全確保を高精度で行うことができる。
【0005】
OCDMにおける符号化手段としては、複数の波長と各波長の時間軸上の配置順序とを符号にする波長ホップ/時間拡散併用方式(以下、単に波長ホップ方式と称する)及び2値位相符号を用いる位相符号方式が知られている。
【0006】
位相符号方式のOCDMにおいては、光パルス信号が符号器によって一定の規則(すなわち、符号器に設定される符号)に従って時間軸上に拡散されることにより、光パルス列(以下、チップパルス列とも称する)が形成される。当該チップパルス列は、復号器によって元の光パルス信号に復号される。このとき、符号器によって形成されたチップパルス列の各チップパルス間の相対位相差が符号になる。すなわち、符号器は、光パルス信号をチップパルス列に拡散する際に、各チップパルス間に相対位相差を与え、復号器は各チップパルス間の相対位相差をキャンセルする。
【0007】
送信側の符号器及び受信側の復号器における符号が同一の場合には、復号器で再生される相関波形(自己相関波形)は、符号器によって与えられたチップパルス間の相対位相差がキャンセルされる故、強いピークを有する波形となる。一方、送信側の符号器及び受信側の復号器における符号が異なる場合には、復号器で再生される相関波形(相互相関波形)は、符号器によって与えられたチップパルス間の相対位相差がキャンセルされない故、複数の小さなピークを有する波形となる。
【0008】
OCDM伝送系の符号器/復号器としては、ファイバブラッググレーティング(FBG:Fiber Bragg Grating)を用いたものが従来から知られている。FBGは、光ファイバのコア内に格子状の屈折率変化領域(グレーティング)を形成したデバイスであり、特定波長の光を反射する特徴を有する。近年においては、多点位相シフト構造を有するSSFBG(Superstructured FBG)をOCDMの符号器/復号器に用いる技術が注目されている。かかるSSFBGにおいては、同一光ファイバ中に複数個の同一構成FBG(以下、単位FBGと称する)が形成されることで、構成する符号に応じて隣り合う単位FBGの間隔が「0」又は任意の間隔に設定される。
【0009】
FBGは、光ファイバ型デバイスであるので、光ファイバを用いた光ネットワーク網に対する挿入損失が小さいこと、接続する際に調芯作業が不要であること、平面光回路(PLC:Planar Lightwave Circuit)又はアレイ導波路グレーティング(AWG:Arrayed Waveguide Grating)で構成したデバイスと比較すると光ネットワーク網への親和性が高いこと等のメリットを有している。
【0010】
FBGのブラッグ反射波長(以下、動作波長とも称する)は、FBGに加えられる歪み又はFBGの温度によって変化する。特に、位相符号方式のOCDMによる伝送において、送信側の符号器を構成するFBGの動作波長と受信側の復号器を構成するFBGの動作波長とが数pm以上異なる場合には、受信側において復号化を実行することができない。すなわち、高精度に復号化を実行するためには、送信側の符号器を構成するFBG及び受信側の復号器を構成するFBGの動作波長の差が数pm未満となるように、符号器及び復号器を構成するFBGの動作波長の安定化又は符号器若しくは復号器を構成するFBGの少なくともいずれか一方の動作波長の随時調整を図る必要がある。
【0011】
環境温度変化に対してFBGの動作波長を安定させる手段としては、例えば、熱膨張係数が負である基材に対してFBGを固定することより、環境温度変化に伴うFBGの波長変動量を基材の熱伸縮によって変動した応力に伴うFBGの波長変動量により補償する方法(すなわち、非感熱性光学素子を用いる方法)がある(特許文献1)。また、熱膨張係数が異なる2種類以上の金属によってカンチレバーを構成することにより、環境温度変化に伴うFBGの波長変動量を応力に伴うFBGの波長変動量によって補償する方法(すなわち、温度補償型光学装置を用いる方法)がある(特許文献2)。更に、FBGの動作波長を調整する手段としては、ペルチェ素子を備えるサーモモジュールを用いて、環境温度に依存せずにFBGの温度を一定に制御する方法がある(特許文献3)。
【先行技術文献】
【特許文献】
【0012】
【特許文献1】特表2000−503415
【特許文献2】特表2003−526812
【特許文献3】特開2005−173246
【発明の概要】
【発明が解決しようとする課題】
【0013】
しかしながら、上述したFBGの波長変動対策手段はいずれも環境温度変化に対する方法であるため、FBGに直接的に加えられる歪みに対しては有効ではなく、FBGの波長変動対策が十分ではない。すなわち、環境温度変化のみならず、外部からFBGに印加される張力に対しても対応していなければ、FBGの波長変動を十分に抑制することができない。
【0014】
また、近年の通信需要の急速な増大に伴って各通信装置のコスト低減が要求されているが、FBGの波長変動対策手段に特殊な部材(例えば、特許文献1)又は複雑な構造(例えば、特許文献2)を用いると、かかる要求に対応することが困難になる。
【0015】
本発明の目的は、以上の如き事情に鑑みてなされたものであり、FBGの動作波長変動を高精度に抑制することができ、且つ、簡易な構造を有するFBG装置を提供することにある。
【課題を解決するための手段】
【0016】
上述した課題を解決するために、本発明のFBG装置は、ファイバブラッググレーティングを備える光ファイバデバイスと、光ファイバデバイスを通すスルーホールを備え且つインバー合金からなるケーシングと、スルーホールを充填し且つ光ファイバデバイスをケーシングに固定する固定部と、熱制御素子を備え且つケーシングの内部に配置されたサーモモジュールと、温度センサが設けられ且つサーモモジュールの上に配置された実装プレートと、ファイバブラッググレーティングを、実装プレートの表面上においてファイバブラッググレーティングの伸長方向に移動可能に保持する保持部と、を有することを特徴とする。
【発明の効果】
【0017】
本発明のFBG装置は、上述した構造によって外部から張力が印加された場合及びFBG装置の設置環境の温度が変化した場合であっても、FBGの動作波長変動を高精度に抑制することができる。また、本発明のFBG装置は、特殊な材料を必要とせず、簡易な構造で構成されている故、設計及び製造に要するコストを低減することができる。
【図面の簡単な説明】
【0018】
【図1】OCDM伝送装置のブロック構成図である。
【図2】本発明の実施例1におけるFBG装置の斜視図である。
【図3】(a)は図2におけるFBG装置のX−Y断面図であり、(b)は図2におけるFBG装置のY−Z断面図であり、(c)は図3(a)、(b)における線3c−3cにおける断面図である。
【図4】本発明の実施例1におけるFBG装置の外部からの印加張力の変化に伴う波長変動のシミュレーション結果である。
【図5】本発明の実施例1におけるFBG装置の環境温度変化に伴う波長変動のシミュレーション結果である。
【図6】(a)は実施例2におけるFBG装置のX−Y断面図であり、(b)は実施例2におけるFBG装置のY−Z断面図であり、(c)は図6(a)、(b)の線6c−6cにおける断面図である。
【図7】本発明の実施例2におけるFBG装置の外部からの印加張力の変化に伴う波長変動のシミュレーション結果である。
【図8】本発明の実施例2におけるFBG装置の環境温度変化に伴う波長変動のシミュレーション結果である。
【図9】実施例3におけるFBG装置のX−Z断面図である。
【図10】実施例4におけるFBG装置のX−Z断面図である。
【発明を実施するための形態】
【0019】
以下、本発明の実施例について添付図面を参照しつつ詳細に説明する。
【実施例1】
【0020】
先ず、本発明のファイバブラッググレーティング(FBG:Fiber Bragg Grating)装置を備える光符号分割多重(OCDM:Optical Code Division Multiplexing)伝送装置について、図1を参照しつつその構成を説明する。図1は、OCDM伝送装置のブロック構成図である。
【0021】
OCDM伝送装置10は送信部20及び受信部40を備え、送信部20及び受信部40は伝送路60によって接続されている。OCDM伝送装置10によって伝送される信号は光パルス信号であり、当該光パルス信号は伝送すべき情報を担う2値デジタル電気パルス信号(かかる信号は、「0」又は「1」の2値デジタル信号値が電圧の高低に反映されたパルス信号である。)を光電変換して得られる信号である。
【0022】
送信部20は、光パルス列生成器21、変調信号生成器22、光変調器23、第1の光サーキュレータ24、符号器である第1のファイバブラッググレーティング(FBG:Fiber Bragg Grating)装置25及び温度コントローラ26から構成されている。光パルス列生成器21は、光パルス列31を生成する。変調信号生成器22は、伝送すべき情報を2値デジタル電気パルス信号32として光変調器23に供給する。
【0023】
光変調器23から出力される伝送すべき光パルス信号33は、第1の光サーキュレータ24を介して第1のFBG装置25に入射する。第1のFBG装置25からは符号化された光パルス信号が再び第1の光サーキュレータ24に供給される。符号化された光パルス信号は、第1の光サーキュレータ24を介して光パルス信号34として、伝送路60に送出され、伝送路60を伝播して受信部40に供給される。
【0024】
第1のFBG装置25には、後述する温度センサ(図示せず)が設置されており、第1のFBG装置25を構成するFBGの温度が常時測定され、その結果が温度コントローラ26に温度信号35として供給されている。温度コントローラ26は、供給される温度信号35に応じて、後述するサーモモジュールを駆動せしめる駆動信号36を第1のFBG装置25に供給して温度制御を行う。
【0025】
受信部40は、第2の光サーキュレータ41、復号器である第2のFBG装置42、光カプラ43、光電変換器44、波長モニタ45、波長制御部46及び温度コントローラ47から構成されている。光電変換器44は、光パルス信号を電気パルス信号に変換する。波長モニタ45は、光カプラ43から供給される光パルス信号51の自己相関の度合い(アイ開口の大きさ)を計測する。波長制御部46は、波長モニタ45からの出力52を受けて温度コントローラ47に温度制御信号53を供給する。温度制御信号53を受けた温度コントローラ47は、温度制御信号53に応じて、後述するサーモモジュールを駆動せしめる駆動信号54を第2のFBG装置42に供給して温度制御を行う。
【0026】
伝送路60を伝播して伝送された光パルス信号55は、第2の光サーキュレータ41を介して第2のFBG装置42に入射して復号化される。復号化された光パルス信号は、再び第2の光サーキュレータ41に供給される。更に、復号化された光パルス信号は、第2の光サーキュレータ41を介して光カプラ43に入射し、光パルス信号56及び光パルス信号51に分波される。光パルス信号56は、光電変換器44によって電気パルス信号57として復元される。すなわち、伝送すべき情報である2値デジタル電気パルス信号32は、受信部40で2値デジタル電気パルス信号57となって復元される。
【0027】
第2のFBG装置42には、後述する温度センサ(図示せず)が設置されており、第2のFBG装置42を構成するFBGの温度が常時測定され、その結果が温度コントローラ47に温度信号58として供給されている。温度コントローラ47は、温度制御信号53に応じた駆動信号54以外にも、供給される温度信号58に応じて、FBGの温度を一定にするために駆動信号54を供給する。
【0028】
次に、本発明であるFBG装置について、図2及び図3(a)、(b)、(c)を参照しつつ、その構造を詳細に説明する。なお、上述した送信部20の第1のFBG装置25及び受信部40の第2のFBG装置42は同一構成であるため、以下においては説明の便宜上のために第2のFBG装置42を代表して説明する。
【0029】
図2はFBG装置の概略斜視図である。以下において、図2における図面左右方向をX軸方向、図面上下方向をZ軸方向、FBG装置の伸長方向に沿った方向をY軸方向と定義する。図3(a)はFBG装置の中心部分におけるX−Y断面図であり、図3(b)はFBG装置の中心部分におけるY−Z断面図であり、図3(c)は図3(a)、(b)における線3c−3c(破線で示す)における断面図である。
【0030】
図2及び図3(a)、(b)に示されているように、第2のFBG装置42は、光ファイバデバイス71、実装プレート72、サーモモジュール73、温度センサ74及びケーシング75から構成されている。
【0031】
ケーシング75の内部底面には、サーモモジュール73が配置されている。更に、サーモモジュール73の上には実装プレート72が配置されている。実装プレート72の表面(すなわち、サーモモジュール73との接触面とは逆側の面)には、光ファイバデバイス71を載置するための溝72aが形成されている。具体的には、図3(c)に示されているように、断面がV字形状の溝72aが長手方向(Y軸方向)に沿って形成されている。
【0032】
光ファイバデバイス71は、光ファイバのコア中に位相符号器として動作するFBGが形成されている。光ファイバデバイス71は、FBGが形成された領域(FBG形成領域71a)が実装プレート72の中央に位置するように、溝72aの上に載置されている。更に、光ファイバデバイス71は、実装プレート72の両端の保持領域72bにおいて、接着保持材76(第1接着体)によって実装プレート72との接触が保持されるように固定されている。より具体的には、図3(c)に示されているように、接着保持材76は、保持領域72bにおいて光ファイバデバイス71を覆い且つ溝72aを充填している。ここで、接着保持材76は、光ファイバデバイス71の被覆材料に対して接着力が弱く、単に光ファイバデバイス71のX軸方向及びZ軸方向の動きを抑制しているに過ぎない。すなわち、光ファイバデバイス71は、接着保持材76によって摺動自在に囲まれている。これにより、光ファイバデバイス71の長手方向(Y軸方向)に張力が印加された場合において、光ファイバデバイス71が実装プレート72の溝上を滑るように動くことができる。更に説明すると、例えば、光ファイバデバイス71が後述するケーシング75との固定が行われていない状態においては、光ファイバデバイス71のいずれか一端を引っ張った場合に、光ファイバデバイス71が実装プレート72の溝72a上をY軸方向に滑り、最終的には光ファイバデバイス71がケーシング75から抜けることになる。なお、接着保持材76は、実装プレート72に対しては接着力が強く、実装プレート72に固着されている。
【0033】
光ファイバデバイス71の被覆材料は、一般的にアクリル系の被覆樹脂が使用されているので、例えば、接着保持材76にはオーテックス株式会社製のPARQIT EXGT−3003−1を用いることができる。
【0034】
ケーシング75にはスルーホール75aが設けられており、スルーホール75aを介して光ファイバデバイス71がケーシング75の外部に引き出されている。スルーホール75aは、実装プレート72の上に実装された光ファイバデバイス71を折れ又は屈曲が無い状態で外部に引き出せるような位置に配置されている。すなわち、スルーホール75aは、X軸方向において溝72aからY軸方向に沿った位置に配置され、Z軸方向にいては溝72aと同一の位置に配置されている。
【0035】
スルーホール75aにおいて、光ファイバデバイス71とケーシング75との隙間には接着固定材77(第2接着体)が充填されている。これにより、光ファイバデバイス71はケーシング75に固定され、ケーシング75の封止が施されている。ここで、接着固定材77は、光ファイバデバイス71を覆い、且つ、ケーシング75から光ファイバデバイス71が動かないように固定している。すなわち、接着固定材77は、接着保持材76とは異なり、光ファイバデバイス71の被覆材料に対して接着力が強く、光ファイバデバイス71のX軸方向、Y軸方向、Z軸方向の動きを抑制している。これにより、光ファイバデバイス71に対してケーシング75の外部から張力が印加されも、ケーシング75内部に位置するFBGには当該張力の影響が及ぶことはない。なお、本実施例においては、接着固定材77が固定部となる。
【0036】
例えば、接着固定材77は、硬化後のヤング率が約100GPa以上、且つ、ガラス転位温度(T)が摂氏約80度(80℃)以上であるエポキシ系接着剤を用いることが望ましい。また、上述したエポキシ系接着剤以外にも、例えば、ヤング率が約10GPa以下、且つ、ガラス転位温度(T)が約40℃以上であるアクリル系接着剤を用いることも可能であるが、得られる効果は限られる。更に、接着保持材76は、光硬化型の樹脂又は熱硬化型の樹脂の何れでも良い。
【0037】
実装プレート72は、銅又はアルミニウム等の熱伝導率が大きい金属材料から構成されていることが望ましい。これは、サーモモジュール73における加熱及び冷却を光ファイバデバイス71に効率よく伝え、光ファイバデバイス71の温度を短時間で所定の温度に変更するためである。また、実装プレート72は、上述した金属に限定されることはなく、常温付近で熱膨張率が小さい合金(すなわち、インバー)から構成されても良い。かかる場合には、少なくともFBG形成領域71bにおいて、光ファイバデバイス71と実装プレート72との温度差が約1℃未満になることが好ましい。
【0038】
サーモモジュール73は、熱制御素子であるペルチェ素子を用いた加熱/冷却モジュールである。すなわち、ペルチェ素子に供給する電流方向を変更するだけで、加熱及び冷却を自在に行うことができる。なお、本実施例においてサーモモジュール73は1つだけ配置されているが、実装プレート72の形状及び寸法並びにFBG形成領域71aの寸法を勘案して、複数のサーモモジュール73を配置する構造としても良い。
【0039】
温度センサ74は、サーミスタより構成されている。また、温度センサ74は、実装プレート72に埋設されている。なお、温度センサ74は、上記内容に限定されることはなく、例えば、熱電対又は白金熱抵抗体からなってもよく、更には実装プレート72の上面又は側面に固定されても良い。
【0040】
ケーシング75には端子部(図示せず)が設けられている。当該端子部は、サーモモジュール73への1対の電力供給端子及び温度センサ74の1対の出力端子から構成されている。サーモモジュール73への電力供給端子及び温度センサ74の出力端子は温度コントローラ47(図1参照)に接続されている。これにより、温度センサ74で検出した実装プレート72の温度に応じて、サーモモジュール73の加熱/冷却が制御され、実装プレート72の上に実装されたFBGの温度を所望の温度に維持することができる。
【0041】
また、ケーシング75は、常温付近における熱膨張率が極めて小さい合金(例えば、インバー合金のうちの特に熱膨張係数が約1×10−8/Kであるスーパーインバー)から構成されている。なお、インバー合金とは、例えば、熱膨張係数が約1×10−6/K程度のインバーや、熱膨張係数が約1×10−8/Kのスーパーインバーのことであるが、かかる例に限定されず、インバー合金は幅広い特性を有する合金である。
【0042】
更に、例えば、ケーシング75は、取り外しが可能な蓋部と当該蓋部が取付けられる半体とから構成されても良い。ケーシング75の内部(すなわち、当該半体内部)に光ファイバデバイス71が搭載された後(すなわち、光ファイバデバイス71が接着保持材76による保持及び接着固定材により固着され後)に、当該蓋部を閉じても良い。
【0043】
次に、上述した本願発明の実施例1の形態であるFBG装置における、各種の波長制御動作について説明する。
【0044】
第1に、温度コントローラ47から供給される駆動信号に応じてサーモモジュール73が駆動した場合について説明する。温度コントローラ47からサーモモジュール73に駆動信号が供給されると、サーモモジュール73が駆動し、加熱又は冷却処理が開始される。かかる加熱又は冷却処理によって実装プレート72の温度が変化する。更に、実装プレート72が熱伝導率の大きい金属材料から構成されているので、実装プレート72の温度変化に追従するようにFBG形成領域71aの温度も変化する。これにより、FBGの温度が所定の温度に維持される。
【0045】
このとき、実装プレート72は、加熱又は冷却処理による温度変化に応じて伸縮する。しかしながら、光ファイバデバイス71は長手方向(Y軸方向)に張力が印加されると実装プレート72の溝上を滑るように動くことができるように、実装プレート72の両端の保持領域72bにおいて保持されているので、実装プレート72が伸縮した場合であっても、当該伸縮に係る張力がFBGに伝達されることはない。すなわち、FBGの温度調整処理を行った場合でも、FBGの動作波長はFBGの温度変化のみに依存することになる。これにより、温度変化に伴った実装プレート72の伸縮を考慮する必要がなくなり、必要となる波長変動量を温度調整のみで容易に制御することができる。
【0046】
第2に、第2のFBG装置42に対して外部から張力が印加された場合について説明する。ケーシング75から引き出された光ファイバデバイス71が引っ張られることで、光ファイバデバイス71に張力が印加され、当該張力は接着固定材77によって光ファイバデバイス71がケーシング75に固定された部分までは伝達する。しかしながら、接着固定材77のヤング率が100GPa以上と大きく、接着固定材77により光ファイバデバイス71のX軸方向、Y軸方向、Z軸方向の動きが抑制されているので、当該印加される張力がケーシング75の内部のFBG形成領域71aに伝達されることはない。すなわち、ケーシング75の外部から張力が印加されても、ケーシング75の内部のFBGに影響が及ぶことはない。このことを図4を参照しつつ説明する。
【0047】
図4に、本実施例のFBG装置において、ケーシング75の外部から光ファイバデバイス71に印加された張力によるFBGの波長変動のシミュレーション結果を示す。図4の横軸はケーシング75の外部から印加される張力(N)であり、縦軸はFBGの波長変動量(pm)である。図4に示されているように、光ファイバデバイス71に印加される張力が増加するとともに、FBGの波長変動量も増加している。しかしながら、印加される張力が10Nの場合においても、FBGの波長変動量は約2pmであるので、符号/復号特性への影響も小さい。また、2pm程度の変動であれば、FBGの制御温度を再調整すること(すなわち、温度制御信号53に応じて温度コントローラ47から駆動信号54が再供給されること)で当該変動を容易に修正することができる。
【0048】
更に、接着固定材77のガラス転位温度(T)が約80℃以上であるので、環境温度が高くなった場合においても、接着固定材77が軟化して張力伝達の制御能力が劣化することもない。
【0049】
第3に、本実施例のFBG装置が設置されている環境の温度が変化した場合について説明する。
【0050】
第2のFBG装置42が設置されている環境の温度が変化すると、X軸、Y軸及びZ軸方向においてケーシング75の伸縮が生じてしまう。更に、光ファイバデバイス71が接着固定材77によってケーシング75に固定されているので、ケーシング75の伸縮がケーシング75の内部に位置するFBG形成領域71aに伝達される。しかしながら、本実施例の第2のFBG装置42においてケーシング75の熱膨張係数が約1×10−8/K以下であることから、環境温度変化によるケーシング75の伸縮量は小さく、FBGの制御波長に影響が及ぶことはない。このことを図5を参照しつつ説明する。
【0051】
図5に、本実施例のFBG装置において、FBG装置が設置された環境の温度が変化した場合のFBGの波長変動のシミュレーション結果を示す。図5の横軸は第2のFBG装置42が設置された環境の温度(℃)であり、縦軸はFBGの波長変動量(pm)である。また、環境温度が20℃のときを基準(すなわち、FBGの波長変動量を「0」)としている。図5に示されているように、環境温度が−40℃から上昇するとともに、FBGの波長変動量が徐々に減少している。これは、上述したように、環境温度変化に伴ってケーシング75が伸縮し、当該伸縮がFBG形成領域71aにまで伝達されているからである。しかしながら、環境温度が−40℃〜+80℃で変化した場合においても、ケーシング75の伸縮によるFBGの波長変動は、−7pm〜+5pm(幅で12pm)程度である。この程度の波長変動であれば、FBGの制御温度を再調整することで当該変動を容易に修正することができる。
【0052】
なお、サーモモジュール73がペルチェ素子から構成されていることから、実装プレート72を加熱する場合にはケーシング75が冷却され、又は実装プレート72を冷却する場合にはケーシング75が加熱される。しかしながら、ケーシング75の熱膨張係数が約1×10−8/K以下であることから、当該加熱又は冷却による伸長量も小さく、FBGの制御波長に影響が及ぶことはない。
【0053】
以上のように、本発明のFBG装置は、ファイバブラッググレーティングを備える光ファイバデバイスと、光ファイバデバイスを通すスルーホールを備え且つインバー合金からなるケーシングと、スルーホールを充填し且つ光ファイバデバイスをケーシングに固定する固定部と、ペルチェ素子を備え且つケーシングの内部に配置されたサーモモジュールと、温度センサが設けられ且つサーモモジュールの上に配置された実装プレートと、ファイバブラッググレーティングを、実装プレートの表面上においてファイバブラッググレーティングの伸長方向に移動可能に保持する保持部と、を有することを特徴としている。
【0054】
本発明のFBG装置は、上述した構造によって外部から張力が印加された場合及びFBG装置の設置環境の温度が変化した場合であっても、FBGの動作波長変動を高精度に抑制することができる。また、本発明のFBG装置は、特殊な材料を必要とせず、簡易な構造で構成されている故、設計及び製造に要するコストを低減することができる。
【0055】
なお、本実施例においては、OCDMにおける光位相符号器を例に挙げて説明したが、これに限られることはなく、例えば波長分割多重(WDM:Wavelength Division Multiplexing)における波長フィルタデバイスに適用することもできる。
【実施例2】
【0056】
図6(a)、(b)、(c)を参照しつつ、本発明の実施例2におけるFBG装置について詳細に説明する。実施例2におけるFBG装置は、実施例1のFBG装置とほぼ同一であるが、ケーシングから光ファイバデバイスを引き出す部分についての構造のみが異なっている。以下において、実施例1と同一構造部分については、同一符号を付してその説明を省略する。
【0057】
図6における各図面は図3における各図面と同様に、図6(a)はFBG装置の中心部分におけるX−Y断面図であり、図6(b)はFBG装置の中心部分におけるY−Z断面図であり、図6(c)は図6(a)、(b)の線6c−6c(破線で示す)における断面図である。
【0058】
図6(a)、(b)に示されているように、第3のFBG装置80は、第2のFBG装置42と同様に、光ファイバデバイス71、実装プレート72、サーモモジュール73、温度センサ74及びケーシング81から構成されている。光ファイバデバイス71は、ケーシング81のスルーホール81aに固定されたスルーチューブ82を介してケーシング75の外部に引き出されている。また、光ファイバデバイス71は、スルーチューブ82の両端において、接着固定材83(第2接着体)によってスルーチューブ82に固定されている。
【0059】
接着固定材83は、光ファイバデバイス71を覆い、且つ、スルーチューブ82から光ファイバデバイス71が動かないように固定している。すなわち、接着固定材83は、光ファイバデバイス71の被覆材料に対して接着力が強く、光ファイバデバイス71のX軸方向、Y軸方向、Z軸方向の動きを抑制している。これにより、光ファイバデバイス71に対してケーシング81の外部から張力が印加されも、ケーシング81内部に位置するFBGには当該張力の影響が及ぶことはない。なお、本実施例においては、スルーチューブ82及び接着固定材83から固定部が形成されている。
【0060】
例えば、接着固定材83は、実施例1の接着固定材77と同様に、硬化後のヤング率が約100GPa以上、且つ、ガラス転位温度(T)が摂氏約80度(80℃)以上であるエポキシ系接着剤を用いることが望ましい。また、上述したエポキシ系接着剤以外にも、例えば、ヤング率が数GPa、且つ、ガラス転位温度(T)が約40℃以上であるアクリル系接着剤を用いることも可能であるが、得られる効果は限られる。
【0061】
なお、以下において、ケーシング81の内部に位置する接着固定材を接着固定材83aとも称し、ケーシング81の外部に位置する接着固定材を接着固定材83bとも称する。
【0062】
ケーシング81は、実施例1の場合とは異なり、熱膨張係数が約2×10−6/K以下の合金から構成されている。また、スルーチューブ82は、アルミニウム又は銅等の金属からなることが好ましいが、ケーシング材料よりも熱膨張係数が大きければ、他の金属材料であっても良い。
【0063】
次に、上述した本願発明の実施例2の形態であるFBG装置における、各種の波長制御動作について説明する。
【0064】
先ず、温度コントローラ47から供給される駆動信号に応じてサーモモジュール73が駆動した場合についてのFBGの波長制御動作は、実施例1と同様であることから、その説明は省略する。これは、駆動信号に応じてサーモモジュール73が駆動した場合に係るFBG装置の構成部材が、実施例1と実施例2とで同一構造であるからである。具体的には、光ファイバデバイス71が接着保持材76によって保持されている点である。
【0065】
また、第3のFBG装置80に対して外部から張力が印加された場合についてのFBGの波長制御動作も、実施例1と同様であることから、その説明は省略する。これは、光ファイバケーブル71が接着固定材83によって各軸方向への動きが抑制された状態でスルーチューブ82に固定されているからである。図7に、本実施例のFBG装置において、ケーシング75の外部から光ファイバデバイス71に印加された張力によるFBGの波長変動のシミュレーション結果を示す。図7と図4を比較すると、両シミュレーション結果は同等であることが判り、本実施例における第3のFBG装置80も実施例1と同様に、外部からの張力に対して高精度に動作波長制御を行えていることが判る。
【0066】
次に、本実施例のFBG装置が設置されている環境の温度が変化した場合について説明する。以下においては、説明を簡単にするために環境温度が上昇した場合を例に説明する。
【0067】
第3のFBG装置80が設置されている環境の温度が上昇すると、ケーシング81が伸長してしまう。更に、光ファイバデバイス71が接着固定材83及びスルーチューブ82によってケーシング81に固定されているので、ケーシング81の伸長がケーシング81の内部に位置するFBG形成領域71aに伝達される。すなわち、ケーシング81の内部に位置するFBGは、−Y方向に張力が印加される。
【0068】
また、第3のFBG装置80が設置されている環境の温度が上昇すると、スルーチューブ82も伸長してしまう。ここで、スルーチューブ82の両端において光ファイバデバイス71が接着固定材83によって固定されていることから、スルーチューブ82が伸長すると、接着固定材83aよりもケーシング81の内部に位置するFBGには+Y方向に張力が印加される。これとは逆に、接着固定材83bからケーシング81の外部に引き出された光ファイバデバイス71には−Y方向に張力が印加される。
【0069】
以上のことから、ケーシング81の内部に位置するFBGに対しては、ケーシング81の伸長による張力とスルーチューブ82の伸長による張力が相反する方向に加わるので、ケーシング81の伸長による張力をスルーチューブ82の伸長による張力によって相殺することができる。
【0070】
なお、上述した説明においては、環境温度が上昇する場合を説明したが、環境温度が下がる場合には、ケーシング81及びスルーチューブ82が縮み、光ファイバデバイス71に加わる張力方向が逆になるだけである。
【0071】
図8に、本実施例のFBG装置において、FBG装置が設置された環境の温度が変化した場合のFBGの波長変動のシミュレーション結果を示す。図8の横軸は第3のFBG装置80が設置された環境の温度(℃)であり、縦軸はFBGの波長変動量(pm)である。また、環境温度が20℃のときを基準(すなわち、FBGの波長変動量を「0」)としている。図8に示されているように、環境温度が−40℃から上昇するとともに、FBGの波長変動量も徐々に減少している。これは、上述したように、環境温度変化に伴ってケーシング81が伸縮し、当該伸縮がFBG形成領域71aにまで伝達されているからである。しかしながら、環境温度が−40℃〜+80℃で変化した場合においても、ケーシング81の伸縮によるFBGの波長変動は、−2pm〜+2pm(幅で4pm)程度である。ここで、本実施例における結果は、実施例1における図5に示されたシミュレーション結果よりもFBGの波長変動が小さい。これは、上述したように、ケーシング81の伸縮以外にもスルーチューブ82の伸縮が生じ、ケーシング81の内部に位置するFBGに対しては、ケーシング81の伸長による張力とスルーチューブ82の伸長による張力が相反する方向に加わることにより、ケーシング81の伸長による張力をスルーチューブ82の伸長による張力によって相殺される故、FBGの波長変動が実施例1の結果よりも小さいと考えられる。また、この程度の波長変動であれば、FBGの制御温度を再調整することで当該変動を容易に修正することができる。
【0072】
このように、本実施例では環境温度変化によるFBGの波長変動をより小さくすることができるので、実施例1よりも熱膨張係数が大きいケーシング材料を用いることが可能になる。
【実施例3】
【0073】
実施例1における実装プレート72の表面に形成された溝72aのX−Z断面は、V字形状に限られることはない。例えば、図9に示されているように、溝91のX−Z断面が矩形状であっても良い。
【0074】
このような場合であっても、接着保持材76は、光ファイバデバイス71の被覆材料に対して接着力が弱く、単に光ファイバデバイス71のX軸方向及びZ軸方向の動きを抑制しているに過ぎない故、光ファイバデバイス71の長手方向(Y軸方向)に張力が印加された場合において、光ファイバデバイス71が実装プレート72の溝上を滑るように動くことができる。従って、実施例1及び2と同様に、FBGの温度調整処理を行った場合でも、FBGの動作波長はFBGの温度変化のみに依存することになる。これにより、温度変化に伴った実装プレート72の伸縮を考慮する必要がなくなり、必要となる波長変動量を温度調整のみで容易に制御することができる。
【実施例4】
【0075】
また、実施例1のように、溝72aの深さが光ファイバデバイス71の直径よりも大きく、光ファイバデバイス71が溝72a内に配置されることに限定されない。例えば、図10に示されているように、溝101の深さが光ファイバデバイス71の直径よりも小さく、光ファイバデバイス71が溝101から露出してもよい。この場合に、接着保持材76は、溝101を充填せずに、光ファイバデバイス71の露出面及び実装プレート72の一部を覆うように設けられても良い。
【0076】
このような場合であっても、接着保持材76は、光ファイバデバイス71の被覆材料に対して接着力が弱く、単に光ファイバデバイス71のX軸方向及びZ軸方向の動きを抑制しているに過ぎない故、光ファイバデバイス71の長手方向(Y軸方向)に張力が印加された場合において、光ファイバデバイス71が実装プレート72の溝上を滑るように動くことができる。従って、実施例1及び2と同様に、FBGの温度調整処理を行った場合でも、FBGの動作波長はFBGの温度変化のみに依存することになる。これにより、温度変化に伴った実装プレート72の伸縮を考慮する必要がなくなり、必要となる波長変動量を温度調整のみで容易に制御することができる。
【符号の説明】
【0077】
10 OCDM伝送装置
20 送信部
25 第1のFBG装置
40 受信部
42 第2のFBG装置
60 伝送路
71 光ファイバデバイス
72 実装プレート
73 サーモモジュール
74 温度センサ
75 ケーシング
76 接着保持材
77 接着固定材




【特許請求の範囲】
【請求項1】
ファイバブラッググレーティングを備える光ファイバデバイスと、
前記光ファイバデバイスを通すスルーホールを備え且つインバー合金からなるケーシングと、
前記スルーホールを充填し且つ前記光ファイバデバイスを前記ケーシングに固定する固定部と、
熱制御素子を備え且つ前記ケーシングの内部に配置されたサーモモジュールと、
温度センサが設けられ且つ前記サーモモジュールの上に配置された実装プレートと、
前記ファイバブラッググレーティングを、前記実装プレートの表面上において前記ファイバブラッググレーティングの伸長方向に移動可能に保持する保持部と、を有することを特徴とするファイバブラッググレーティング装置。
【請求項2】
前記保持部は、前記ファイバブラッググレーティングを摺動自在に囲み且つ前記実装プレートに固着した硬化性の第1接着体からなることを特徴とする請求項1に記載のファイバブラッググレーティング装置。
【請求項3】
前記固定部は、前記光ファイバデバイスを前記ケーシングに固着する硬化性の第2接着体からなることを特徴とする請求項1又は2に記載のファイバブラッググレーティング装置。
【請求項4】
前記ケーシングの熱膨張係数が1×10−8/K以下であることを特徴とする請求項3に記載のファイバブラッググレーティング装置。
【請求項5】
前記固定部は、前記スルーホールに固定されたスルーチューブと前記スルーチューブの両端で前記光ファイバデバイスを固定する硬化性の第2接着体とからなることを特徴とする請求項1又は2に記載のファイバブラッググレーティング装置。
【請求項6】
前記ケーシングの熱膨張係数が2×10−6/K以下であることを特徴とする請求項5に記載のファイバブラッググレーティング装置。
【請求項7】
前記スルーチューブの熱膨張係数が前記ケーシングの熱膨張係数よりも高いことを特徴とする請求項6に記載のファイバブラッググレーティング装置。
【請求項8】
前記第2接着体は、硬化後のヤング率が100GPa以上且つガラス転位温度が80℃以上のエポキシ系接着剤又は硬化後のヤング率が10GPa以下且つガラス転位温度が40℃以上のアクリル系接着剤を含むことを特徴とする請求項3乃至7のいずれか1に記載のファイバブラッググレーティング装置。




【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate