説明

マイクロリアクタ

【課題】コンパクトな構成で混合または反応を効率良く行うことのできるマイクロリアクタを提供する。
【解決手段】流体用の筒状反応器であって、同心円上に、中心軸に平行に端面より流入する導入流路1Bと三路微小流路を少なくとも1つ以上形成し、さらに前記三路微小流路の外周方向に延びる微小流路1Cと繋がり外周に形成した溝状の合流部1Dに連通する排出流路を形成した反応器本体1と、前記反応器本体の外周に嵌め合わせ前記環状の合流部からの混合及び/或いは反応した流体を取り出す吐出口を備えた外リング2と、前記反応器本体の端面に同軸に接合され、外部との流体配管接続部を備え前記導入流路に流体を供給する1組のエンドプレート3とよりなり、それぞれを機密性を保ち組み上げる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、微小な流路を用いて、流動性のある原材料の混合や、或いは反応を行うマイクロリアクタに関する。
【背景技術】
【0002】
化学分野等において、複数の材料を微小空間の中で混合、化学反応などを効率的に行なう装置の研究が活発である。そういった装置はマイクロ化学プラントなどと呼ばれ、化学反応の必要最小限の量の流動性のある原材料を効率的に用いるという省資源化や、また化学反応を静的に効率良く行なうので使用されるエネルギーが少なくて済むという環境負荷の低減など環境対応の側面から、或いは必要な量に対応する規模の生産設備でムダ無く化学反応を実現するという生産効率の向上が期待できる事業対応の側面から、世界的な注目を集めている。
【0003】
そのマイクロ化学プラントの研究・開発の中心となるものは、流動性のある原材料(以後流体と総称する)を供給する流路断面の幅や高さがミリメートルから数百、数十μmというY字状やT字状の微小流路の形成や、流路形成のための構造に関するものが多く、内外の研究機関から活発な研究成果の発表が行なわれている。
【0004】
事業対応の側面からみると、マイクロ化学プラントは、上述のように微小流路という空間内での流体の混合、化学反応などを行う生産設備であり、大型タンク等を用いた従来のバッチ方式のプラントと比較して多くの有利点を備える。例えば、1)複数の流体の混合や化学反応を短時間且つ微量の原材料で行えること、2)原材料が容易に均一に混合されて、小規模な反応装置でも短時間で投入材料の全量の反応を終わらせることができること、3)装置が小型であるため実験室レベルで生成物の製造技術を確立できれば、必要な量に応じた装置の数の増加させることで需要量に合わせた生産量の調整が容易にできること等である。
【0005】
このため、化学工業や医薬品工業の分野では、流体の混合や、或いは反応を行い性質の異なった原材料や製品を製造するための好適な装置として注目され、近年、その研究開発が盛んに行われている。
【0006】
マイクロ化学プラントを構成するものは、材料供給装置、マイクロミキサ、熱交換装置、マイクロリアクタ、分離装置、これらの各装置を接続する配管、及び制御装置などを主構成要素とする。このうちマイクロミキサ及びマイクロリアクタは、それぞれ流路幅が数十μm〜数mm程度のオーダーである微小な流路を有し、この流路に導かれた複数の流体を互いに接触させることで混合または化学反応を生起するものである。
【0007】
マイクロミキサとマイクロリアクタとは、基本的には共通な構成であり、一般にその用途が混合である場合はマイクロミキサと呼び、化学反応である場合はマイクロリアクタと呼ぶ。従って、本発明のマイクロリアクタはマイクロミキサも含めている。
【0008】
このようなマイクロリアクタは、マイクロ化学プラントにおいては非常に重要なデバイスであり、そのリアクタの基本的な構造は特許文献としてもいくつか提示されている。
例えば、特許文献1(特開2004ー243308号公報)の発明では、微小流路の集積密度を上げ微小流路で化学合成物質或いは微粒子を工業的に大量生産する目的で、微小流路に原材料を送液する一例を上げている。その構造は、薄い円板(ディスク)にY字状の微小流路を形成した微小流路体を、2つの流体供給用構造体で挟み、2つの流体供給用構造体それぞれの流体導入口から材料を供給し、前記の中央に挟持されたY字状の微小流路で混合、或いは化学反応した材料を、2つのうち一方の流体供給構造体に設けた流体排出口から排出しているものである。これによりゲル製造用の微粒子製造装置として活用できると開示されている。
【0009】
また、特許文献2(特許第3727594号公報)の発明では、複数の溶液(流体)を急速に混合及び反応させる目的で、円筒状の小型の混合用装置の一例を上げている。その構造は、円筒状のベースプレートとミキシングプレートを上下のカバープレートで挟み込むサンドイッチ構造とし、ベースプレートは、流入路に繋がった櫛歯状の流路を複数設け、それぞれの櫛歯の先端が中央部に互いに独立して貫通する構造であり、それらの櫛歯の貫通部を通して流入する流体がミキシングプレートに形成したミキシング流路に導かれている。これにより複数の流体の急速な混合ができると開示している。
【0010】
さらに、特許文献3(特開2005ー490996号公報)の発明では、マイクロ化学チップにおいて、被処理流体に所定の反応を発生させる精密かつ均一な加熱を行なう目的で、平板に形成した流路に温度制御部材を付加した装置の一例を上げている。その構造はセラミック材料の薄板に、葛折状に流路(処理部)を形成して2つの材料供給口から流入した材料を合流・排出し、そのセラミック材料にはヒータと放熱板を密着して沿わせている。これにより、処理部における温度分布を精度良く均一化することが実現されると開示されている。
【0011】
一方、特許文献4(特開2001ー321649号公報)では、温度差の大きい2つの流体を混合する目的で、混合の熱応力を回避して安定して流量の変化にも対応した流体の混合を行なう装置の一例を上げている。その構造は、T字型継ぎ手に、中央に小径の管壁に多数の小孔を形成した内管を、T字型継ぎ手の直管両端よりレジューシングピースで支承および外部との配管接続をしている。これにより、温度差の大きい2つの流体を流量の変化によらず安定して混合することができると開示している。
【0012】
他社の文献では、John Wiley & Sons, Inc.社発行の“Design of a New Mixer for Instant Mixing Based on the collision of Micro Segment”(Chem. Eng. Technol. 2005,28,No.3 324P−330P)に円盤状の部材に放射状の流路を形成したミキサーが紹介され、そのミキサー(反応器)の性能を評価・確認する手法としては、「Villermaux/Dushman反応」によるEhrfeld’s法で、2つの溶液の混合によってイオン化されたヨウ素が還元してヨウ素分子が生成され、その混合によって還元され生成されたヨウ素の量を、混合後の液に紫外線を照射してUVスペクトルの352nmの吸光度によって混合度合いを比較する方法を用いている。
【0013】
このミキサーは円筒の一方より2つの流体の直線状導入路から、環状の流路を経て複数の放射状の微小流路によって中心に向かって流体が流れ込み、中心で流体が混合して他方の側に排出されている。結論としてこのミキサーは流量への柔軟な対応と混合が十分に行なわれていると開示している。
【0014】
【特許文献1】特開2004ー243308号公報
【特許文献2】特許第3727594号公報
【特許文献3】特開2005ー490996号公報
【特許文献4】特開2001ー321649号公報
【非特許文献1】“Design of a New Mixer for Instant Mixing Based on the collision of Micro Segment”(Chem. Eng. Technol. 2005,28,No.3)
【発明の開示】
【発明が解決しようとする課題】
【0015】
しかしながら、微小流路によるマイクロ化学プラントの中で、ミリメートル単位の流路のマイクロ化学プラントで上述した「効率的な混合・反応」「量への柔軟な対応」「温度差を持つ流体」への課題を「微細加工などの特殊な加工プロセスを必要とせず安価に提供する」ことと同時に満足する構造の装置はいまだ実現されていない。
特許文献1の発明では基本部材の微小粒路基板に「微細加工」が必要で高価な装置になるという問題、或いは「成形加工」などで微細構造を実現し、低価格での実現しようとすると、組み上げ時の微細流路からの液の漏れを防止する為の密閉度を実現する構造的な制約などの課題がある。
【0016】
また、特許文献2の発明では、基本部材であるベースプレートへの櫛歯状の流路形成について、その形状の複雑さから放電加工など加工時間を要する、また非常に複雑な機械加工が必要であり、工数の多い複雑で高価な部材を必要とする、或いは量の増大への対応には、そうした高価な部材を大量に準備する必要があるという課題がある。
【0017】
さらに、特許文献3の発明では、セラミックの薄板にヒータと放熱板が必要である構造上の制約で大量の流体の混合には不向きである等の課題があった。
或いは、特許文献4の発明では、微小流量の物に対応するには管の径を細くする必要があり、そうした場合、内管の径も当然小さなものとなってしまい、そうした小径の管に多数の小孔を形成する加工上の課題と、量への対応に課題があった。
【課題を解決するための手段】
【0018】
上述の課題を解決するために、本発明のマイクロリアクタは、
流動性のある原材料用の筒状反応器であって、
同心円上に、中心軸に平行に端面より流入する導入流路と三路微小流路を少なくとも1つ以上形成し、さらに前記三路微小流路の外周方向に延びる微小流路と繋がり外周に形成した環状の合流部に連通する排出流路を形成した反応器本体と、
前記反応器本体の外周に嵌め合わせ前記環状の合流部からの混合及び/或いは反応した流体を取り出す吐出口を備えた外リングと、
前記反応器本体の端面に同軸に接合され、外部との流体配管接続部を備え前記導入流路に流体を供給する1組のエンドプレートとよりなり、
それぞれが機密性を保ち、組み上げられている構成としている。
また、一方のエンドプレートに代えて、
前記反応器本体の他の端面に同軸に接合され、外部との流体配管接続部を備え前記導入流路に流体を供給する、熱伝導率の低い材料により形成された1つの中間プレートと、
中間プレートを固定する環状プレートとする構成としている。
或いは、同心円上に形成した三路微小流路を2つ以上の群に分け、群ごとの流路断面積の和に段階的な差を設けて、それぞれの三路微小流路の群が独立して外部からの流体の連通路と接続する構成としている。
さらに、一部に温冷熱源等を付加して温度調節機能を付加すること、環状の封止部材を備えること、また、前記三路微小流路の合流前のそれぞれの流路の径及び合流後の流路の径が流量に比例した径であることが好ましい。
【発明の効果】
【0019】
本発明によれば、
三路微小流路のリアクタによる好ましい微小流体の混合及び/或いは反応が実現され、密集した配置による混合及び/或いは反応をそれぞれの三路微小流路における微小流体の混合及び/或いは反応の周囲条件を同一条件で行うことができる。
また、必要に応じて反応温度条件を変えたり、或いは流入するそれぞれの流体の温度条件を異なった設定とすることができ、さらには、異なった流量に対応した流体の混合及び/或いは反応を1つの反応器によって、簡単に反応器本体の回動(回転)で行なうことが可能であり、さらには所用の総流量の2つの流体の混合及び/或いは反応を確実に、効率的にしかも低コストで行うことが可能となる。
【発明を実施するための最良の形態】
【0020】
以下、添付図面を参照して、本発明を実施するための最良の形態について説明する。
図1は本発明による筒状反応器の一例として「円筒状」の反応器の断面を示すもので、
反応器本体1の外周には外リング2が嵌め合わされ、両端には外部より流体を供給する配管が接続され、反応器本体1及び外リング2と一体で固定するためのエンドプレート3が備えられる。
さらに詳しく構成を説明すると、反応器本体1は、端面に外部からの流体を導入して複数の流路に流体を分散する拡散部1Aが形成され、また反応器本体1の両端面の拡散部1Aからは、同心円上に複数の導入流路1Bを介して中央に、「三路」が直線とその中央で直角に交差する「T字型」で構成されたT字型微小流路1Cが形成され、そのT字型微小流路1Cの中央の足の位置にある微小流路は、径方向外向きにして形成され、さらに反応器本体1の中央外周にはT字型微小流路1Cの中央の足の位置にある微小流路の径より大なる径の排出流路を介して合流部1Dが形成されている。
【0021】
外リング2は、前記反応器本体1に形成された環状の合流部1Dから混合及び/或いは反応した流体を外部に排出する流路と、その流路を介し外部配管へ接続する為の「継ぎ手」を取り付けるネジ部を形成した流体配管接続部を備え、前記反応器本体1の外周に嵌め合わされ反応器本体1の合流部1Dを取り囲んでいる。
【0022】
エンドプレート3はフランジ構造をしており、中心に外部からの流体を供給する小径の流路と、流路を介して流体を供給する外部配管へ接続する為の「継ぎ手」を取り付けるネジ部を形成した流体配管接続部を備え、外周部に反応器本体1及び外リング2と一体で固定するための固定部材用の貫通孔を複数形成している。
【0023】
前記反応器本体1とエンドプレート3の間、そして前記反応器本体1と外リング2の間には、図1のように流入する2つの流体同士、或いは2つの流体が混合及び/或いは反応する前後で、互いに混じり合わないように、拡散部1A及び合流部1Dを囲む反応器本体1及びエンドプレート3の部位にOリング4を挿入する溝を適宜設け、流体が反応器の内部・外部に漏れないように封止されそれぞれの流体が密閉されて組み上げられている。
このOリング4は接合面のどちらに配置されてあっても良い。また、導入流路1Bに流体を供給するこの拡散部1Aは、反応器本体1に形成するとあるが、エンドプレート3側にあっても良い。
【0024】
これらの反応器本体1,外リング2及びエンドプレート3等の部材は、流体の性質や、混合及び/或いは反応させる用途に応じて選択され、金属材料であれば、一般的なステンレス鋼、樹脂材料であればポリアセタール樹脂或いはフッ素系樹脂などによって必要な形状に加工され組み合わされることで十分である。耐久性や剛性、或いは流体が比較的高い温度で取り扱う必要など特別な要求があれ場合には金属材料がより好ましい。
【0025】
次に、この構成によって外部から供給した流体が混合及び/或いは反応される仕組みを説明する。
流体のT字型微小流路までの動きは同一であるので、以下片側の流体の流れで説明する。
【0026】
混合及び/或いは反応させる流体は、1つのエンドプレート3の外部との流体配管接続部に形成されたネジ部に付けられた継ぎ手を介して接続された供給経路の配管を接続して外部より導入され、反応器本体1の拡散部1Aから、反応器本体1の中心軸に同心円上に、かつ平行に複数形成された導入流路1Bを経てT字型微小流路1Cに流れる。
この複数のT字型微小流路1Cの両側から流れ込んだ2つの流体は、このT字型微小流路1Cの中央で衝突、合流して、混合及び/或いは反応しながら中央部で分岐し外周方向に向かって延びた流路から反応器本体1の中央外周に形成された環状の合流部1Dに流れ出す。
【0027】
環状の合流部1Dに流れ出た混合及び/或いは反応した2つの流体は、外リング2に形成された流路、流体配管接続部に密閉装着された継ぎ手、それに接続された配管によって外部に排出される。
【0028】
この実施形態では「三路」が直線とその中央で直角に交差する「T字型」で構成されるT字型微小流路を説明したが、混合及び/或いは反応する流体の性質などに依っては、この合流する角度が180度以外のもの、例えば導出微小流路側へ流れのエネルギー損失の低い角度(例えばY字状)や、反対の損失の大きい角度(例えば傘状)で2つの流体が合流する構成も容易にできる。
【0029】
この時、混合及び/或いは反応に必要な、或いは単に流体の流れを促進する温度に条件があれば、その最適な温度に反応器全体を保つため、図2のように外リング2に温度調節(温調)のための温冷熱源5、例えばバンド型のヒータ或いは、温冷熱源からの熱媒体を流通させる熱交換媒体等を温度検知器などと共に設け、反応器本体1などの温度を検知し温冷熱源5を制御して所定の温度にすることが好ましい。
【0030】
また、流体が反応器の外部に漏れないように封止する目的を達成することを簡便に実現するために、前記反応器本体1とエンドプレート3の間、そして前記反応器本体1との間に、合流部1D或いは拡散部1Aを囲む部位に溝を形成して、それぞれの要素間の、要素間での流体の漏れを封止するOリング4を挿入する代わりに、図3のように反応器本体1及び外リング2とエンドプレート3と接合部を軸方向の面で接触するように構成して、それぞれの端面に一つの環状封止部材6を挿入することが好ましい。
これによってそれぞれの流体の通過部分の周囲に、個別に溝を形成してOリングを挿入して流体の通過部分からの流体の漏れを封止するのに比べ、構成部品が少なくてコストを抑え、流体の漏れを封止することが実現される。
【0031】
さらに、混合及び/或いは反応するそれぞれの流体のT字型微小流路1Cへの導入までの温度条件に異なった温度条件が必要である場合、例えば一方の流体の室温付近での粘性が高く流動性が低いような場合、温冷熱源5にはヒータなどの加熱用熱源を温度調節可能に制御して備え、一方のエンドプレート3と反応器本体1とを、使用中には外部から流入する流体の温度と合わせて一定の温度に保ち、その一方の流体の流動性を高めて、その流動性を他の流体の流動性と同程度に保つ場合などには、
図4のように、他のエンドプレート3を外部との流体配管接続部と、前記反応器本体1のT字型微小流路1Cに連結する複数の傾斜導入流路7−1が形成される熱伝導率の低い材料による中間プレート7と、前記中間プレート7を固定する環状プレート8とで構成することが好ましい。この熱伝導率の低い材料としては耐薬品性に優れた樹脂材料や、高温特性に優れたセラミック材料などが推奨される。
【0032】
こうして、中間プレート7に耐薬品性の優れた樹脂材料、例えばポリアセタール樹脂、フッ素系樹脂等のエンジニアリングプラスチックスを使用すれば、エンドプレート3側から流入する流体の温度を高く設定して流入する流体の流動性が高まり、室温でも十分な流動性を持つ流体との混合及び/或いは反応をする際に、他の流体が流体配管接続部から導入されるT字型微小流路1Cまでは、流入する流体が不必要に温度が高くなり、時には混合及び/或いは反応する前に流入する流体の性質が変化してしまい、本来の目的である2つの流体の混合及び/反応にも影響を与えてしまうこと等を避けることができる。
【0033】
反対に、極端にエンドプレート3側から流入する液体の流入時の温度が低い場合には、温冷熱源5に低温熱源を備え、混合及び/或いは反応直前までの一定温度の保持を可能にする。
【0034】
さらに、熱伝導率の低い材料で構成した中間プレート7から流入する流体の温度が極端に高い場合には、この中間プレート7にセラミック材を用いて構成すれば、混合及び/或いは反応直前までの一定温度の保持を可能にでき、それぞれに2つの流体の混合及び/或いは反応を効率良く行うことができる。
【0035】
こうして構成されたマイクロリアクタによる2つの流体の混合及び/或いは反応の働きを実施例により説明する。
【実施例1】
【0036】
図1の反応器を、ステンレス鋼を用いて、反応器本体1の導入流路1Bの径を1mm、そしてT字型微小流路1Cの径を0.1mm及び0.5mmの2種類で作成した。
【0037】
この実施例における2つの流体には、1つの流体がヨウ化カリウム、ヨウ素酸カリウム、酢酸ナトリウムの3つの溶液を十分に混合した混合液とし、他の流体として溶液に酢酸ナトリウムを選択し、この2つの流体の混合によって生成する成分としてはヨウ素が生成され、そのヨウ素の生成量が混合度合いに依存するという性質を利用する。
【0038】
そしてヨウ素の生成を検知計測する方法としては、引用文献と同じように「Villermaux/Dushman反応」による混合後の液に紫外線を照射してUVスペクトルの352nmの吸光度によって混合度合いを比較する方法を採用した。
【0039】
非特許文献から引用した図5の試験結果において、単純なT字型流路を使用した場合、IMMと表記されたドイツの企業が提供するミキサーを使用した場合、そして筆者(Hideharu Nagasawa)等の研究成果である放射状流路ミキサーを使用した場合の性能比較がなされ、筆者等の性能が優れていると開示されている。
本発明のマイクロリアクタの性能も、ステンレス鋼に本発明によるマイクロリアクタとして1つのT字型微小流路を形成し、その流路の径をφ0.1mmとした本発明のマイクロリアクタで1ml/min程度の微小流量において波長352nmの吸光度を計測すると、その値は0.012、またT字型微小流路1Cの径をφ0.5mmとした本発明のマイクロリアクタで10ml/minの流量において吸光度を計測すると0.013であり、非特許文献の引用文献における筆者らの最高の性能のミキサーと同等以上の2液の混合を達成している。
【0040】
また、この実験結果から、流路の径がφ0.5mmの微小流路では、10ml/min以下では波長352nmの吸光度が急激に上昇し、混合が十分ではないと言う結果となった。これから、流動性のある流体及びその流量に最適な流路径によってT字型微小流路を形成し、そのT字型微小流路の数の増減で大きな流量に対応する事が好ましい。
【0041】
このように、本発明のマイクロリアクタによれば、集積型のT字型微小流路1Cのリアクタによる好ましい微小流体の混合及び/或いは反応が実現され、また非常に近接・密集した配置による混合及び/或いは反応をそれぞれのT字型微小流路1Cにおける微小流体の混合及び/或いは反応の周囲条件を同一条件で行うことができ、さらに必要に応じ流体間の混合及び/或いは反応を促進する為や、或いは流体の流れ易さを維持する為などに、流入するそれぞれの流体の温度条件を異なった設定とすることができ、所用の総流量の2つの流体の混合及び/或いは反応を確実に、効率的にしかも低コストで行うことが可能となる。
【0042】
また、反応器本体1に形成する導入流路1B及びT字型微小流路1Cの近接・密集の度合いを限界まで利用するようにスペースの許容範囲内で増やすことで、2つの流体の混合及び/或いは反応する量を増やす=生産性を向上することができることは明らかである。
【0043】
さらには、図6に示すように同心円上に複数形成した前記三路微小流路を2つ以上の群に分け、群ごとの流路断面積の和に段階的な差を設けて、それぞれの三路微小流路の群が独立して外部からの流体の連通路をエンドプレート側に設け(図中斜線画が付された部分など)と接続する構成とする(この例では反応器本体1を45度の倍数の角度で取り付け位置を振る)ことで、流量を変えた試験が反応器の取り付け角度を変える変更で対応が可能である。
【0044】
この角度を振るのは、反応器本体1とエンドプレート3の相対位置(角度)の変更であるので片側のエンドプレート3を外し、本体を一定角度振ることで実現する、或いはエンドプレート3及び外リング2に複数形成された固定反応器本体1とを一体で固定するための固定部材用の貫通孔の角度が一致するものであれば、固定部材を外し一対のエンドプレート3を流体の連通路と共に一定の角度振って実現することもできる。
【0045】
また、筒の断面は多角形であっても良く、特に円筒に限定されるものではない。多角形の場合には流量を変化させて再組み立てする際に、方向(角度)を変えることが外形を合わせるだけで、特別な指標なしにも容易に組み立てが可能となる。
【産業上の利用可能性】
【0046】
本発明は、近年注目を浴びているマイクロスケールの空間内での複数の流体を混合、化学反応などを行う生産設備として利用可能であり、大型タンク等を用いた従来のバッチ方式のプラントと比較して多くの有利点を備えるマイクロ化学プラントの一つのものとして、様々な分野における流体の混合及び/或いは反応に適用が可能で、必要に応じてこの装置の数を増やすことで求められる生成流体の量を簡便に調整することもできるという生産量への対応に柔軟性がある生産設備の一部として活用できる。
【図面の簡単な説明】
【0047】
【図1】本発明の(円)筒状反応器の部分断面図である
【図2】温調機能を付与した(円)筒状反応器の部分断面図である
【図3】環状封止部材による封止機能を付与した(円)筒状反応器の部分断面図である
【図4】低熱伝導率部材を片側の導入部にした(円)筒状反応器の部分断面図である
【図5】混合度合いを吸光度で計測比較した従来例のグラフ(引用文献資料より)
【図6】微小流路を群(本例では3つの流路を群)として利用する例を示す図
【符号の説明】
【0048】
1 反応器本体
2 外リング
3 エンドプレート
4 Oリング
5 温冷熱源
6 環状封止部材
7 中間プレート
8 環状プレート

【特許請求の範囲】
【請求項1】
流動性のある原材料用の筒状反応器であって、
同心円上に、中心軸に平行に端面より流入する導入流路と三路微小流路を少なくとも1つ以上形成し、さらに前記三路微小流路の外周方向に延びる微小流路と繋がり外周に形成した環状の合流部に連通する排出流路を形成した反応器本体と、
前記反応器本体の外周に嵌め合わせ前記環状の合流部からの混合及び/或いは反応した流体を取り出す吐出口を備えた外リングと、
前記反応器本体の端面に同軸に接合され、外部との流体配管接続部を備え前記導入流路に流体を供給する1組のエンドプレートとよりなり、
それぞれが機密性を保ち、組み上げられていることを特徴とするマイクロリアクタ。
【請求項2】
流動性のある原材料用の筒状反応器であって、
同心円上に、中心軸に平行に端面より流入する導入流路と三路微小流路を少なくとも1つ以上形成し、さらに前記三路微小流路の外周方向に延びる微小流路と繋がり外周に形成した環状の合流部に連通する排出流路を形成した反応器本体と、
前記反応器本体の外周に嵌め合わせ前記環状の合流部からの混合及び/或いは反応した流体を取り出す吐出口を備えた外リングと、
前記反応器本体の1の端面に同軸に接合され、外部との流体配管接続部を備え前記導入流路に流体を供給する1つのエンドプレートと、
前記反応器本体の他の端面に同軸に接合され、外部との流体配管接続部を備え前記導入流路に流体を供給する、熱伝導率の低い材料により形成された中間プレートと、
中間プレートを固定する環状プレートとよりなり、
それぞれが機密性を保ち、組み上げられていることを特徴とするマイクロリアクタ。
【請求項3】
同心円上に複数形成した前記三路微小流路を2つ以上の群に分け、群ごとの流路断面積の和に段階的な差を設けて、それぞれの三路微小流路の群が独立して外部からの流体の連通路と接続する構成とする請求項1ないし請求項2記載のマイクロリアクタ。
【請求項4】
前記外リング等に温度調節機能を備えた特許請求の範囲第1項から第3項記載のマイクロリアクタ
【請求項5】
前記反応器本体及び前記外リングと、前記のエンドプレートの接合部に環状の封止部材を備えたことを特徴とする特許請求の範囲第1項から第4項記載のマイクロリアクタ
【請求項6】
前記三路微小流路の合流前のそれぞれの流路の径及び合流後の流路の径が流量に比例した径である特許請求の範囲第1項から第5項記載のマイクロリアクタ

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2009−195817(P2009−195817A)
【公開日】平成21年9月3日(2009.9.3)
【国際特許分類】
【出願番号】特願2008−39486(P2008−39486)
【出願日】平成20年2月21日(2008.2.21)
【出願人】(000219314)東レエンジニアリング株式会社 (505)
【Fターム(参考)】