説明

マスタシリンダ装置

【課題】 マスタシリンダ装置の実用性を向上させることを課題とする。
【解決手段】 外周部に前方を向く段差面126が形成されつつ前進によって作動液を加圧する第1加圧ピストン102と、第1加圧ピストンの後方に配設されてブレーキ操作によって前進する入力ピストン106とを備えており、第1加圧ピストンと入力ピストンとの間に区画されたピストン間室R3の圧力が第1加圧ピストンに作用する受圧面積が、段差面の前方に区画された反力室R4の圧力が第1加圧ピストン102に作用する受圧面積と等しくされており、さらに、ピストン間室と反力室とを連通する室間連通路196と、電動モータが発生させる力と気体圧によって発生する力との一方を加圧ピストンに付与する加圧ピストン前進装置108と、入力ピストンの前進に対向しつつその前進量に応じた力を入力ピストンに付与する反力発生器210とを備えていることを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、車輪に設けられたブレーキ装置に作動液を加圧して供給するためのマスタシリンダ装置に関する。
【背景技術】
【0002】
マスタシリンダ装置の中には、例えば、下記特許文献に記載されているマスタシリンダ装置のように、高圧源装置によって高圧とされた作動液を調圧装置によって調圧し、その調圧された作動液の圧力に依存して作動液を加圧することができるものがある。また、そのマスタシリンダ装置は、ストロークシミュレータ、つまり、運転者の操作力に応じてブレーキ操作部材に操作反力を付与する機構を有している。したがって、このマスタシリンダ装置は、運転者に、自身のブレーキ操作によってブレーキ装置が作動しているかのように感じさせることができる一方で、調圧された作動液の圧力に依存した液圧制動力をブレーキ装置で発生させることができる。つまり、このマスタシリンダ装置は、運転者によるブレーキ操作部材の操作とは関係なく作動液を加圧することができるように構成されている(以下、このようなマスタシリンダ装置を「独立加圧型マスタシリンダ装置」という場合がある)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2010−927号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
近年開発の盛んなハイブリッド自動車や電気自動車等では、車輪の回転によって回転させられる電気モータや発電機等の起電力に依拠した抵抗力が、車両の制動に利用されている。しかしながら、抵抗力に依拠したその制動力は比較的小さいため、これらの車両でも、マスタシリンダ装置で加圧された作動液の圧力に依拠してブレーキ装置で発生する摩擦力が、車両の制動に利用されている。独立加圧型マスタシリンダ装置は、例えば、ブレーキ操作とは関係なく、上記の抵抗力と協調して摩擦力をブレーキ装置で発生させるように作動液の加圧を制御できるため、ハイブリッド自動車や電気自動車への使用に適している。しかしながら、独立加圧型マスタシリンダ装置は、現状では、まだ改良の余地が残されたものとなっており、種々の改良を行うことによって、その独立加圧型マスタシリンダ装置の実用性を向上させることができる。本発明は、このような実情に鑑みてなされたものであり、マスタシリンダ装置の実用性を向上させることを課題とする。
【課題を解決するための手段】
【0005】
上記課題を解決するため、本発明のマスタシリンダ装置は、外周部に前方を向く段差面が形成されつつ前進によって作動液を加圧する加圧ピストンと、加圧ピストンの後方に配設されてブレーキ操作によって前進する入力ピストンとを備えており、加圧ピストンと入力ピストンとの間に区画されたピストン間室の内部の作動液の圧力が加圧ピストンに作用する受圧面積と、段差面の前方に区画された反力室の内部の作動液の圧力が加圧ピストンに作用する受圧面積とが等しくされており、さらに、ピストン間室と反力室とを連通する室間連通路と、電動モータが発生させる力と気体圧によって発生する力との一方を加圧ピストンに付与する前進力付与機構と、入力ピストンの前進に対向しつつその前進量に応じた大きさの力を入力ピストンに付与する反力付与機構とを備えていることを特徴とする。
【発明の効果】
【0006】
本発明のマスタシリンダ装置は、ブレーキ操作部材の操作とは関係なく作動液を加圧することができる独立加圧型マスタシリンダ装置の一類型であり、作動液を高圧するための高圧源装置や、高圧とされた作動液を調圧するための調圧装置を必要としない。また、調圧された作動液をマスタシリンダ装置に導入するための通路を設けたり、調圧された作動液の圧力を加圧ピストンに伝達するための液室をマスタシリンダ装置内に区画形成したりする必要もない。それらにより、本マスタシリンダ装置の実用性は高いものとなっている。
【発明の態様】
【0007】
以下に、本願において特許請求が可能と認識されている発明(以下、「請求可能発明」という場合がある)の態様をいくつか例示し、それらについて説明する。各態様は請求項と同様に、項に区分し、各項に番号を付し、必要に応じて他の項の番号を引用する形式で記載する。これは、あくまでも請求可能発明の理解を容易にするためであり、それらの発明を構成する構成要素の組み合わせを、以下の各項に記載されたものに限定する趣旨ではない。つまり、請求可能発明は、各項に付随する記載,実施例の記載等を参酌して解釈されるべきであり、その解釈に従う限りにおいて、各項の態様にさらに他の構成要素を付加した態様も、また、各項の態様から何某かの構成要素を削除した態様も、請求可能発明の一態様となり得るのである。そして、請求可能発明の態様のうちのいくつかのものが、特許請求の範囲に記載した請求項に係る発明に相当する。
【0008】
なお、以下の各項において、(1)項が請求項1に相当し、(3)項が請求項2に、(4)項が請求項3に、(7)項が請求項4に、(8)項が請求項5に、(10)項が請求項6に、(12)項が請求項7に、それぞれ相当する。
【0009】
(1)車輪に設けられたブレーキ装置に、加圧された作動液を供給するためのマスタシリンダ装置であって、
前端部が閉塞された筒状のハウジングと、
外周部において前方を向く段差面を有する段付形状とされ、前記ハウジング内に配設されて自身の前進によって前記ブレーキ装置に加圧された作動液を供給する加圧ピストンと、
前記ハウジング内において前記加圧ピストンの後方に配設され、ブレーキ操作部材に連結されて運転者のブレーキ操作によって前進する入力ピストンと、
前記入力ピストンと前記加圧ピストンとの間に区画されたピストン間室と、
前記段差面の前方において前記加圧ピストンと前記ハウジングとによって区画されており、自身の内部の作動液の圧力が前記加圧ピストンに作用する受圧面積が前記ピストン間室の内部の作動液の圧力が前記加圧ピストンに作用する受圧面積と等しくされた反力室と、
前記ピストン間室と前記反力室とを連通する室間連通路と、
電動モータが発生させる力と気体圧によって発生する力との一方を、前記加圧ピストンに、それを前進させる力である前進力として付与する前進力付与機構と、
前記入力ピストンの前進に対抗しかつその前進の量に応じた大きさの力を、前記入力ピストンに、前記ブレーキ操作部材の操作に対する操作反力として付与する反力付与機構と
を備えたマスタシリンダ装置。
【0010】
本発明のマスタシリンダ装置によれば、反力室の内部の作動液の圧力が加圧ピストンに作用する受圧面積が、ピストン間室の内部の作動液の圧力が前記加圧ピストンに作用する受圧面積と等しくされているため、前進力による加圧ピストンの前進の際、ピストン間室および反力室の一方の内部の作動液の減少量と他方の内部の作動液の増加量とが等しくなる。別の言い方をすれば、本マスタシリンダ装置は、前進力による加圧ピストンの前進の際、作動液がピストン間室と反力室とを往来するように構成されている。そのため、前進力によって加圧ピストンが前進しても、それによって入力ピストンが移動させられることはない。また、本マスタシリンダ装置では、上記の各受圧面積が等しくされているので、ピストン間室の作動液の圧力によって加圧ピストンに作用する前方への付勢力と、反力室の作動液の圧力によって加圧ピストンに作用する後方への付勢力とが同じ大きさとなる。そのため、操作力によって入力ピストンが前進させられた際、ピストン間室および反力室の作動液の圧力が変化しても、その圧力変化によって加圧ピストンが移動させられることはない。また、本マスタシリンダ装置では、反力付与機構によって入力ピストンに付与される力を、運転者は、自身のブレーキ操作に対する操作反力として感じることができる。つまり、本マスタシリンダ装置は、運転者の操作力が、加圧ピストンの前進、つまり、作動液の加圧に利用されていなくても、自身のブレーキ操作によってブレーキ装置が作動しているかのように運転者に感じさせることができる。したがって、本マスタシリンダ装置は、運転者によるブレーキ操作部材の操作とは関係なく作動液を加圧することができるように構成された独立加圧型マスタシリンダ装置となっている。
【0011】
本マスタシリンダ装置では、電動モータが発生させる力または気体圧によって発生する力によって、加圧ピストンが前進されることになる。そのため、本マスタシリンダ装置は、高圧源装置や調圧装置を必要とせず、それによって、本マスタシリンダ装置の実用性は高いものとなっている。また、本マスタシリンダ装置では、調圧された作動液をマスタシリンダ装置に導入するための通路を設けたり、調圧された作動液の圧力を加圧ピストンに伝達するための液室をマスタシリンダ装置内に区画形成したりする必要がないため、マスタシリンダ装置の構造が比較的簡単となっている。それによっても、本マスタシリンダ装置の実用性は高いものとなっている。
【0012】
本マスタシリンダ装置の反力付与機構では、操作反力を入力ピストンに付与する具体的手段は特に限定されていない。例えば、反力付与機構は、入力ピストンの前進に対して弾性反力を付与するスプリングなどの弾性体を含んだ機構であればよい。また、ピストン間室内部の作動液の圧力は、後方への付勢力となって入力ピストンに作用するため、その付勢力をブレーキ操作に対する操作反力として利用する機構、つまり、ピストン間室の作動液を加圧するような機構であってもよい。
【0013】
(2)前記前進力付与機構が、前記電動モータが発生させる力を前記前進力として前記加圧ピストンに付与するものである(1)項に記載のマスタシリンダ装置。
【0014】
本マスタシリンダ装置では、電動モータが発生させる力によって、加圧ピストンが前進させられることになる。
【0015】
(3)前記前進力付与機構が、
電力の供給によって回転して回転力を発生させる前記電動モータとしての回転モータと、
その回転モータによる回転力を前記前進力に変換する回転力変換機構と
を含んで構成された(2)項に記載のマスタシリンダ装置。
【0016】
本マスタシリンダ装置の前進力付与機構は、電動モータによって回転力を発生させ、その回転力を前進力に変換することで加圧ピストンを前進させる。回転力変換機構は、回転運動を直線運動に変換するような機構であればよく、例えば、後述するボールねじ機構のようなねじ機構や、ラックアンドピニオンのような歯車機構を主要構成要素として含んでいる機構であればよい。
【0017】
(4)前記回転力変換機構が、
前後方向に移動不能な状態で前記回転モータの回転力によって回転可能とされたナットと、
回転不能な状態で前記ナットと螺合し、前記回転モータの回転力によって前記加圧ピストンに当接して前記加圧ピストンを前進させるプランジャと
を含んで構成された(3)項に記載のマスタシリンダ装置。
【0018】
本マスタシリンダ装置の回転力変換機構では、ナットとプランジャとによってねじ機構が構成されていると考えることができる。また、このねじ機構は、プランジャの外周面とナットの内周面との間に複数のボールを介在させた機構、つまり、ボールねじ機構であってもよい。ボールねじ機構であれば、ナットとプランジャとの間で発生する摩擦力が比較的小さくなるため、回転モータが発生させる回転力のロスを小さくすることができる。したがって、モータの回転力、つまり、モータの出力を比較的小さくすることができるため、モータを小型化したり、消費電力を低減させたりすることができる。
【0019】
(5)前記プランジャが円筒形状とされており、そのプランジャが前記加圧ピストンに外嵌している(4)項に記載のマスタシリンダ装置。
【0020】
本マスタシリンダ装置では、プランジャと加圧ピストンとが前後方向において重なり合う状態となるため、マスタシリンダ装置を比較的コンパクトにすることができる。
【0021】
(6)前記前進力付与機構が、前記気体圧によって発生する力を前記前進力として加圧ピストンに付与するものである(1)項に記載のマスタシリンダ装置。
【0022】
本マスタシリンダ装置では、気体圧によって発生する力によって、加圧ピストンが前進させられることになる。
【0023】
(7)前記前進力付与機構が、
前記ハウジング内部にガスで満たされた空間が形成されたガス容器と、
前記ガス容器内に配設されて、そのガス容器内を、自身の後方において大気圧源に連通する大気圧室と、自身の前方において負圧源に連通する負圧室とに区画する仕切体を有し、前記大気圧室の圧力と前記負圧室の圧力との圧力差によって前記加圧ピストンに当接して前記加圧ピストンを前進させるプランジャと
を有する(6)項に記載のマスタシリンダ装置。
【0024】
本マスタシリンダ装置の前進力付与機構では、プランジャの仕切体の前後において、大気圧と負圧とによって圧力差が発生し、その圧力差によって発生する力が、気体圧によって発生する力となる。つまり、本マスタシリンダ装置の前進力付与機構は、いわゆる負圧ブースタと同様の構成を有している。プランジャの仕切体は、プランジャの前進を許容しつつ、ガス容器内部を大気圧室と負圧室とに区画するものであればよい。例えば、ガス容器の内壁に摺接するようなピストンであれば、プランジャの前進を許容しつつ、ガス容器内部を大気圧室と負圧室とに区画することができる。あるいは、ガス容器内壁に固定され、一部が可撓性あるいは伸縮性等のある材料で構成されたダイアフラムであれば、ダイアフラムの変形によってプランジャの前進を許容しつつ、ガス容器内部を大気圧室と負圧室とに区画することができる。端的に言えば、ピストンのような仕切体を採用することができ、また、ダイアフラムのような仕切体を採用することもできる。
【0025】
また、負圧源は、バキュームポンプのような負圧状態を作り出すことができる専用の装置であってもよいし、あるいは、車両のエンジンが運転中である場合に負圧状態になるエンジンの吸気部、または、エンジンに繋げられる吸気管であってもよい。
【0026】
(8)前記ガス容器が前記プランジャの周囲に円環形状となって形成されており、前記プランジャの仕切体が前記プランジャの外周に鍔状に形成されている(7)項に記載のマスタシリンダ装置。
【0027】
本マスタシリンダ装置によれば、プランジャの仕切体は、プランジャの外周を取り巻く鍔状となって形成されており、また、仕切体の全域、つまり、プランジャの全周にわたって上記の圧力差が作用することになる。つまり、圧力差によって発生する前進力が、プランジャの全周にわたって殆ど均一となってプランジャに付与されることになる。
【0028】
(9)前記プランジャが円筒形状とされており、そのプランジャが前記加圧ピストンに外嵌している(7)項または(8)項に記載のマスタシリンダ装置。
【0029】
本マスタシリンダ装置では、プランジャと加圧ピストンとが前後方向において重なり合う状態となるため、マスタシリンダ装置を比較的コンパクトにすることができる。
【0030】
(10)前記加圧ピストンに対する前記入力ピストンの前記相対前進を禁止する入力ピストン相対前進禁止機構を、さらに備えた(1)項ないし(9)項のいずれか1つに記載のマスタシリンダ装置。
【0031】
本マスタシリンダ装置によれば、加圧ピストンに対する入力ピストンの相対前進を禁止していることで、ブレーキ操作によって、入力ピストンとともに加圧ピストンも前進されることになる。つまり、運転者の操作力が加圧ピストンに伝達されることになり、操作力によって作動液を加圧することが可能となる。したがって、加圧ピストンに対する入力ピストンの相対前進を禁止すれば、前進力に加えて、操作力によっても作動液を加圧することができる。この場合、比較的大きな力によって加圧ピストンを前進させることができるため、ブレーキ装置において、比較的大きな液圧制動力を発生させることができる。したがって、例えば、急ブレーキ等の比較的大きな制動力が必要とされる場合に、加圧ピストンに対する入力ピストンの相対前進を禁止するように本マスタシリンダ装置を構成すれば、前進力と操作力とに依存して、比較的大きな液圧制動力を発生させることができる。また、前進力だけに依存して大きな液圧制動力を発生させようとする場合、例えば、電動モータを大型にしたり、気体圧を高くしたりする必要があるため、マスタシリンダ装置のコストアップや大形化を招く可能性がある。本マスタシリンダ装置によれば、コストアップや大形化を招くことなく、比較的大きな液圧制動力を発生させるようにマスタシリンダ装置を構成することができる。
【0032】
また、例えば、前進力付与機構に不具合が発生した場合や、電気的失陥によって前進力付与機構が作動できない場合に、加圧ピストンに対する入力ピストンの相対前進を禁止するように本マスタシリンダ装置を構成すれば、操作力によって加圧ピストンを前進させることができる。したがって、そのように構成されたマスタシリンダ装置であれば、前進力付与機構が前進力を加圧ピストンに付与することができない場合であっても、操作力によって液圧制動力を発生させることができる。つまり、フェールセーフの観点において、優れたマスタシリンダ装置を構成することができるのである。
【0033】
加圧ピストンに対する入力ピストンの相対前進を禁止するためには、例えば、入力ピストンの加圧ピストンへの当接を許容すればよい。当接することによって、操作力は入力ピストンから加圧ピストンに直に伝達され、加圧ピストンを操作力によって前進させることができる。また、加圧ピストンに対する入力ピストンの相対前進を禁止するために、ピストン間室を密閉してもよい。その密閉によって、操作力は、ピストン間室の作動液を介して入力ピストンから加圧ピストンに伝達され、加圧ピストンを操作力によって前進させることができる。
【0034】
(11)前記入力ピストン相対前進禁止機構が、前記反力室および前記ピストン間室を低圧源に連通させることで前記入力ピストンの前記加圧ピストンへの当接を許容する反力室・ピストン間室用低圧源連通機構を含んで構成された(10)項に記載のマスタシリンダ装置。
【0035】
本マスタシリンダ装置によれば、ピストン間室を低圧源に連通させることで、入力ピストンは、ピストン間室の作動液を低圧源に流出させながら前進することができ、加圧ピストンに当接することが許容される。当接した場合には、先に説明したように、加圧ピストンは操作力によって前進させられることになり、操作力に依存して液圧制動力が発生することになる。また、本マスタシリンダ装置によれば、ピストン間室とともに反力室も低圧源に連通させるため、反力室の内部の作動液の圧力が加圧ピストンの段差面に作用し、反力室の圧力が加圧ピストンの前進に対する抵抗力として作用してしまうことはない。そのため、操作力によって加圧ピストンを前進させる場合でも、比較的容易に前進させることができる。
【0036】
(12)前記加圧ピストンと前記入力ピストンとの一方が、他方に向かって開口する有底穴を有し、その有底穴に前記加圧ピストンと前記入力ピストンとの他方が嵌入されることで、前記有底穴内に前記ピストン間室が形成された(1)項ないし(11)項のいずれか1つに記載のマスタシリンダ装置。
【0037】
本マスタシリンダ装置は、特に、加圧ピストンに有底穴が設けられており、かつ、前述のように、プランジャが加圧ピストンに外嵌するように構成されている場合に、マスタシリンダ装置を比較的コンパクトにすることができる。つまり、マスタシリンダ装置がこのように構成されている場合には、プランジャと加圧ピストンとが前後方向において重なり合う位置にピストン間室を設けることができる。したがって、プランジャに必要な前後方向の長さおよびピストン間室に必要な前後方向の間隔を確保しつつ、それらを前後方向において重なり合うようにして配設することができるため、マスタシリンダ装置の前後方向の長さを短くすることができる。
【0038】
(13)前記反力付与機構が、
前記反力室および前記ピストン間室と連通する貯液室と、
それら反力室およびピストン間室の合計容積の減少に応じたその貯液室の容積の増加を許容するとともにその増加の量に応じた大きさの弾性反力を貯液室内の作動液に作用させる対貯液室弾性反力作用機構と
を含んで構成された(1)項ないし(12)項のいずれか1つに記載のマスタシリンダ装置。
【0039】
本マスタシリンダ装置によれば、貯液室の作動液とともに、反力室およびピストン間室の作動液にも対貯液室弾性反力作用機構による弾性反力が作用することになる。したがって、入力ピストンが前進、つまり、ブレーキ操作量が増加し、反力室およびピストン間室の合計容積が減少すると、貯液室ではその減少分の容積が増加し、弾性反力が増加することになる。そのため、反力室およびピストン間室の作動液の圧力が増加することになり、入力ピストンには、自身の前進に対抗しかつその前進の量に応じた大きさの力が付与されることになる。なお、本マスタシリンダ装置では、前述のように、ピストン間室の作動液の圧力によって加圧ピストンが移動させられることはない。そのため、ピストン間室の作動液の圧力が変化しても、その圧力の変化によって加圧ピストンが移動させられることはないのである。なお、本マスタシリンダの反力付与機構は、外部式、つまり、ハウジングの外部に設けられていてもよく、あるいは、内部式、つまり、ハウジングの内部に設けられていてもよい。
【図面の簡単な説明】
【0040】
【図1】請求可能発明の実施例のマスタシリンダ装置を搭載したハイブリッド車両の駆動システムおよび制動システムを示す模式図である。
【図2】第1実施例のマスタシリンダ装置を含んで構成された液圧ブレーキシステムを示す図である。
【図3】図2に示すマスタシリンダ装置に採用されている反力付与機構を示す図である。
【図4】第2実施例のマスタシリンダ装置を含んで構成された液圧ブレーキシステムを示す図である。
【図5】変形例のマスタシリンダ装置を含んで構成された液圧ブレーキシステムを示す図である。
【発明を実施するための形態】
【0041】
以下、請求可能発明の実施例を、図を参照しつつ詳しく説明する。なお、請求可能発明は、下記の実施例および変形例に限定されるものではなく、当業者の知識に基づいて種々の変更、改良を施した種々の態様で実施することができる。
【実施例1】
【0042】
≪車両の構成≫
図1に、実施例1のマスタシリンダ装置を搭載したハイブリッド車両の駆動システムおよび制動システムを模式的に示す。車両には、動力源として、エンジン10と電気モータ12とが搭載されており、また、エンジン10の出力により発電を行う発電機14も搭載されている。これらエンジン10,電気モータ12,発電機14は、動力分割機構11によって互いに接続されている。この動力分割機構11を制御することで、エンジン10の出力を、発電機14を作動させるための出力と、4つの車輪13のうちの駆動輪となるものを回転させるための出力とに振り分けたり、電気モータ12の出力を駆動輪に伝達させたりすることができる。つまり、動力分割機構11は、減速機15および駆動軸17を介して駆動輪に伝達される駆動力に関する変速機として機能するのである。なお、「車輪13」等のいくつかの構成要素は、4つの車輪のいずれかに対応するものであることを示す場合には、左前輪,右前輪,左後輪,右後輪にそれぞれ対応して、添え字「FL」,「FR」,「RL」,「RR」を付して使用する。この表記に従えば、本車両における駆動輪は、車輪13RLおよび車輪13RRである。
【0043】
電気モータ12は、交流同期電動機であり、交流電力によって駆動される。車両にはインバータ24が備えられており、インバータ24は、電力を、直流から交流、あるいは、交流から直流に変換することができる。したがって、インバータ24を制御することで、発電機14によって出力される交流の電力を、バッテリ26に蓄えるための直流の電力に変換させたり、バッテリ26に蓄えられている直流の電力を、電気モータ12を駆動するための交流の電力に変換することができる。発電機14は、電気モータ12と同様に、交流同期電動機としての構成を有している。つまり、本実施例の車両では、交流同期電動機が2つ搭載されていると考えることができ、一方が、電気モータ12として、主に駆動力を出力するために使用され、他方が、発電機14として、主にエンジン10の出力により発電するために使用されている。
【0044】
また、電気モータ12は、車両の走行に伴う車輪13RL,13RRの回転を利用して、発電(回生発電)を行うことも可能である。このとき、車輪13RL,13RRに連結される電気モータ12では、電力が発生させられるとともに、電気モータ12の回転を制止するための抵抗力が発生する。したがって、その抵抗力を、車両を制動する制動力として利用することができる。つまり、電気モータ12は、電力を発生させつつ車両を制動するための回生ブレーキの手段として利用される。したがって、本車両は、回生ブレーキが、エンジンブレーキや後述する液圧ブレーキとともに、車両を制動するために使用されている。一方、発電機14は、主にエンジン10の出力により発電をするが、インバータ24を介してバッテリ26から電力が供給されることで、電気モータとしても機能する。
【0045】
本車両において、上記のブレーキの制御や、その他の車両に関する各種の制御は、複数の電子制御ユニット(ECU)によって行われる。複数のECUのうち、メインECU30は、それらの制御を統括する機能を有している。例えば、ハイブリッド車両は、エンジン10の駆動および電気モータ12の駆動によって走行することが可能とされているが、それらエンジン10の駆動と電気モータ12の駆動は、メインECU30によって総合的に制御される。具体的に言えば、メインECU30によって、エンジン10の出力と電気モータ12による出力の配分が決定され、その配分に基づき、エンジン10を制御するエンジンECU32、電気モータ12及び発電機14を制御するモータECU34に各制御についての指令が出力される。
【0046】
メインECU30には、バッテリ26を制御するバッテリECU36も接続されている。バッテリECU36は、バッテリ26の充電状態を監視しており、充電量が不足している場合には、メインECU30に対して充電要求指令を出力する。充電要求指令を受けたメインECU30は、バッテリ26を充電させるために、発電機14による発電の指令をモータECU34に出力する。
【0047】
また、メインECU30には、ブレーキを制御するブレーキECU38も接続されている。当該車両には、運転者によって操作されるブレーキ操作部材(以下、単に「操作部材」という場合がある)が設けられており、ブレーキECU38は、その操作部材の操作量であるブレーキ操作量(以下、単に「操作量」という場合がある)と、その操作部材に加えられる運転者の力であるブレーキ操作力(以下、単に「操作力」という場合がある)との少なくとも一方に基づいて目標制動力を決定し、メインECU30に対してこの目標制動力を出力する。メインECU30は、モータECU34にこの目標制動力を出力し、モータECU34は、その目標制動力に基づいて回生ブレーキを制御するとともに、それの実行値、つまり、発生させている回生制動力をメインECU30に出力する。メインECU30では、目標制動力から回生制動力が減算され、その減算された値に基づいて、車両に搭載される液圧ブレーキシステム40において発生すべき目標液圧制動力が決定される。メインECU30は、目標液圧制動力をブレーキECU38に出力し、ブレーキECU38は、液圧ブレーキシステム40が発生させる液圧制動力が目標液圧制動力となるように制御するのである。
【0048】
≪液圧ブレーキシステムの構成≫
上述のように構成された本ハイブリッド車両に搭載される液圧ブレーキシステム40について、図2を参照しつつ詳細に説明する。なお、以下の説明において、「前方」は図2における左方、「後方」は図2における右方をそれぞれ表している。また、「前側」、「前端」、「前進」や、「後側」、「後端」、「後進」等も同様に表すものとされている。以下の説明において[ ]に囲まれた文字は、センサ等を図面において表わす場合に用いられる。
【0049】
図2に、本車両が備える液圧ブレーキシステム40を、模式的に示す。液圧ブレーキシステム40は、作動液を加圧するためのマスタシリンダ装置50を有している。車両の運転者は、マスタシリンダ装置50に連結された操作装置52を操作することでマスタシリンダ装置50を作動させることができ、マスタシリンダ装置50は、自身の作動によって作動液を加圧する。その加圧された作動液は、マスタシリンダ装置50に接続されるアンチロック装置54を介して、各車輪に設けられたブレーキ装置56に供給される。ブレーキ装置56は、その加圧された作動液の圧力(以下、「マスタ圧」という場合がある)に依存して、車輪13の回転を制止するための力、すなわち、液圧制動力を発生させる。また、液圧ブレーキシステム40は、低圧源として作動液を大気圧下で貯留するリザーバ62を有している。リザーバ62は、マスタシリンダ装置50に接続されている。
【0050】
操作装置52は、ブレーキ操作部材としてのブレーキペダル70と、ブレーキペダル70に連結されるオペレーションロッド72とを含んで構成されている。ブレーキペダル70は、上端部において、車体に回動可能に保持されている。オペレーションロッド72は、後端部においてブレーキペダル70に連結され、前端部においてマスタシリンダ装置50に連結されている。また、操作装置52は、ブレーキペダル70の操作量を検出するための操作量センサ[SP]74と、操作力を検出するための操作力センサ[FP]76とを有している。操作量センサ74および操作力センサ76は、ブレーキECU38に接続されており、ブレーキECU38は、それらのセンサの検出値を基にして、目標制動力を決定する。
【0051】
ブレーキ装置56は、液通路80,82を介してマスタシリンダ装置50に接続されている。それら液通路80,82は、マスタシリンダ装置50によってマスタ圧に加圧された作動液をブレーキ装置56に供給するための液通路である。液通路80にはマスタ圧センサ[Po]84が設けられており、マスタ圧センサ84はブレーキECU38に接続されている。詳しい説明は省略するが、各ブレーキ装置56は、ブレーキキャリパと、そのブレーキキャリパに取り付けられたホイールシリンダ(ブレーキシリンダ)およびブレーキパッドと、各車輪とともに回転するブレーキディスクとを含んで構成されている。液通路80,82は、各ブレーキ装置56のブレーキシリンダに接続されており、また、それら液通路80,82の途中に、アンチロック装置54が設けられている。ちなみに、液通路80が、後輪側のブレーキ装置56RL,56RRに繋がるようにされており、また、液通路82が、前輪側のブレーキ装置56FL,56FRに繋がるようにされている。各ブレーキ装置56では、マスタ圧に依存して、ブレーキシリンダがブレーキパッドをブレーキディスクに押し付け、その押し付けにより発生する摩擦によって車輪の回転を制止する液圧制動力が発生するため、車両が制動されるのである。
【0052】
アンチロック装置54は、一般的な装置であり、簡単に説明すれば、各車輪に対応する4対の開閉弁を有している。各対の開閉弁のうちの1つは増圧用開閉弁であり、車輪がロックしていない状態では、開弁状態とされており、また、もう1つは減圧用開閉弁であり、車輪がロックしていない状態では、閉弁状態とされている。車輪がロックした場合に、増圧用開閉弁が、マスタシリンダ装置50からブレーキ装置56への作動液の流れを遮断するとともに、減圧用開閉弁が、ブレーキ装置56からリザーバへの作動液の流れを許容して、車輪のロックを解除するように構成されている。
【0053】
≪マスタシリンダ装置の構成≫
マスタシリンダ装置50は、マスタシリンダ装置50の筐体であるハウジング100と、ブレーキ装置56に供給される作動液を加圧する第1加圧ピストン102および第2加圧ピストン104と、運転者の操作が操作装置112を通じて入力される入力ピストン106と、第1加圧ピストン102を前進させるための加圧ピストン前進装置108とを含んで構成されている。なお、以下に説明する実施例のマスタシリンダ装置のすべての図は、ブレーキ操作がされていない状態を示している。
【0054】
ハウジング100は、内径が異なる大きさとされることで、複数の部分に区分けされている。具体的には、前方側に位置して内径の小さい部分が前方部110、前方部110の後方に位置して前方部110よりも内径が大きくされた中間部112、後方側に位置して内径の小さくされた後方部114に区分けされている。また、中間部112と後方部114との間には、加圧ピストン前進装置108が設置される前進装置設置部116が設けられている。
【0055】
第2加圧ピストン104は、後端部が塞がれた有底円筒形状をなしており、ハウジング100の前方部110に摺動可能に嵌め合わされている。第1加圧ピストン102は、後端部が塞がれた有底円筒形状をなす本体部118と、その本体部118から後方に延び出す延出部120とを有している。また、本体部118の後端における外周部には、鍔124が形成されている。したがって、本体部118には、鍔124によって、前方を向く段差面126が形成されている。また、第1加圧ピストン102は、延出部120の後端において開口する有底穴130を有している。このように形成された第1加圧ピストン102は、本体部118の前方側がハウジング100の前方部110に、鍔124の外周部が中間部112に摺動可能に嵌め合わされている。第1加圧ピストン102の前方で第2加圧ピストン104との間には、2つの後輪に設けられたブレーキ装置56RL,RRに供給される作動液を加圧するための第1加圧室R1が区画形成されており、また、第2加圧ピストン104の前方には、2つの前輪に設けられたブレーキ装置56FL,FRに供給される作動液を加圧するための第2加圧室R2が区画形成されている。なお、第1加圧ピストン102と第2加圧ピストン104とは、第1加圧ピストン102の前方に開口する有底穴の底部に螺着立設された有頭ピン132と、第2加圧ピストン104の後端面に固設されたピン保持筒134とによって、離間距離が設定範囲内に制限されている。また、第1加圧室R1内,第2加圧室R2内には、それぞれ、圧縮コイルスプリング(以下、「リターンスプリング」という場合がある)136、138が配設されており、それらスプリングによって、第1加圧ピストン102,第2加圧ピストン104はそれらが互いに離間する方向に付勢されつつ、後方に向かうように付勢されている。
【0056】
入力ピストン106は、大まかには円柱形状とされており、前方側に位置して外径の小さくされた小径部140、後方側に位置して外径の大きくされた大径部142とを有している。入力ピストン106は、小径部140が第1加圧ピストン102の有底穴130に摺動可能に嵌入された状態で、ハウジング100内に配設されている。このように入力ピストン106と第1加圧ピストン102とが配設された状態で、小径部140の前端面と有底穴130の底面との間には、作動液で満たされたピストン間室R3が区画形成されている。また、段差面126の前方には、第1加圧ピストン102とハウジング100とによって、作動液で満たされた反力室R4が区画形成されている。なお、反力室R4の作動液の圧力によって、第1加圧ピストン102には後方への付勢力が発生することになる。第1加圧ピストン102に後方への付勢力を発生させるように、反力室R4の作動液の圧力が第1加圧ピストン102に作用する受圧面積、つまり、第1加圧ピストン102の段差面126の面積は、第1加圧ピストン102に前方への付勢力を発生させるように、ピストン間室R3の作動液の圧力が第1加圧ピストン102に作用する受圧面積、つまり、第1加圧ピストン102の有底穴130の底面の面積と等しくされている。
【0057】
入力ピストン106の後端部には、ブレーキペダル70の操作力を入力ピストン106に伝達すべく、また、ブレーキペダル70の操作量に応じて入力ピストン106を進退させるべく、オペレーションロッド72の前端部が連結されている。ちなみに、入力ピストン106は、ハウジング100の後方小径部124に嵌め込まれた係止環144によって係止されることで、後退が制限されている。また、オペレーションロッド72には、円板状のスプリングシート146が付設されており、このスプリングシート146とハウジング100との間には圧縮コイルスプリング(以下、「リターンスプリング」という場合がある)148が配設されており、このリターンスプリング148によって、オペレーションロッド72は後方に向かって付勢されている。なお、スプリングシート146とハウジング100との間にはブーツ150が渡されており、マスタシリンダ装置50の後部の防塵が図られている。
【0058】
加圧ピストン前進装置108は、ハウジング100の前進装置設置部116に設置された電動式の回転モータ160と、その回転モータ160の発生するトルク、つまり、回転力を、前進力、つまり、第1加圧ピストン102を前進させる力に変換する回転力変換機構162とを有している。なお、回転モータ160は、ブレーキECU38に接続されている。回転力変換機構162は、回転モータ160のモータ軸に取り付けられた駆動ギヤ164と、前方側が第1加圧ピストン102の延出部120に外嵌し、後方側の内部に入力ピストン106が配設されている円筒形状のプランジャ166と、内周部においてプランジャ166に螺合し、前後方向に移動不能に設けられた概して円筒形状のナット168とを含んで構成されている。なお、ナット168は、プランジャ168と螺合するねじ部材169と、そのねじ部材169に外嵌し、上記駆動ギヤ164と噛み合う従動ギヤ170とによって構成されている。なお、駆動ギヤ164および従動ギヤ170の各々は、かさ歯車となっている。プランジャ166は、前端面が鍔124の後方を向く面に当接する状態で第1加圧ピストン102に外嵌している。また、プランジャ166の後端における外周部と、ハウジング100の後方部114における内周部とには、前後方向に延び、かつ、互いに嵌り合うことができるスプラインがそれぞれ形成されている。つまり、プランジャ166は、ハウジング100にスプライン嵌合されることによって、前後方向に摺動可能とされつつ、回転不能とされている。ちなみに、プランジャ166は、入力ピストン106と同様に、係止環144によって係止されることで後退が制限されている。また、加圧ピストン前進装置108では、プランジャ166の外周面と、ナット168の内周面とに、それぞれ、螺旋状の溝172,174が、互いに向かい合う状態で形成されている。それらの溝172,174には、複数のボール176が嵌め込まれており、プランジャ166とナット168とは、それらのボール176を介して螺合している。つまり、加圧ピストン前進装置108では、プランジャ166,ナット168,ボール176によって、ボールねじ機構が構成されており、このボールねじ機構は、回転モータ160がトルクを発生すると、プランジャ166に前進力が発生するように構成されている。したがって、第1加圧ピストン102は、そのプランジャ166によって前方に押し出されることによって前進することができる。つまり、回転モータ160および回転力変換機構162によって、第1加圧ピストン102に前進力を付与する前進力付与機構が構成されているのである。
【0059】
上述のように構成されたマスタシリンダ装置50では、加圧ピストン前進装置108のプランジャ166と、第1加圧ピストン102の延出部120とが、前後方向において重なり合う位置にピストン間室R3が設けられている。したがって、プランジャ166に必要な前後方向の長さおよびピストン間室R3に必要な前後方向の間隔が確保されつつ、プランジャ166とピストン間室R3とが前後方向において重なり合うようにして配設されているため、マスタシリンダ装置50の前後方向の長さが比較的短くされている。
【0060】
第1加圧室R1は、ハウジング100に設けられた連通孔180を介して、アンチロック装置54に繋がる液通路80と連通しており、第1加圧ピストン102に設けられた連通孔182およびハウジング100に設けられた連通孔184を介して、リザーバ62に連通可能とされている。一方、第2加圧室R2は、ハウジング100に設けられた連通孔186を介して、アンチロック装置54に繋がる液通路82と連通しており、第2加圧ピストン104に設けられた連通孔188およびハウジング100に設けられた連通孔190を介して、リザーバ62に連通可能とされている。
【0061】
ハウジング100には、一端が連通孔184、つまり、リザーバ62に連通し、他端が外部に連通する連通孔192が設けられている。ハウジング100には、一端が反力室R4に開口し、他端が外部に連通する連通孔194も設けられている。また、第1加圧ピストン102には、一端が反力室R4に連通し、他端がピストン間室R3に連通する連通孔196が設けられている。つまり、ピストン間室R3は、連通孔196,反力室R4,連通孔194を介して外部に連通しており、連通孔196は、ピストン間室R3と反力室R4とを連通する室間連通路となっている。
【0062】
このように連通孔が形成されたマスタシリンダ装置50において、連通孔192には、ハウジング100の外部に設けられた外部連通路198の一端が接続されており、その外部連通路198の他端は連通孔194に接続されている。したがって、ピストン間室R3および反力室R4は、リザーバ62に連通可能となっている。その外部連通路198の途中には、ブレーキECU38に接続された電磁式の開閉弁200が設けられている。なお、開閉弁200は、非励磁状態で開弁状態となる常開弁とされており、通常の車両の使用時においては、閉弁状態とされている。
【0063】
また、外部連通路198における連通孔194と開閉弁200との間には、マスタシリンダ装置50からの作動液が流出入する反力発生器210が設けられている。図3は、反力発生器210の断面図である。反力発生器210は、筐体であるハウジング212と、そのハウジング212内部に配置されたピストン214および圧縮コイルスプリング216を含んで構成されている。ハウジング212は、両端が閉塞された円筒形状とされている。ピストン214は、円板状とされており、ハウジング212の内周面に摺動可能に配設されている。スプリング216は、それの一端がハウジング212の内底面に支持されており、他端がピストン214の一端面に支持されている。したがって、ピストン214は、スプリング216によってハウジング212に弾性的に支持されている。また、ハウジング212の内部には、ピストン214の他端面とハウジング212とによって、貯液室R5が区画形成されている。また、ハウジング212には、一端が貯液室R5に開口する連通孔218が設けられている。その連通孔218の他端には、連通孔194と開閉弁200との間で外部連通路198から分岐する連通路が接続されている。したがって、貯液室R5は反力室R4,ピストン間室R3に連通している。したがって、反力室R4,ピストン間室R3の合計容積が減少すると、その減少に応じて貯液室R5の容積が増加し、スプリング216は、その増加の量に応じた大きさの弾性反力を発生する。その弾性反力は、貯液室R5の作動液に作用するため、貯液室R5の作動液の圧力が増加する。つまり、反力発生器210は、マスタシリンダ装置50における反力付与機構とされている。
【0064】
なお、本マスタシリンダ装置50に採用される反力付与機構は、所謂ダイアフラム式で構成されていてもよい。つまり、貯液室R5がピストン214の代わりにダイアフラムによって区画されており、ダイヤフラムを挟んで設けられたガス室のガスの圧力によって作動液が加圧されるような反力付与機構であってもよい。
【0065】
≪マスタシリンダ装置の作動≫
以下にマスタシリンダ装置50の作動について説明する。通常時、つまり、液圧ブレーキシステム40が正常に作動することができる場合、前述のように、目標制動力が、回生ブレーキによる回生制動力を上回ると、その上回る分が目標液圧制動力に決定される。その目標液圧制動力に応じて、ブレーキECU38は、加圧室R1内の作動液の圧力の大きさを決定し、回転モータ160を回転させるための指令を回転モータ160に出力する。回転モータ160では、正回転する方向へのトルクが発生し、そのトルクは第1加圧ピストン102に伝達される。つまり、第1加圧ピストンに前進力が付与されることになる。その前進力によって第1加圧ピストン102が前進し、第1加圧室R1内の作動液が加圧され、その作動液の圧力によって第2加圧ピストン104が前進し、第2加圧室R2内の作動液が加圧される。したがって、各ブレーキ装置56では液圧制動力が発生することになる。通常時、ブレーキECU38は、マスタ圧センサ84の出力値を用いて、マスタ圧が目標液圧制動力に応じた大きさとなっているかを監視している。つまり、ブレーキECU38は、マスタ圧が目標液圧制動力に応じた圧力となるように、回転モータ160の発生するトルクを調整するための指令を回転モータ160に出力する。回転モータ160は、その指令に基づいて、自身に供給される電流が調整され、自身の発生するトルク、つまり、回転力が調整される。
【0066】
前述のように、ブレーキ操作量の増加に応じて入力ピストン106が第1加圧ピストン102やハウジング100に対して前進すると、ピストン間室R3や反力室R4の作動液は流出し、ピストン間室R3および反力室R4の合計容積が減少する。また、通常時、開閉弁200は励磁されて閉弁させられている。したがって、上記の2室から流出した作動液は、反力発生器210の貯液室R5へと流入し、貯液室R5の容積が増加することになる。そのため、スプリング216の弾性反力が増加し、貯液室R5およびピストン間室R3,反力室R4の作動液の圧力が増加する。そのため、ブレーキ操作量の増加に応じて、ピストン間室R3の作動液の圧力の増加によって、第1加圧ピストン102に作用する前方への付勢力が増加し、また、反力室R4の作動液の圧力の増加によって、第1加圧ピストン102に作用する後方への付勢力が増加する。前述のように、本マスタシリンダ装置50では、その後方への付勢力を発生させる第1加圧ピストン102の段差面126における面積は、第1加圧ピストン102の有底穴130の底面の面積と等しくされている。そのため、上記の前方への付勢力と後方への付勢力とは、ピストン間室R3および反力室R4の作動液の圧力に拘らず、同じ大きさとなる。そのため、第1加圧ピストン102は、ピストン間室R3および反力室R4の作動液の圧力によって移動させられることはなく、加圧ピストン前進装置108の発生する前進力によって移動することになる。つまり、通常時には、操作力とは関係なく、加圧ピストン前進装置108の発生する前進力によって、加圧室R1,R2の作動液は加圧されるのである。したがって、本マスタシリンダ装置50は、運転者によるブレーキペダル70の操作とは関係なく作動液を加圧することができるように構成された独立加圧型マスタシリンダ装置となっている。
【0067】
また、先に説明したピストン間室R3の作動液の圧力は、入力ピストン106の小径部140の前端面にも作用するため、入力ピストン106に対して後方への付勢力が発生する。この後方への付勢力は、入力ピストン106を介してブレーキペダル70に伝達されるため、運転者は、その付勢力を自身のブレーキ操作に対する操作反力として感じることができる。したがって、本マスタシリンダ装置50は、運転者の操作力が第1加圧ピストン102の前進、つまり、作動液の加圧に利用されていなくても、自身のブレーキ操作によってブレーキ装置56が作動しているかのように運転者に感じさせることができる。つまり、反力発生器210を含んで、運転者のブレーキ操作を許容しつつ、その操作に応じた反力を発生させるストロークシミュレータが構成されていると考えることができる。
【0068】
また、本液圧ブレーキシステム40では、例えば、急ブレーキ等において、大きな液圧制動力が必要とされたとき(以下、「大制動力必要時」という場合がある)に、開閉弁200が非励磁とされて開弁される。つまり、ピストン間室R3および反力室R4は、外部連通路198を介してリザーバ62に連通させられ、また、反力発生器250の貯液室R5もリザーバ62に連通させられる。そのため、入力ピストン106は、ピストン間室R3の作動液をリザーバ62に流出させながら前進することができる。したがって、小径部140の前端面が、有底穴130の底面において第1加圧ピストン102に当接することが許容され、当接することによって、第1加圧ピストン102を、操作力によっても前進させることができる。つまり、本マスタシリンダ装置50は、大制動力必要時に、加圧ピストン前進装置108の発生する前進力に加えて、操作力によっても加圧室R1,R2の作動液を加圧することができるのである。このように、本マスタシリンダ装置50では、開閉弁200を含んで、ピストン間室R3,反力室R4をリザーバ62に連通させることで入力ピストン106の第1加圧ピストン102への当接を許容する反力室・ピストン間室用低圧源連通機構が構成されている。また、この当接によって、第1加圧ピストン102に対する入力ピストン106の相対前進が禁止されるため、開閉弁200を含む機構は、入力ピストン相対前進禁止機構になっていると考えることもできる。
【0069】
なお、大制動力必要時には、反力室R4がリザーバ62に連通されることで、第1加圧ピストン102に作用する前述の後方への付勢力が発生しないため、後方への付勢力が第1加圧ピストン102の前進に対する抵抗力となることはない。そのため、操作力によって第1加圧ピストン102を前進させる場合でも、比較的容易に前進させることができる。また、大制動力必要時には、貯液室R5もリザーバ62に連通されるため、マスタシリンダ装置50では、反力発生器210による操作反力が発生しなくなる。しかしながら、操作力によって加圧室R1,R2の作動液を加圧する場合には、運転者は、主に、加圧室R1,R2内の作動液の圧力による力を操作反力として感じることができる。
【0070】
前述のように、本マスタシリンダ装置50では、大制動力必要時において、大きな液圧制動力を発生させるのに、加圧ピストン前進装置108の発生する前進力だけに依存する必要がないため、回転モータ160には比較的低出力のモータを採用することができる。換言すれば、本マスタシリンダ装置50は、高出力のモータによるコストアップや装置の大形化を招くことなく、比較的大きな液圧制動力を発生させることが可能とされているのである。また、本マスタシリンダ装置50では、回転モータ160の発生するトルクがボールねじ機構によって前進力に変換されるため、その変換における摩擦力等によるロスが比較的小さくされている。それによっても、回転モータ160を比較的低出力のモータとすることが可能となっている。
【0071】
次に、電気的失陥のため、液圧ブレーキシステム40に電力が供給されていない状況下におけるマスタシリンダ装置50の作動について説明する。電気的失陥の場合、加圧ピストン前進装置108は作動することはできない。また、開閉弁200は非励磁とされて開弁している。つまり、ピストン間室R3,反力室R4,貯液室R5はリザーバ62に連通する。つまり、マスタシリンダ装置50では、大制動力必要時と同じ状態、つまり、入力ピストン106の第1加圧ピストン102への当接が許容される状態が実現されることになる。したがって、ブレーキ操作がされると、入力ピストン106の小径部140の前端面が、有底穴130の底面において第1加圧ピストン102に当接することが許容され、当接することによって、第1加圧ピストン102を、操作力によって前進させることができる。つまり、本マスタシリンダ装置50では、電気的失陥の場合、加圧ピストン前進装置108の発生する前進力によらずに、操作力によって加圧室R1,R2の作動液を加圧することができることになる。このように、本マスタシリンダ装置50では、加圧ピストン前進装置108が作動できないような場合であっても、ブレーキ装置56を作動させて液圧制動力を発生させることが担保されており、フェールセーフの観点において、優れたマスタシリンダ装置となっているのである。
【0072】
このように、本マスタシリンダ装置50では、調圧された作動液をマスタシリンダ装置に導入するための通路を設けたり、調圧された作動液の圧力を加圧ピストンに伝達するための液室をマスタシリンダ装置内に区画形成したりする必要がないため、マスタシリンダ装置の構造が比較的簡単となっている。
【実施例2】
【0073】
図4に、第2実施例の液圧ブレーキシステム240を示す。液圧ブレーキシステム240は、マスタシリンダ装置250を有しており、大まかには第1実施例の液圧ブレーキシステム240と同様の構成とされている。以下の説明においては、説明の簡略化に配慮し、第1実施例の液圧ブレーキシステム40と異なる構成および作動について説明し、第1実施例の液圧ブレーキシステム40と同じ構成および作動については説明を省略する。
【0074】
≪マスタシリンダ装置の構成≫
マスタシリンダ装置250は、マスタシリンダ装置250の筐体であるハウジング300と、ブレーキ装置56に供給される作動液を加圧する第1加圧ピストン302および第2加圧ピストン304と、運転者の操作が操作装置52を通じて入力される入力ピストン306と、第1加圧ピストン302を前進させることが可能とされた加圧ピストン前進機構308とを含んで構成されている。
【0075】
ハウジング300は、前方が塞がれた第1ハウジング部材310と、第1ハウジング部材310にそれの後方側において嵌め込まれた第2ハウジング部材312とから構成されている。第1ハウジング部材310は、前方側に位置して内径の小さい小径部314と、小径部314の後方に位置して小径部314よりも内径が大きくされた大径部316とに区分けされている。また、第2ハウジング部材312では、前方側に、加圧ピストン前進機構308が設置される前進装置設置部318が設けられており、後方側には、内径の小さくされた後方部320が設けられている。なお、前進装置設置部318は、後方部320の内径と同じ内径を有する円筒形状の内筒部322と、その内筒部322の周囲に円環形状とされた空間を仕切るケーシング324とから構成されている。第1ハウジング部材310と第2ハウジング部材312とは、ケーシング324の前端に設けられた開口に第1ハウジング部材310の後端が嵌め込まれた状態で一体とされている。
【0076】
第1加圧ピストン302は、後端部が塞がれた有底円筒形状をなす本体部326と、その本体部326から後方に延び出す延出部328とを有している。また、本体部326の後端における外周部には、鍔330が形成されている。したがって、本体部326には、鍔330によって、前方を向く段差面332が形成されている。また、第1加圧ピストン302は、延出部328の後端において開口する有底穴334を有している。このように形成された第1加圧ピストン302は、延出部328が第2ハウジング部材312の内筒部322内に配置される状態で、本体部326の前方側がハウジング300の小径部314に、鍔330の外周部が大径部316に摺動可能に嵌め合わされている。
【0077】
入力ピストン306は、概して、円柱形状とされており、第1加圧ピストン302の延出部328の後方に配設されている。このように入力ピストン306と第1加圧ピストン302とが配設された状態で、入力ピストン306の前端面と第1加圧ピストン302の延出部328の後端面との間の空間と、有底穴334の内部の空間とによって、作動液で満たされたピストン間室R13が区画形成されている。また、段差面332の前方には、第1加圧ピストン302と第1ハウジング部材310とによって、作動液で満たされた反力室R14が区画形成されている。なお、反力室R14の作動液の圧力によって、第1加圧ピストン302には後方への付勢力が発生することになる。第1加圧ピストン302に後方への付勢力を発生させるように、反力室R14の作動液の圧力が第1加圧ピストン302に作用する受圧面積、つまり、第1加圧ピストン302の段差面332における受圧面積は、第1加圧ピストン302に前方への付勢力を発生させるように、ピストン間室R13の作動液の圧力が第1加圧ピストン302に作用する受圧面積、つまり、第1加圧ピストン302の延出部328の後端面の面積と有底穴334の底面の面積との合計面積と等しくされている。ちなみに、入力ピストン306は、第2ハウジング部材312の後方部320に嵌め込まれた係止環336によって係止されることで、後退が制限されている。
【0078】
加圧ピストン前進機構308は、第2ハウジング部材312の内筒部322に外嵌されたプランジャ340と、そのプランジャ340に自身の内周部が固着され、第2ハウジング部材312のケーシング324に自身の外周部が固着されたダイアフラム342と、プランジャ340を後方へと付勢する圧縮コイルスプリング344とから主に構成されている。プランジャ340は、前端面が第1加圧ピストン302の鍔330の後方を向く面に当接する状態で、第2ハウジング部材312の内筒部322のに摺動可能に嵌め合わされている。また、プランジャ340の後方における外周には、径方向に拡がる鍔346が形成されており、ダイアフラム344の内周部は、鍔346の外周部において、プランジャ340に固着されている。また、スプリング346は、一端がケーシング324の前端面に、他端部が鍔346の前面に当接することで、プランジャ340を後方へと付勢している。なお、プランジャ340は、後端部がケーシング324内における後端面に当接することで、後方への移動が制限されている。このように構成された加圧ピストン前進機構308によって、ケーシング324の内部は、鍔346とダイアフラム344とによって、前方側に位置する前方室R16と、後方側に位置する後方室R17とに区画されている。
【0079】
第1加圧ピストン302には、一端が反力室R14に連通し、他端が有底穴334に連通する連通孔360が設けられている。つまり、ピストン間室R13は、連通孔360,反力室R14,連通孔194を介して外部に連通しており、連通孔360は、ピストン間室R13と反力室R14とを連通する室間連通路となっている。また、第2ハウジング部材には、ケーシング324において、一端が前方室R16に開口し、他端が外部に開口する連通孔362が設けられており、さらに、一端が後方室R17に開口し、他端が外部に開口する連通孔364も設けられている。
【0080】
このように連通孔が形成されたマスタシリンダ装置250において、連通孔362には、負圧路370が接続されており、その負圧路370の途中には、負圧状態を作ることができるバキューム装置372が設けられている。連通孔364には、一端が外部に開放されている大気圧路374の他端が接続されており、大気圧路374の途中には、電磁式の開閉弁376が設けられている。したがって、後方室R17は、大気圧源である外部に連通可能となっている。なお、開閉弁376は、非励磁状態で閉弁状態となる常閉弁とされている。さらに、大気圧路374では、連通孔364と開閉弁376との間から連通路378が分岐しており、その連通路378は負圧路370に接続されている。その連通路378の途中には、電磁式の開閉弁380が設けられている。その開閉弁380は、非励磁状態で開弁状態となる常開弁とされている。なお、開閉弁376,380は、それぞれ、ブレーキECU38に接続されている。
【0081】
バキューム装置372は、空気を吸い出すことができるバキュームポンプ382と、そのバキュームポンプを駆動する電動モータ384と、バキュームポンプ382に接続された負圧タンク386とから主に構成されている。バキュームポンプ382は、負圧タンク386内の圧力が設定された大きさ超えて大気圧に近づいた場合に作動するように構成されており、負圧タンク386内は、バキュームポンプ382の作動によって常に設定された圧力以下の負圧状態に維持されている。したがって、バキューム装置372によって、前方室R16内は常に負圧状態に維持されている、バキューム装置372は、前方室R16を負圧のガスで満たすための負圧源とされている。
【0082】
したがって、加圧ピストン前進機構308では、負圧とされた前方室R16と、大気圧とされた後方室R17とにおいて、圧力差が発生することになる。したがって、プランジャ340は、鍔346の前後に発生する圧力差によって、前進することができる。つまり、前方室R16の圧力と後方室R17の圧力との圧力差によって、第1加圧ピストン302を前進させる力である前進力が発生し、プランジャ340は、その前進力によって第1加圧ピストン302を前進させることができるプランジャとされている。また、鍔346およびダイアフラム344は、ガス容器とされているケーシング324の内部を、前方においてバキューム装置372に連通する前方室R16と、後方において外部に連通可能とされた後方室R17とに区画する仕切体となっている。したがって、本マスタシリンダ装置250では、第2ハウジング部材312のケーシング324,プランジャ340,ダイアフラム344を含んだ機構によって、第1加圧ピストン302に前進力を付与する前進力付与機構が構成されている。
【0083】
≪マスタシリンダ装置の作動≫
以下にマスタシリンダ装置250の作動について説明する。通常時、つまり、液圧ブレーキシステム240が正常に作動することができる場合に、ブレーキ操作がされていないときには、開閉弁376は非励磁とされて閉弁されており、また、開閉弁380は非励磁とされて開弁されている。したがって、後方室R17はバキューム装置372に連通されており、後方室R17は負圧状態、つまり、前方室R16と同じ圧力とされている。したがって、プランジャ340は、スプリング346の発生する弾性反力によって、後方に位置している。ブレーキ操作がされ、目標制動力が、回生ブレーキによる回生制動力を上回ると、開閉弁376は励磁とされて開弁され、開閉弁380は励磁されて閉弁される。したがって、後方室R17には空気が流入し、前方室R16の圧力と後方室R17の圧力との間に圧力差が発生する。つまり、第1加圧ピストン102に前進力が付与されることになる。また、この前進力は、後方室R17への空気の流入量の増加に伴って、つまり、前方室R16と後方室R17との圧力差の増加に伴って、増加することになる。ブレーキECU38は、マスタ圧が目標液圧制動力に応じた圧力となるように、開閉弁376,380の開閉をそれぞれ制御する。つまり、後方室R17を大気圧源に連通するように開閉弁376,380をそれぞれ開閉すれば、上記の前進力が増加して液圧制動力が増加することになり、一方、後方室R17をバキューム装置372に連通するように開閉弁376,380をそれぞれ開閉すれば、液圧制動力が低減することになる。このように、本液圧ブレーキシステム240では、通常時、開閉弁376,380それぞれ開閉することによって、液圧制動力が調整される。
【0084】
このようにマスタシリンダ装置250が作動する状態において、操作量の増加に応じて入力ピストン306が前進すると、開閉弁200は閉弁されているため、貯液室R5,ピストン間室R13,反力室R14の作動液の圧力が増加する。本マスタシリンダ装置250では、その作動液の圧力が増加しても、ピストン間室R13の作動液の圧力によって発生する第1加圧ピストン302を前方へ付勢する力と、反力室R14の作動液の圧力によって発生する第1加圧ピストン302を後方へ付勢する力とは、同じ大きさとなる。そのため、第1加圧ピストン302は、これらピストン間室R13の作動液の圧力と反力室R14の作動液の圧力とによって移動することはなく、加圧ピストン前進機構308の発生する前進力によって移動することになる。つまり、通常時には、操作力とは関係なく、加圧ピストン前進機構308の発生する前進力によって、加圧室R1,R2の作動液は加圧されるのである。したがって、本マスタシリンダ装置250は、運転者によるブレーキペダル70の操作とは関係なく作動液を加圧することができるように構成された独立加圧型マスタシリンダ装置となっている。
【0085】
また、ピストン間室R13の作動液の圧力は、入力ピストン306の前端面にも作用するため、入力ピストン306に対して後方への付勢力が発生する。したがって、運転者は、その付勢力を自身のブレーキ操作に対する操作反力として感じることができる。したがって、本マスタシリンダ装置250は、運転者の操作力が作動液の加圧に利用されていなくても、自身のブレーキ操作によってブレーキ装置56が作動しているかのように運転者に感じさせることができる。つまり、反力発生器210を含んで、運転者のブレーキ操作を許容しつつ、その操作に応じた反力を発生させるストロークシミュレータが構成されていると考えることができる。
【0086】
また、本液圧ブレーキシステム240では、大制動力必要時に、開閉弁200が非励磁とされて開弁される。つまり、ピストン間室R13,反力室R14,貯液室R5がリザーバ62に連通させられる。そのため、入力ピストン306は、ピストン間室R13の作動液をリザーバ62に流出させながら前進し、入力ピストン306の前端面が、延出部328の後端面において第1加圧ピストン302に当接することが許容され、当接することによって、第1加圧ピストン302を、操作力によっても前進させることができる。つまり、本マスタシリンダ装置250は、大制動力必要時に、加圧ピストン前進機構308の発生する前進力に加えて、操作力によっても加圧室R1,R2の作動液を加圧することができるように構成されているのである。そのため、本マスタシリンダ装置250は、加圧ピストン前進機構308があまり大きな前進力を発生させなくても、比較的大きな液圧制動力を発生させることが可能とされている。そのため、本マスタシリンダ装置250は、ケーシング324内の容積が比較的小さく、また、プランジャ340の鍔346も比較的小さくされているにも拘らず、比較的大きな液圧制動力を発生させることが可能とされている。換言すれば、本マスタシリンダ装置250は、加圧ピストン前進機構308の大形化や、それに伴うコストアップを招くことなく、比較的大きな液圧制動力を発生させることが可能とされているのである。
【0087】
次に、電気的失陥のため、液圧ブレーキシステム240に電力が供給されていない状況下におけるマスタシリンダ装置250の作動について説明する。電気的失陥の場合、バキュームポンプ382は作動することはできない。また、開閉弁376は非励磁とされて閉弁されており、開閉弁380は非励磁とされて開弁されている。したがって、前方室R16と後方室R17とは同じ圧力となっており、加圧ピストン前進機構308で前進力が発生することはない。また、開閉弁200は非励磁とされて開弁しており、ピストン間室R13,反力室R14,貯液室R5はリザーバ62に連通する。したがって、入力ピストン306の第1加圧ピストン302への当接が許容され、操作力によって第1加圧ピストン302を前進させることができる。つまり、本マスタシリンダ装置250では、電気的失陥の場合、加圧ピストン前進機構308の発生する前進力によらずに、操作力によって加圧室R1,R2の作動液を加圧することができることになる。このように、本マスタシリンダ装置250では、加圧ピストン前進機構308が作動できないような場合であっても、ブレーキ装置56を作動させて液圧制動力を発生させることが担保されており、フェールセーフの観点において、優れたマスタシリンダ装置となっている。
【0088】
また、本マスタシリンダ装置250では、車両のエンジン10が運転中である場合には、エンジン10の吸気部、または、エンジン10に繋げられる吸気管が負圧源とされていてもよい。
【0089】
≪変形例≫
図5は、マスタシリンダ装置250に代えて、マスタシリンダ装置400が採用された液圧ブレーキシステム240を示す。マスタシリンダ装置400は、大まかには、入力ピストン306を除いて、マスタシリンダ装置250と同様の構成とされている。マスタシリンダ装置400に備えられた入力ピストン402では、前方が外径の小さくされた小径部404、後方が外径の大きくされた大径部406とされており、小径部404が、第1加圧ピストン302の有底穴334に内挿されている。このように構成されたマスタシリンダ装置400では、小径部404の前端面と有底穴334の底面との間の空間、および、小径部404と大径部406との間にある段差面と延出部328の後端面との間の空間を含んで、ピストン間室R23が区画されている。したがってマスタシリンダ装置400では、加圧ピストン前進機構308のプランジャ340と、第1加圧ピストン302の延出部328とが、前後方向において重なり合う位置にピストン間室R23が設けられている。したがって、プランジャ340に必要な前後方向の長さ、および、ピストン間室R23に必要な前後方向の間隔が確保されつつ、プランジャ340とピストン間室R23とが前後方向において重なり合うようにして配設されているため、マスタシリンダ装置400の前後方向の長さが比較的短くされている。
【符号の説明】
【0090】
40:液圧ブレーキシステム 50:マスタシリンダ装置 56:ブレーキ装置 70:ブレーキペダル(ブレーキ操作部材) 100:ハウジング 102:第1加圧ピストン(受圧ピストン) 106:入力ピストン 108:加圧ピストン前進装置(前進力付与機構) 126:段差面 130:有底穴 160:回転モータ(前進力付与機構) 162:回転力変換機構(前進力付与機構) 166:プランジャ 168:ナット 196:連通孔(室間連通路) 200:電磁式開閉弁(入力ピストン相対前進禁止機構,反力室・ピストン間室用低圧源連通機構) 210:反力発生器(反力付与機構) 216:圧縮コイルスプリング(対貯液室弾性反力作用機構) R3:ピストン間室 R4:反力室 R5:貯液室 240:液圧ブレーキシステム 250:マスタシリンダ装置 300:ハウジング 302:第1加圧ピストン(受圧ピストン) 306:入力ピストン 308:加圧ピストン前進機構(前進力付与機構) 324:チャンバ部(ガス容器) 332:段差面 334:有底穴(室間連通路) 340:プランジャ 342:ダイアフラム(仕切体) 346:鍔(仕切体) 360:連通孔(室間連通路) 370:バキューム装置(負圧源) R13:ピストン間室 R14:反力室 R16:前方室(負圧室) R17:後方室(大気圧室) 400:マスタシリンダ装置 402:入力ピストン R23:ピストン間室

【特許請求の範囲】
【請求項1】
車輪に設けられたブレーキ装置に、加圧された作動液を供給するためのマスタシリンダ装置であって、
前端部が閉塞された筒状のハウジングと、
外周部において前方を向く段差面を有する段付形状とされ、前記ハウジング内に配設されて自身の前進によって前記ブレーキ装置に加圧された作動液を供給する加圧ピストンと、
前記ハウジング内において前記加圧ピストンの後方に配設され、ブレーキ操作部材に連結されて運転者のブレーキ操作によって前進する入力ピストンと、
前記入力ピストンと前記加圧ピストンとの間に区画されたピストン間室と、
前記段差面の前方において前記加圧ピストンと前記ハウジングとによって区画されており、自身の内部の作動液の圧力が前記加圧ピストンに作用する受圧面積が前記ピストン間室の内部の作動液の圧力が前記加圧ピストンに作用する受圧面積と等しくされた反力室と、
前記ピストン間室と前記反力室とを連通する室間連通路と、
電動モータが発生させる力と気体圧によって発生する力との一方を、前記加圧ピストンに、それを前進させる力である前進力として付与する前進力付与機構と、
前記入力ピストンの前進に対抗しかつその前進の量に応じた大きさの力を、前記入力ピストンに、前記ブレーキ操作部材の操作に対する操作反力として付与する反力付与機構と
を備えたマスタシリンダ装置。
【請求項2】
前記前進力付与機構が、
電力の供給によって回転して回転力を発生させる前記電動モータとしての回転モータと、
その回転モータによる回転力を前記前進力に変換する回転力変換機構と
を含んで構成された請求項1に記載のマスタシリンダ装置。
【請求項3】
前記回転力変換機構が、
前後方向に移動不能な状態で前記回転モータの回転力によって回転可能とされたナットと、
回転不能な状態で前記ナットと螺合し、前記回転モータの回転力によって前記加圧ピストンに当接して前記加圧ピストンを前進させるプランジャと
を含んで構成された請求項2に記載のマスタシリンダ装置。
【請求項4】
前記前進力付与機構が、
前記ハウジング内部にガスで満たされた空間が形成されたガス容器と、
前記ガス容器内に配設されて、そのガス容器内を、自身の後方において大気圧源に連通する大気圧室と、自身の前方において負圧源に連通する負圧室とに区画する仕切体を有し、前記大気圧室の圧力と前記負圧室の圧力との圧力差によって前記加圧ピストンに当接して前記加圧ピストンを前進させるプランジャと
を有する請求項1に記載のマスタシリンダ装置。
【請求項5】
前記ガス容器が前記プランジャの周囲に円環形状となって形成されており、前記プランジャの仕切体が前記プランジャの外周に鍔状に形成されている請求項4に記載のマスタシリンダ装置。
【請求項6】
前記加圧ピストンに対する前記入力ピストンの前記相対前進を禁止する入力ピストン相対前進禁止機構を、さらに備えた請求項1ないし請求項5のいずれか1つに記載のマスタシリンダ装置。
【請求項7】
前記加圧ピストンと前記入力ピストンとの一方が、他方に向かって開口する有底穴を有し、その有底穴に前記加圧ピストンと前記入力ピストンとの他方が嵌入されることで、前記有底穴内に前記ピストン間室が形成された請求項1ないし請求項6のいずれか1つに記載のマスタシリンダ装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate