説明

マイクロニードルの力学特性評価装置

【課題】 薄膜に対して一様な2軸引張応力を再現性良く付与することが可能であって、しかも、微小且つ含水性のある薄膜でも容易に取り扱うことが可能なマイクロニードルの力学特性評価装置を提供する。
【解決手段】 本発明に係るマイクロニードルの力学特性評価装置50は、パンチ通過孔30が貫通形成されてその上面に薄膜Uが載置される薄膜載置板25、及びニードル通過孔28が貫通形成されて薄膜Uを薄膜載置板25上に押圧固定する薄膜押さえ板26を具備するホルダユニット51と、少なくとも薄膜側の先端が筒状に形成されて薄膜Uを裏面側から押圧するパンチユニット52と、薄膜Uのうちパンチユニット3によって押圧された部分に対してその表面側からマイクロニードル47を刺入するニードルユニット53と、を備えるものである。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、薄膜刺入時におけるマイクロニードルの力学特性を評価するマイクロニードルの力学特性評価装置に関し、特に、微小且つ含水性のある薄膜に対しても一様な2軸引張応力を容易に付与することが可能なマイクロニードルの力学特性評価装置に関する。
【背景技術】
【0002】
DDSシステム(Drug Delivery System)、すなわち必要な時に必要な量の薬剤を必要とする部位に到達させる仕組みの構築に向け、近年、マイクロニードルと呼ばれる極小の針を神経の届かない表皮のみに刺入する、無痛の薬剤投与方法が提唱されている。ここで、マイクロニードルが薬剤放出に必要な深さまで刺入できるだけの十分な剛性や強度を有しているかを検討したり、マイクロニードルの先端形状の設計や材料設計を行う上で、皮膚刺入時における力学特性を評価することが重要となる。マイクロニードルの力学特性を評価する試験は、引張応力を付与した状態の皮膚標本や人工培養皮膚(以下、単に「培養皮膚等」と略す)に対し、マイクロニードルを刺入することにより行われる。ここで、培養皮膚等のような薄膜に対して引張応力を付与するための薄膜引張試験装置としては、薄膜の周縁部をチャックして引っ張ることによって引張応力を付与するタイプのものが従来用いられている(例えば、特許文献1参照)。
【0003】
【特許文献1】特開平09−184794号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
しかし、従来の薄膜引張試験装置を用いて培養皮膚等に引張応力を付与する場合、以下のような問題がある。まず、培養皮膚等は各個体によって形状にばらつきがあり、また、一個体中でも部位によって形状が異なるものである。従って、培養皮膚等の周縁部をチャックして引っ張る方法では、ある1つの培養皮膚等の全域に渡って一様な2軸引張応力を付与することが難しく、また、形状の異なる培養皮膚等に対して一定の2軸引張応力を再現性良く付与することも難しい。更に、従来の薄膜引張試験装置を応用して培養皮膚等に2軸引張応力を付与しようとする場合、培養皮膚等を2軸方向にそれぞれ引っ張るという複雑な操作が必要とされる。この点からも、各培養皮膚等に対して一定の2軸引張応力を再現性良く付与することが難しい。
【0005】
また、培養皮膚等は、直径が10〜30mm程度で厚みが300μmと小さく、且つ、含水性を有するものである。従って、その周縁部をチャックする作業が難しく、培養皮膚等が皺くちゃになってしまったり、或いはマイクロニードルを刺入する中心部分を誤って傷付けててしまったり、或いはチャック作業に時間が掛かり過ぎて培養皮膚等が乾燥してしまったりすることにより、力学特性の評価を精度良く行うことができないという問題がある。また、チャックした培養皮膚等を引っ張る時に、チャックした周縁部が破れやすいという問題もある。更に、培養皮膚等においてチャック部分の周辺では2軸引張応力が一様とならないため、試験に使用することができない。従って、微小な培養皮膚等のうち、更にその中央部のごく狭い領域でしか一様な2軸引張応力を実現することができず、マイクロニードルを刺入するための領域として十分な広さを確保することができないという問題もある。
【0006】
本発明は、このような問題に鑑みてなされたものであり、薄膜に対して一様な2軸引張応力を再現性良く付与することが可能であって、しかも、微小且つ含水性のある薄膜でも容易に取り扱うことが可能なマイクロニードルの力学特性評価装置を提供する。
【課題を解決するための手段】
【0007】
上記目的を達成するための請求項1記載のマイクロニードルの力学特性評価装置は、マイクロニードルの薄膜刺入時における力学特性を評価するマイクロニードルの力学特性評価装置であって、パンチ通過孔が貫通形成されてその上面に薄膜が載置される薄膜載置板、及びニードル通過孔が貫通形成されて薄膜を前記薄膜載置板上に押圧固定する薄膜押さえ板を具備するホルダユニットと、少なくとも薄膜側の先端が筒状に形成されて前記パンチ通過孔を通して筒状の先端で薄膜を裏面側から押圧するパンチユニットと、薄膜のうち前記パンチユニットによって押圧された部分に対して前記ニードル通過孔を通してその表面側からマイクロニードルを刺入するニードルユニットと、を備えるものである。
【0008】
請求項2記載のマイクロニードルの力学特性評価装置は、前記薄膜を裏面側から観察するためのマイクロスコープを更に備えるものである。
【0009】
請求項3記載のマイクロニードルの力学特性評価装置は、前記ホルダユニットが、前記パンチユニットと前記ニードルユニットとを支持する装置本体に対して着脱可能に設けられたものである。
【発明の効果】
【0010】
本発明の請求項1に係るマイクロニードルの力学特性評価装置によれば、薄膜載置板の上に薄膜を載置してその上から薄膜押さえ板で押さえ付けるという容易な作業で薄膜を固定できるので、薄膜の形状によらずに一様な2軸引張応力を再現性良く付与することができる。更に、パンチユニットを1軸方向に移動させるだけの単純な操作でよい点からも、一様な2軸引張応力を再現性良く付与することが可能である。
【0011】
また、薄膜の周縁部をチャックする作業が不要であるため、微小且つ含水性のある薄膜であっても容易に取り扱うことができ、薄膜が皺くちゃになったり、薄膜の中心部を傷付けたり、固定作業に時間が掛かり過ぎて薄膜が乾燥することがなく、力学特性の評価を精度良く行うことができる。また、パンチユニットで押圧して薄膜に引張応力を付与する際に、薄膜が周縁部で破れることも生じにくい。更に、本発明に係る薄膜の固定方法によれば、薄膜の周縁部をチャックして固定する場合と比較して、マイクロニードルを刺入するための領域として十分な広さを確保することができ、微小な薄膜であっても面積の有効利用が可能となる。
【0012】
また、本発明の請求項2に係るマイクロニードルの力学特性評価装置によれば、マイクロニードル刺入時の薄膜の様子をマイクロスコープで観察することにより、マイクロニードルの力学特性をより正確に評価することができる。
【0013】
また、本発明の請求項3に係るマイクロニードルの力学特性評価装置によれば、ホルダユニットが装置本体対して着脱可能に設けられたので、薄膜の固定作業は、ホルダユニットを装置本体から取り外し、このホルダユニットに薄膜を固定した後、ホルダユニットごと装置本体に再度装着することにより行うことができる。従って、薄膜の固定作業時にパンチユニットやニードルユニットによって薄膜を傷付けることがない。また、マイクロニードルの刺入試験後に、離れた場所にある顕微鏡まで、薄膜をホルダユニットごと容易に持ち運ぶことができる。
【発明を実施するための最良の形態】
【0014】
以下、本発明の第1実施例に係るマイクロニードルの力学特性評価装置の構成について、図面に基づいて説明する。図1は、第1実施例に係るマイクロニードルの力学特性評価装置1の外観を示す概略斜視図である。マイクロニードルの力学特性評価装置1は、薄膜Uを保持するためのホルダユニット2と、薄膜Uに2軸引張応力を付与するためのパンチユニット3と、薄膜Uにマイクロニードルを刺入するためのニードルユニット4と、これら3つのユニットを支持する装置本体5と、を備えるものである。尚、本実施例では、本発明に係る薄膜Uとして微小且つ含水性のある培養皮膚等を使用しているが、大型の薄膜や含水性のない薄膜であってもよく、また再生医療で使用される角膜など他の生体組織であってもよい。更に、薄膜Uはこれら生体組織だけに限られず、例えばシリコン薄膜等を使用することも可能である。
【0015】
前記装置本体5は、図1に示すように、支持柱6が突設されたベース板7と、支持柱6に固定されて水平方向に延びる3個の支持アーム8,9,10と、支持柱6に固定されて各支持アーム8,9,10が支持柱6に沿って滑り落ちるのを防止する3個の落下防止部材11と、ホルダユニット2の芯出しを行うためのホルダ芯出し棒12とを有している。
【0016】
3個の支持アームのうち最上位置に固定された第1支持アーム8は、前記ニードルユニット4を支持するためのものである。この第1支持アーム8は、樹脂等からなり、図1に示すように、その先端部には、ニードルユニット4を取り付け可能な大きさの取付孔13が貫通形成されるとともに、この取付穴13から第1支持アーム8の先端に達するようにして、所定幅の切欠き14が形成されている。このように構成される第1支持アーム8は、その基端部が支持柱6に固定される一方、その先端部に、切欠き14を通過するようにして固定ネジ15が螺合されている。このような構成によれば、ニードルユニット4を取付孔13に挿通させた状態で固定ネジ15を締めると、樹脂等からなる第1支持アーム8は、切欠き14の幅が狭くなるように弾性変形し、縮径した取付孔13によってニードルユニット4が挟持される。これにより、第1支持アーム8によってニードルユニット4が支持されるものとなっている。
【0017】
3個の支持アームのうち中間位置に固定された第2支持アーム9は、前記ホルダユニット2を支持するためのものである。この第2支持アーム9も樹脂等からなり、その先端には、ホルダユニット2を載置するためのホルダ載置台16が設けられている。このホルダ載置台16には、図4に示すように、その上面から所定深さだけ段落ちして平面視略矩形の段落ち溝17が形成されるとともに、この段落ち溝17の略中央には、平面視で段落ち溝17より小さい矩形形状のパンチ通過穴18が、ホルダ載置台16の底面まで達するようにして形成されている。また、ホルダ載置台16の四隅には、ネジ孔19がそれぞれ形成されている。
【0018】
3個の支持アームのうち最下位置に固定された第3支持アーム10は、前記パンチユニット3を支持するためのものである。この第3支持アーム10も樹脂等からなり、図1に示すように、その先端部には、パンチユニット3を取り付け可能な大きさの取付孔20が貫通形成されるとともに、この取付孔20から第3支持アーム10の先端に達するようにして、所定幅の切欠き21が形成されている。このように構成される第3支持アーム10は、その基端部が支持柱6に固定される一方、その先端部に、切欠き21を通過するようにして固定ネジ22が螺合されている。このような構成によれば、パンチユニット3を取付穴20に挿通させた状態で固定ネジ22を締めると、樹脂等からなる第3支持アーム10は、切欠き21の幅が狭くなるように弾性変形し、縮径した取付孔20によってパンチユニット3が挟持される。これにより、第3支持アーム10によってパンチユニット3が支持されるものとなっている。
【0019】
ホルダ芯出し棒12は、図1に示すように、大径の頭部23と、長尺な棒状の軸部24とから構成されるものである。このホルダ芯出し棒12の軸部24を、3個の支持アーム8,9,10にそれぞれ挿通させることにより、ホルダユニット2の中心位置が、パンチユニット3の中心位置とニードルユニット4の中心位置に一致するようになっている。これにより、ホルダユニット2の略中央に載置された薄膜Uに対し、後述するプレッシャーやマイクロニードルを正確に位置決めすることができる。
【0020】
図2から図4は、前記ホルダユニット2について説明するための図であり、図2は図1において第2支持アーム9のホルダ載置台16の近傍を拡大した部分拡大斜視図、図3と図4はホルダユニット2のホルダ載置台16への取り付けを説明するための概略斜視図である。尚、図2では説明の便宜上、ホルダ載置台16とホルダユニット2の一部を破断した状態で示している。図3と図4に示すように、ホルダユニット2は、薄膜Uを載置するための薄膜載置板25と、この薄膜載置板25の上に薄膜Uを押圧固定するための薄膜押さえ板26と、この薄膜押さえ板26を前記ホルダ載置台16上に押さえ付けて固定するためのホルダ押さえ板27とを有している。薄膜押さえ板26は、図3に示すように、平面視で略矩形形状のガラス板であって、その中央部には、ニードルユニット4を通過させるためのニードル通過孔28が貫通形成されている。尚、薄膜押さえ板26の材質や形状は、本実施例に限定されず適宜設計変更が可能である。
【0021】
薄膜載置板25は、図3に示すように、その平面視形状が図4に示すホルダ載置台16の段落ち溝17の平面視形状と略同形であって、その厚みが段落ち溝17の深さより大きいものである。この薄膜載置板25の上面には、薄膜押さえ板26を嵌合させるための押さえ板嵌合溝29が形成されている。押さえ板嵌合溝29は、その平面視形状が薄膜押さえ板26と略同形であって、その深さが薄膜押さえ板26の厚みと略等しくなっている。そして、押さえ板嵌合溝29の底部には、パンチユニット3を通過させるためのパンチ通過孔30が、薄膜押さえ板26を貫通して形成されている。このパンチ通過孔30は、図2に示すように、薄膜押さえ板26のニードル通過孔28と略同径であって、薄膜載置板25の底面に向かって徐々に拡径することにより、パンチユニット3を通過させやすくなっている。更に、図3に示すように、押さえ板嵌合溝29には、嵌合させた薄膜押さえ板26を取り出しやすくするため、その縁部には一対の取り出し用溝31が、その四隅には取り出し用穴32がそれぞれ形成されている。
【0022】
ホルダ押さえ板27は、図3に示すように、平面視で略ロの字形状の部材であって、その中央部には、ニードルユニット4を通過させるためのニードル通過穴33が貫通形成されている。このニードル通過穴33の平面視形状は、薄膜押さえ板26の平面視形状より若干小さい略矩形形状である。これにより、図2に示すように、薄膜押さえ板26を覆うようにしてホルダ押さえ板27を配設した時に、ホルダ押さえ板27の内周縁部が薄膜押さえ板26の外縁部に当接するようになっている。また、図3と図4に示すように、ホルダ押さえ板27には、その四隅に、後述するホルダ固定用ネジ34を挿通させるためのネジ挿通孔35がそれぞれ形成されるとともに、各ネジ挿通孔35の若干内側には、押さえ板固定用ネジNを螺合させるためのネジ孔36がそれぞれ形成されている。
【0023】
前記パンチユニット3は、図1に示すように、薄膜Uを押圧するためのプレッシャー37と、このプレッシャー37を所望の距離だけ移動させるためのマイクロメータ38とを備えるものである。ここで、マイクロメータ38は、精密な長さの測定に用いられる従来公知の測定器であって、その一端側に設けられたラチェットストップ39を回転させると、マイクロメータ本体40からスピンドル41と呼ばれる棒状の部材が出没する構造を有している。一方、図5は、プレッシャー37の構造を示す概略縦断面図である。プレッシャー37は、マイクロメータ38に取り付けるための取付部42と、薄膜Uを押圧するための押圧部43とを備えている。取付部42は、略円柱形状の外形を有し、押圧部43と逆側の端部から、マイクロメータ38のスピンドル41と略等しい断面形状のスピンドル嵌入孔44が形成されている。更に、取付部42には、その外周面からスピンドル嵌入孔44に達するネジ孔45が形成され、このネジ孔45に図示しないネジが螺合されている。また、押圧部43は、取付部42より小径の略円柱形状の外形を有し、取付部42と逆側の端部から、断面略円形の薄膜引張用孔46が形成されることで筒状になっている。このように構成されるプレッシャー37は、そのスピンドル嵌入孔44に対してスピンドル41を嵌入し、ネジ孔45に螺合されたネジを締め付けてその先端でスピンドル41を押圧することにより、図1に示すように、マイクロメータ38の上端に取り付けられる。そして、ラチェットストップ39の操作によって、プレッシャー37を上下方向に所望の距離だけ移動させることができる。
【0024】
尚、本実施例ではマイクロメータ38を手動で操作することによってパンチユニット3を所望の距離だけ移動させているが、このパンチユニット3の移動をコンピュータによる自動制御としてもよい。また、プレッシャー37を構成する押圧部43の外径や薄膜引張用孔46の内径の大きさは、薄膜Uの大きさや、付与しようとする2軸引張応力の大きさ等に応じて適宜設計変更が可能である。更に、プレッシャー37は、少なくとも薄膜Uに接触する側の端部が筒状に形成されていれば足り、その他の部分の形状は本実施例に限定されず適宜設計変更が可能である。この筒状としては、本実施例の円筒形状以外に例えば断面多角形の筒状とすることもできるが、薄膜Uに対して一様な2軸引張応力を付与するためには、より円筒形状に近い筒状とした方が好適である。
【0025】
前記ニードルユニット4は、図1に示すように、薄膜Uに刺入するためのマイクロニードル47と、このマイクロニードル47を保持するためのニードルホルダ48と、マイクロニードル47を所望の距離だけ移動させるためのマイクロメータ49と、マイクロニードル47の刺入力を測定するためのロードセル(不図示)とを備えるものである。ここで、本実施例では、マイクロニードル47として、生体適合性材料であるPEG(ポリエチレングリコール)からなるものを使用している。また、マイクロメータ49は、パンチユニット3のプレッシャー37を移動させるためのマイクロメータ38と同じ構成であるため、ここでは同じ符号を付し、その説明を省略する。また、ニードルホルダ48には、図示しないスピンドル嵌入孔が形成されており、このスピンドル嵌入孔にマイクロメータ49のスピンドル41を嵌入してネジ等で固定することにより、マイクロメータ49の下端にニードルホルダ48が取り付けられる。そして、マイクロメータ49のラチェットストップ39の操作によって、マイクロニードル47を上下方向に所望の距離だけ移動させることができる。
【0026】
尚、本実施例ではマイクロメータ49を手動で操作することによってマイクロニードル47を所望の距離だけ移動させているが、このマイクロニードル47の移動をコンピュータによる自動制御としてもよい。また、マイクロニードル47は、本実施例のPEG製のものに代えて、例えばシリコン製や金属製のものを使用してもよく、その形状や本数も任意に変更可能である。更に、ニードルホルダ48は、マイクロニードル47を保持可能であれば、その形状は本実施例に限定されず適宜設計変更することができる。
【0027】
次に、第1実施例に係るマイクロニードルの力学特性評価装置1の操作方法について説明する。マイクロニードルの力学特性を評価するに際しては、第1工程として、刺入対象物たる薄膜Uを保持するホルダユニット2を、第2支持アーム9のホルダ載置台16に固定する。すなわち、まず図3に示すように、薄膜載置板25の上に、そのパンチ通過孔30を覆うようにして薄膜Uを載置する。そして、この薄膜Uを覆うようにして、薄膜押さえ板26を薄膜載置板25の押さえ板嵌合溝29に嵌合させる。これにより、図2に示すように、薄膜Uは、その周縁部が薄膜押さえ板26によって押さえ付けられることにより、薄膜載置板25の上で水平方向に位置ズレしないよう位置決めされるとともに、その中央部が、薄膜押さえ板26のニードル通過孔28と薄膜載置板25のパンチ通過孔30を介して、上下方向に露呈した状態となっている。尚、前述のように、押さえ板嵌合溝29の深さが薄膜押さえ板26の厚みと略等しくなっているので、薄膜載置板25の上面と薄膜押さえ板26の上面は略面一になる。
【0028】
そして、図3に示すように、薄膜押さえ板26と一体化された薄膜載置板25を、段落ち溝17に嵌合させることにより、ホルダ載置台16の上に配設する。この時、前述のように、薄膜押さえ板26の厚みは段落ち溝17の深さより大きいため、図4に示すように、段落ち溝17に嵌合された薄膜押さえ板26は、その一部がホルダ載置台16の上面より突出した状態となる。そして、図4に示すように、薄膜載置板25を覆うようにしてホルダ押さえ板27を配設する。この時、ホルダ押さえ板27は、薄膜押さえ板26の突出厚み分だけ、ホルダ載置台16の上面から浮いた状態となる。
【0029】
この状態から、図4に示すように、4個のホルダ固定用ネジ34を、ホルダ押さえ板27の四隅に形成されたネジ挿通孔35に挿通させて、ホルダ載置台16の四隅に形成されたネジ孔19にそれぞれ螺合させる。これにより、ホルダユニット2がホルダ載置台16の上に固定される。更に、4個の押さえ板固定用ネジNを、ホルダ押さえ板27の4個のネジ孔36にそれぞれ螺合させ、その先端を薄膜押さえ板26の四隅にそれぞれ当接させる。このように、薄膜押さえ板26が押さえ板固定用ネジNに四隅を押さえ付けられることにより、更には図2に示すように、薄膜押さえ板26の外縁部がホルダ押さえ板27の内周縁部によって押さえ付けられることにより、薄膜Uはパンチユニット3から押圧力を受けても位置ズレしないよう鉛直方向に位置決めされる。また、ホルダユニット2が装置本体5に対して着脱可能に設けられ、薄膜Uのセッティングを装置本体5から離れた場所で行うことができるので、パンチユニット3やニードルユニット4で薄膜Uを傷付けることがない。
【0030】
次に、第2工程として、パンチユニット3により薄膜Uに対して2軸引張応力を付与する。すなわち、図2に示すように、パンチユニット3を構成するプレッシャー37が薄膜Uから離間した状態から、マイクロメータ38を操作することでプレッシャー37を鉛直上方へ移動させることにより、図6に示すように、プレッシャー37の先端で薄膜Uの中央部を鉛直上方へ押し上げる。ここで、図7は、図6において薄膜Uの近傍を拡大した部分拡大斜視図である。前述のように、プレッシャー37の先端は薄膜引張用孔46が形成されることで略円筒形状となっているため、薄膜Uの外形によらず、薄膜引張用孔46の直上位置では、薄膜Uに対して一様な2軸引張応力が再現性良く付与される。また、薄膜Uの周縁部をチャックする必要がない分、マイクロニードル47を刺入するための領域として十分な広さを確保することができる。尚、本実施例では薄膜引張用孔46の内部を中空にしているが、この薄膜引張用孔46の内部に、図示しないウレタンゴムや圧縮エアーや液体等の皮下組織を模した材料を充填することにより、人肌の状態をより正確に模擬するようにしてもよい。また、大変形有限要素法による数値解析シミュレーションを用いて、薄膜Uに付与した2軸引張応力を計算すれば、マイクロニードル47の力学特性をより正確に評価することができる。
【0031】
次に、第3工程として、2軸引張応力が付与された薄膜Uに対してマイクロニードル47を刺入する。ここで、図8と図9は、マイクロニードル47の刺入を説明するための図であって、ホルダ載置台16の近傍を示す概略斜視図である。まず、図8に示すようにマイクロニードル47が薄膜Uから離間した状態から、図1に示すマイクロメータ49を操作することでニードルホルダ48を鉛直下方へ移動させ、図9に示すように、薄膜Uの中央部であってプレッシャー37(図9では不図示)で押し上げられた部分に対して、マイクロニードル47の先端部を刺入する。この時、前記ロードセルでマイクロニードル47の刺入力を測定する。以上のようにして、マイクロニードル47の薄膜刺入時における力学特性を評価する。
【0032】
次に、本発明の第2実施例に係るマイクロニードルの力学特性評価装置50の構成について、図面に基づいて説明する。図10は、第2実施例に係るマイクロニードルの力学特性評価装置50の外観を示す概略斜視図である。薄膜Uの力学特性評価装置50は、第1実施例と同様に、薄膜Uを保持するためのホルダユニット51と、薄膜Uに2軸引張応力を付与するためのパンチユニット52と、薄膜Uにマイクロニードルを刺入するためのニードルユニット53と、これら3つのユニットを支持する装置本体54とを備えているが、このうち装置本体54の構成とパンチユニット52の構成が第1実施例とは異なっている。それ以外の構成は第1実施例と同じであるため、図10では図1と同じ符号を付し、その説明を省略する。
【0033】
装置本体54は、図10に示すように、支持柱6が突設されたベース板7と、3個の支持アーム8,9,10と、落下防止部材11と、ホルダ芯出し棒12とを備える点では第1実施例と同じであるが、後述するマイクロスコープ55を設置するためのマイクロスコープ台56を備える点で第1実施例とは異なっている。尚、第1実施例と同じ構成については同じ符号を付し、その説明を省略する。
【0034】
本実施例に係るパンチユニット52は、図10に示すように、薄膜Uを押圧するためのプッシャー57と、このプッシャー57を所望の距離だけ移動させるためのマイクロメータ58と、薄膜Uの様子を裏側から観察するためのマイクロスコープ55と、マイクロスコープ55からプッシャー57までの間の空間を覆うためのマイクロスコープカバー59とを備えるものである。
【0035】
マイクロメータ58は、第1実施例のパンチユニット3を構成するマイクロメータ38と同様の構成であるため、図10では図1と同じ符号を付し、その説明を省略する。一方、図11は、プッシャー57の構造を示す概略縦断面図である。プッシャー57は、マイクロメータ58に取り付けるための取付部60と、薄膜Uを押圧するための押圧部61とを備えている。取付部60は、大径の略円柱形状の外形を有し、押圧部61と逆側の端部から、マイクロメータ58のスピンドル41を嵌入するためのスピンドル嵌入孔62が形成されている。また、押圧部61は、取付部60より小径の略円柱形状の外形を有し、取付部60と逆側の端部から、断面略円形の薄膜引張用孔63が形成されている。そして、このスピンドル嵌入孔62と薄膜引張用孔63が連通することにより、プッシャー57はその全長に渡って筒状になっている。このように構成されるプッシャー57は、そのスピンドル嵌入孔62に対してスピンドル41(図10では不図示)を嵌入することにより、図10に示すように、マイクロメータ58の先端に取り付けられる。そして、ラチェットストップ39の操作によって、プッシャー57を上下方向に所望の距離だけ移動させることができる。
【0036】
尚、プッシャー57を構成する押圧部61の外径や薄膜引張用孔63の内径の大きさは、薄膜Uの大きさや、付与しようとする2軸引張応力の大きさ等に応じて適宜設計変更が可能である。更に、プッシャー57は、少なくとも薄膜Uに接触する側の端部が筒状に形成されていれば足り、その他の部分の形状は本実施例に限定されず適宜設計変更が可能である。この筒状としては、本実施例の円筒形状以外に断面多角形の筒状とすることもできるが、薄膜Uに対して一様な2軸引張応力を付与するためには、より円筒形状に近い筒状とした方が好適である。
【0037】
マイクロスコープ55は、図に詳細は示さないが、CCDカメラやズームレンズや照明等を内蔵した従来公知のものであり、CCDカメラで撮影した画像を表示するための表示モニタに接続されている。このマイクロスコープ55は、装置本体54を構成するマイクロスコープ台56の上に設置されてビス等により固定されている。また、マイクロスコープカバー59は、例えば蛇腹状の伸縮自在な部材であって、その一端がマイクロスコープ55に他端がプッシャー57にそれぞれ固定されることにより、プッシャー57の上下動に伴って伸縮するものとなっている。
【0038】
次に、第2実施例に係るマイクロニードルの力学特性評価装置50の操作方法について説明する。本実施例に係る操作方法は、第1実施例の操作方法と比較して、第2工程で薄膜Uに2軸引張応力を付与する手段がプレッシャー37ではなくプッシャー57である点を除けば、第1工程から第3工程までは同じである。しかし、第3工程の後に、第4工程として、マイクロスコープ55による薄膜Uの観察を行う点で第1実施例とは異なっている。より詳細に説明すると、本実施例では、薄膜Uの下方にマイクロスコープ55を設置し、このマイクロスコープ55と薄膜Uの間に位置するプッシャー57は、図11に示すように、スピンドル嵌入孔62と薄膜引張用孔63とが連通している。従って、プッシャー57を通して、マイクロスコープ55で薄膜Uの裏面を観察することが可能となっている。観察方法としては、例えば、第3工程で刺入したマイクロニードル47を薄膜Uから抜き取り、所定の薬液を薄膜Uの表面に滴下して、その薄膜Uへの浸透具合を観察する。
【産業上の利用可能性】
【0039】
本発明に係るマイクロニードルの力学特性評価装置は、培養皮膚等の薄膜を使用する以外に、例えばシリコン薄膜等を使用することも可能である。
【図面の簡単な説明】
【0040】
【図1】本発明の第1実施例に係るマイクロニードルの力学特性評価装置1の外観を示す概略斜視図。
【図2】図1において第2支持アーム9のホルダ載置台16の近傍を拡大した部分拡大斜視図。
【図3】ホルダユニット2のホルダ載置台16への取り付けを説明するための概略斜視図。
【図4】ホルダユニット2のホルダ載置台16への取り付けを説明するための概略斜視図。
【図5】プレッシャー37の構造を示す概略縦断面図。
【図6】パンチユニット3による薄膜Uへの2軸引張応力の付与を説明するための図であって、ホルダ載置台16の近傍を示す概略斜視図。
【図7】図6において薄膜Uの近傍を拡大した部分拡大斜視図。
【図8】マイクロニードル47の薄膜Uへの刺入を説明するための図であって、ホルダ載置台16の近傍を示す概略斜視図。
【図9】マイクロニードル47の薄膜Uへの刺入を説明するための図であって、ホルダ載置台16の近傍を示す概略斜視図。
【図10】第2実施例に係るマイクロニードルの力学特性評価装置50の外観を示す概略斜視図。
【図11】プッシャー57の構造を示す概略縦断面図。
【符号の説明】
【0041】
1,50 マイクロニードルの力学特性評価装置
2,51 ホルダユニット
3,52 パンチユニット
4,53 ニードルユニット
5,54 装置本体
25 薄膜載置板
26 薄膜押さえ板
28 ニードル通過孔
30 パンチ通過孔
47 マイクロニードル
55 マイクロスコープ
U 薄膜

【特許請求の範囲】
【請求項1】
マイクロニードルの薄膜刺入時における力学特性を評価するマイクロニードルの力学特性評価装置であって、
パンチ通過孔が貫通形成されてその上面に薄膜が載置される薄膜載置板、及びニードル通過孔が貫通形成されて薄膜を前記薄膜載置板上に押圧固定する薄膜押さえ板を具備するホルダユニットと、少なくとも薄膜側の先端が筒状に形成されて前記パンチ通過孔を通して筒状の先端で薄膜を裏面側から押圧するパンチユニットと、薄膜のうち前記パンチユニットによって押圧された部分に対して前記ニードル通過孔を通してその表面側からマイクロニードルを刺入するニードルユニットと、を備えることを特徴とするマイクロニードルの力学特性評価装置。
【請求項2】
前記薄膜を裏面側から観察するためのマイクロスコープを更に備えることを特徴とする請求項1に記載のマイクロニードルの力学特性評価装置。
【請求項3】
前記ホルダユニットが、前記パンチユニットと前記ニードルユニットとを支持する装置本体に対して着脱可能に設けられたことを特徴とする請求項1又は2に記載のマイクロニードルの力学特性評価装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2008−298732(P2008−298732A)
【公開日】平成20年12月11日(2008.12.11)
【国際特許分類】
【出願番号】特願2007−148107(P2007−148107)
【出願日】平成19年6月4日(2007.6.4)
【出願人】(593006630)学校法人立命館 (359)
【Fターム(参考)】