説明

二次電池用非水系電解液及びそれを用いた二次電池

【課題】過充電時における安全性と高温保存後の良好なレート特性の両立を可能にする非水系電解液及び非水系電解液二次電池を提供する。
【解決手段】非水溶媒、リチウム塩及び過充電防止剤、更に、式(1)の環状シロキサン化合物、式(2)のフルオロシラン化合物、式(3)の化合物、S−F結合を有する化合物、硝酸塩、亜硝酸塩、モノフルオロリン酸塩、ジフルオロリン酸塩、酢酸塩及び/又はプロピオン酸塩を、非水系電解液全体中に10ppm以上含有する二次電池用非水系電解液とそれを用いた二次電池。


[(1)中、R及びRは炭素数1〜12の有機基、nは3〜10の整数。
(2)中、R〜Rは炭素数1〜12の有機基、xは1〜3の整数、p、q及びrはそれぞれ0〜3の整数、1≦p+q+r≦3。
(3)中、R〜Rは炭素数1〜12の有機基、AはH、C、N、O、F、S、Si及び/又はPから構成される基。]

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、リチウム二次電池用非水系電解液及びそれを用いたリチウム二次電池に関し、更に詳しくは、高いレート特性を有し、過充電時の安全性に優れたリチウム二次電池用非水系電解液及びそれを用いたリチウム二次電池に関するものである。
【背景技術】
【0002】
近年、電子機器の小型化に伴い、二次電池に対する高容量化への要求が高くなっており、ニッケル・カドミウム電池やニッケル・水素電池に比べてエネルギー密度の高いリチウム二次電池が注目されている。
【0003】
リチウム二次電池の電解液としては、LiPF6、LiBF4、LiClO4、LiCF3SO3、LiAsF6、LiN(CF3SO22、LiCF3(CF23SO3等の電解質を、エチレンカーボネート、プロピレンカーボネート等の環状カーボネート;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート;γ−ブチロラクトン、γ−バレロラクトン等の環状エステル類;酢酸メチル、プロピオン酸メチル等の鎖状エステル類;テトラヒドロフラン、2−メチルテトラヒドロフラン、テトラヒドロピラン等の環状エーテル類;ジメトキシエタン、ジメトキシメタン等の鎖状エーテル類;スルフォラン、ジエチルスルホン等の含硫黄有機溶媒等の非水溶媒に溶解させた非水系電解液が用いられている。
【0004】
これらのリチウム二次電池では、過充電異常時に正極ではリチウムの過剰な放出が起き、一方、負極ではリチウムの過剰な吸蔵が起き、場合によっては、金属リチウムが析出する。このような状態の正極、負極は、何れも熱的に不安定な状態におかれ、電解液の分解及び急激な発熱を引き起こし、それにより電池が異常に発熱して、電池の安全性が損なわれるという問題が生じる。このような問題は、非水系電解液電池のエネルギー密度の増加に伴い、特に顕著となる。
【0005】
上記の問題を解決するために、非水系電解液電池の電解液中に、添加剤として少量の芳香族化合物(過充電防止剤)を添加することにより、過充電状態における電池の安全性を確保する技術が、これまでに提案されてきた。例えば、特許文献1では、添加剤として、ビフェニル、3−R−チオフェン(Rは、臭素、塩素又はフッ素を表す)、フラン、3−クロロチオフェンを少量使用して、過充電状態における電池を保護する方法及びこれらの添加剤を配合した電池が提案されている。この方法は、電池の最大動作電圧以上の電圧では、添加剤が重合することにより電池の内部抵抗を上昇させ、過充電時の電池の安全性を確保するものであるとしている。
【0006】
更に、特許文献2では、添加剤としてテルフェニル及びアルキル基置換のテルフェニルが挙げられ、また、特許文献3では、添加剤としてp−テルフェニルが挙げられ、何れも少量使用して、同様な作用で過充電時の電池の安全性を確保している。
【0007】
二次電池は様々な使用環境においてもその性能が得られることが、昨今の高い市場要求レベルの高まりから要求されてきており、例えば、後述する実施例において示されるように、60℃もの高温に保存した場合においても、保存後の放電容量が大きく保たれることや、大電流放電時の過電圧が小さく、大きな放電容量が得られる特性、即ち、高温保存後のレート特性が良好に保たれることも重要な特性である。
【0008】
しかしながら、特許文献1ないし特許文献3に記載された方法では、電池を充電状態で高温保存した際に、添加剤の一部が反応してしまい、重合物が電池内部抵抗の上昇を引き起こす等、電池特性が低下するという問題があった。
【0009】
特に近年、一層の電池の高容量化が求められるようになっているが、一般に高容量の電池は、ひとたび過充電等の異常な状態に陥った場合に、その内在するエネルギーの大きさから、破裂等の現象が起きると重大な被害を招いてしまう場合がある。そのため、このような高容量の電池においては、過充電防止剤の重要性は特に高まるが、高容量電池は、例えば自動車用等のように、同時にレート特性、すなわち大電流での放電特性が求められることが多い。しかし、上述のように過充電防止剤が高温保存後に反応して電池の内部抵抗が高くなると、そのレート特性は著しく低下してしまうという問題点があった。
【0010】
また、特許文献4には環状シロキサン及び/又はその反応生成物を含有する非水系電解液を用いること、特許文献5には特定の構造をもつケイ素化合物を含有する非水系電解液を用いることが記載されており、共に入出力特性及びサイクル特性を改善することができるとしてある。これらの方法はその目的のためには確かに有効ではあるが、過充電時の使用を想定しておらず、過充電時の安全性には全く寄与するものではなかった。また、過充電添加剤と併用することによる特殊な効果に関しては何ら開示されておらず、そのような効果については、これら特許文献に記載の発明の及ぶところではなく知られてはいなかった。
【特許文献1】特開平9−106835号公報
【特許文献2】特開2000−58116号公報
【特許文献3】特開2001−15158号公報
【特許文献4】特開2004−71458号公報
【特許文献5】特開2004−87459号公報
【発明の開示】
【発明が解決しようとする課題】
【0011】
本発明は、かかる背景技術に鑑みてなされたものであり、その課題は、非水系電解液二次電池の過充電時における安全性と高温保存後の良好なレート特性の両立を可能にする非水系電解液及び非水系電解液二次電池を提供することにある。
【課題を解決するための手段】
【0012】
本発明者らは、前記課題を解決すべく鋭意検討した結果、過充電防止剤に加えて特定の化合物を一定量電解液に添加若しくは含有させた場合に、過充電安全性を維持しながら高温保存特性、保存後のレート特性を良好に保つことができ、上記目的が達成可能であることを見出し本発明に到達した。
【0013】
すなわち、本発明は、非水溶媒にリチウム塩が含有されてなる二次電池用非水系電解液であって、過充電防止剤を含有し、更に、一般式(1)で表される環状シロキサン化合物、一般式(2)で表されるフルオロシラン化合物、一般式(3)で表される化合物、分子内にS−F結合を有する化合物、硝酸塩、亜硝酸塩、モノフルオロリン酸塩、ジフルオロリン酸塩、酢酸塩及びプロピオン酸塩からなる群より選ばれた少なくとも1種以上の化合物を、非水系電解液全体中に10ppm以上含有することを特徴とする二次電池用非水系電解液に存する。
【化1】

[一般式(1)中、R及びRは互いに同一であっても異なっていてもよい炭素数1〜12の有機基を表し、nは3〜10の整数を表す。]
【化2】

[一般式(2)中、R〜Rは互いに同一であっても異なっていてもよい炭素数1〜12の有機基を表し、xは1〜3の整数を表し、p、q及びrはそれぞれ0〜3の整数を表し、1≦p+q+r≦3である。]
【化3】

[一般式(3)中、R〜Rは互いに同一であっても異なっていてもよい炭素数1〜12の有機基を表し、AはH、C、N、O、F、S、Si及び/又はPから構成される基を表す。]
【0014】
また、本発明は、非水系電解液、リチウムイオンを吸蔵・放出可能な負極及び正極を少なくとも備えた非水系電解液二次電池であって、該非水系電解液が、上記の二次電池用非水系電解液であることを特徴とする非水系電解液二次電池に存する。
【発明の効果】
【0015】
本発明によれば、高いレート特性と過充電時の安全性を同時に満たす二次電池を供給することが可能となる。
【発明を実施するための最良の形態】
【0016】
以下、本発明の実施の形態について詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、これらの内容に特定はされない。その要旨の範囲内で種々変形して実施することができる。
【0017】
<二次電池用非水系電解液>
本発明の二次電池用非水系電解液は、常用の非水系電解液と同じく、電解質及びこれを溶解する非水溶媒を含有する。
【0018】
[リチウム塩]
電解質としては、リチウム二次電池用非水系電解液の電解質として用い得ることが知られているリチウム塩であれば特に制限はないが、例えば次のものが挙げられる。
無機リチウム塩:
LiPF6、LiBF4、LiAsF6、LiSbF6等の無機フッ化物塩;LiClO4、LiBrO4、LiIO4等の過ハロゲン酸塩;LiAlCl4等の無機塩化物塩等。
含フッ素有機リチウム塩:
LiCF3SO3等のパーフルオロアルカンスルホン酸塩;LiN(CF3SO22、LiN(CF3CF2SO22、LiN(CF3SO2)(C49SO2)等のパーフルオロアルカンスルホニルイミド塩;LiC(CF3SO23等のパーフルオロアルカンスルホニルメチド塩;Li[PF5(CF2CF2CF3)]、Li[PF4(CF2CF2CF32]、Li[PF3(CF2CF2CF33]、Li[PF5(CF2CF2CF2CF3)]、Li[PF4(CF2CF2CF2CF32]、Li[PF3(CF2CF2CF2CF33]等のフルオロアルキルフッ化リン酸塩等。
オキサラトボレート塩:リチウムビス(オキサラト)ボレート、リチウムジフルオロオキサラトボレート等。
【0019】
これらは、1種を単独で使用しても、2種以上を任意の組み合わせ及び比率で併用しても良い。これらのなかでも、非水溶媒に対する溶解性、二次電池とした場合の充放電特性、出力特性、サイクル特性等を総合的に判断すると、LiPF6が好ましい。
【0020】
非水系電解液中の上記リチウム塩の濃度は、特に制限はないが、通常0.5mol/L以上、好ましくは0.6mol/L以上、より好ましくは0.7mol/L以上である。また、その上限は、通常2mol/L以下、好ましくは1.8mol/L以下、より好ましくは1.7mol/L以下である。濃度が低すぎると、電解液の電気伝導率が不十分の場合があり、一方、濃度が高すぎると、粘度上昇のため電気伝導度が低下する場合があり、リチウム二次電池の性能が低下する場合がある。
【0021】
リチウム塩を2種以上を併用する場合の好ましい一例は、LiPF6とLiBF4との併用であり、この場合には、両者の合計に占めるLiBF4の割合が、0.01質量%以上、20質量%以下であるものが特に好ましく、0.1質量%以上、5質量%以下であるものが更に好ましい。また、他の好ましい一例は、無機フッ化物塩とパーフルオロアルカンスルホニルイミド塩との併用であり、この場合には、両者の合計に占める無機フッ化物塩の割合が、70質量%以上、99質量%以下であるものが特に好ましく、80質量%以上、98質量%以下であるものが更に好ましい。この両者の併用は、高温保存による劣化を抑制する効果がある。
【0022】
[非水溶媒]
非水溶媒としては、例えば以下のものが挙げられる。
(1)環状カーボネート
環状カーボネートを構成するアルキレン基の炭素数は2〜6が好ましく、特に好ましくは2〜4である。具体的には例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等が挙げられる。中でも、エチレンカーボネート、プロピレンカーボネートが好ましい。
(2)鎖状カーボネート
鎖状カーボネートとしては、ジアルキルカーボネートが好ましく、構成するアルキル基の炭素数は、それぞれ、1〜5が好ましく、特に好ましくは1〜4である。具体的には例えば、ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネート、エチルメチルカーボネート、メチル−n−プロピルカーボネート、エチル−n−プロピルカーボネート等のジアルキルカーボネートが挙げられる。中でも、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートが好ましい。
(3)環状エステル
具体的には例えば、γ−ブチロラクトン、γ−バレロラクトン等が挙げられる。
(4)環状エーテル
具体的には例えば、テトラヒドロフラン、2−メチルテトラヒドロフラン、テトラヒドロピラン等が挙げられる。
(5)鎖状エーテル
具体的には例えば、ジメトキシエタン、ジメトキシメタン等が挙げられる。
(6)含硫黄有機溶媒
具体的には例えば、スルフォラン、ジエチルスルホン等が挙げられる。
(7)鎖状エステル
具体的に例えば、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル等が挙げられる。
【0023】
これらは単独で用いても、2種類以上を併用してもよいが、2種以上の化合物を併用することが好ましい。例えば、環状カーボネート類や環状エステル類等の高誘電率溶媒と、鎖状カーボネート類や鎖状エステル類等の低粘度溶媒とを併用するのが好ましい。
【0024】
非水溶媒の好ましい組合せの一つは、環状カーボネート類と鎖状カーボネート類を主体とする組合せである。なかでも、非水溶媒に占める環状カーボネート類と鎖状カーボネート類との合計が、80容量%以上、好ましくは85容量%以上、より好ましくは90容量%以上であり、かつ環状カーボネート類と鎖状カーボネート類との合計に対する環状カーボネート類の容量が5%以上、好ましくは10%以上、より好ましくは15%以上であり、上限は、通常50%以下、好ましくは35%以下、より好ましくは30%以下である。これらの非水溶媒の組み合わせを用いると、これを用いて作製された電池のサイクル特性と高温保存特性(特に、高温保存後の残存容量及び高負荷放電容量)のバランスがよくなるので好ましい。
【0025】
この混合溶媒に、リチウム塩と、前記一般式(1)で表される環状シロキサン化合物、一般式(2)で表されるフルオロシラン化合物、一般式(3)で表される化合物、分子内にS−F結合を有する化合物、硝酸塩、亜硝酸塩、モノフルオロリン酸塩、ジフルオロリン酸塩、酢酸塩及びプロピオン酸塩からなる群より選ばれた少なくとも1種以上の化合物を含有する非水系電解液は、これを用いて作製された電池のサイクル特性と高温保存特性(特に、高温保存後の残存容量及び高負荷放電容量)及びガス発生抑制のバランスがよくなるので好ましい。
【0026】
環状カーボネート類と鎖状カーボネート類の好ましい組み合わせの具体例としては、エチレンカーボネートとジメチルカーボネート、エチレンカーボネートとジエチルカーボネート、エチレンカーボネートとエチルメチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネート、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネート等が挙げられる。
【0027】
これらのエチレンカーボネートと鎖状カーボネート類との組み合わせに、更にプロピレンカーボネートを加えた組み合わせも、好ましい組み合わせとして挙げられる。プロピレンカーボネートを含有する場合には、エチレンカーボネートとプロピレンカーボネートの容量比は、99:1〜40:60が好ましく、特に好ましくは95:5〜50:50である。更に、非水溶媒全体に占めるプロピレンカーボネートの量を、通常0.1容量%以上、好ましくは1容量%以上、より好ましくは2容量%以上、通常10容量%以下、好ましくは8容量%以下、より好ましくは5容量%以下とすると、エチレンカーボネートと鎖状カーボネート類との組み合わせの特性を維持したまま、更に低温特性が優れるので好ましい。
【0028】
これらの中で、非対称鎖状カーボネート類を含有するものが更に好ましく、特に、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネートといったエチレンカーボネートと対称鎖状カーボネート類と非対称鎖状カーボネート類を含有するものが、サイクル特性と大電流放電特性のバランスが良いので好ましい。中でも、非対称鎖状カーボネート類がエチルメチルカーボネートであるものが好ましく、また、ジアルキルカーボネートを構成するアルキル基の炭素数は1〜2が好ましい。
【0029】
好ましい混合溶媒の他の例は、鎖状エステルを含有するものである。特に、上記、環状カーボネート類と鎖状カーボネート類の混合溶媒に、鎖状エステルを含有するものが、電池の低温特性向上の観点から好ましく、鎖状エステルとしては,酢酸メチル、酢酸エチルが、特に好ましい。非水溶媒に占める鎖状エステルの容量は、通常5%以上、好ましくは8%以上、より好ましくは15%以上であり、上限は、通常50%以下、好ましくは35%以下、より好ましくは30%以下、更に好ましくは25%以下である。
【0030】
他の好ましい非水溶媒の例は、エチレンカーボネート、プロピレンカーボネート、γ−ブチロラクトン及びγ−バレロラクトンよりなる群から選ばれた1種の有機溶媒、又は該群から選ばれた2以上の有機溶媒からなる混合溶媒を全体の60容量%以上を占めるものである。こうした混合溶媒は引火点が50℃以上となることが好ましく、中でも70℃以上となることが特に好ましい。この溶媒を用いた非水系電解液は、高温で使用しても溶媒の蒸発や液漏れが少なくなる。中でも、非水溶媒に占めるγ−ブチロラクトンの量が60容量%以上であるものや、非水溶媒に占めるエチレンカーボネートとγ−ブチロラクトンとの合計が、80容量%以上、好ましくは90容量%以上であり、かつエチレンカーボネートとγ−ブチロラクトンとの容量比が5:95〜45:55であるもの、又は非水溶媒に占めるエチレンカーボネートとプロピレンカーボネートとの合計が、80容量%以上、好ましくは90容量%以上であり、かつエチレンカーボネートとプロピレンカーボネートの容量比が30:70〜60:40であるものを用いると、一般にサイクル特性と大電流放電特性等のバランスがよくなる。
【0031】
本発明の二次電池用非水系電解液は、過充電防止剤を含有することを特徴とする。過充電防止剤としては特に限定はないが、下記の(1)、(2)又は(3)に示す化合物等が好ましい。
(1)アルキル基及び/又はフッ素原子で置換されていてもよい、ビフェニル、ターフェニル、ジフェニルエーテル若しくはジベンゾフラン
(2)ターフェニルの部分水素化体
(3)3級アルキル基、シクロアルキル基、フッ素原子及び/又はメトキシ基で置換されているベンゼン
【0032】
(1)の化合物としては特に限定はないが、例えば、ビフェニル、アルキルビフェニル、ターフェニル等のベンゼン環連結化合物類;2−フルオロビフェニル等の含フッ素ベンゼン環連結化合物類;ジフェニルエーテル等の芳香族エーテル類;ジベンゾフラン等の複素芳香族環連結化合物類等が挙げられる。
【0033】
(3)の化合物としては特に限定はないが、例えば、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン等の(シクロ)アルキルベンゼン類;o−シクロヘキシルフルオロベンゼン、p−シクロヘキシルフルオロベンゼン等のフッ素原子置換ベンゼン類;2,4−ジフルオロアニソール、2,5−ジフルオロアニソール、2,6−ジフルオロアニソール、3,5−ジフルオロアニソール等の含フッ素アニソール類等が挙げられる。
【0034】
好ましい具体例としては、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物が挙げられる。これらは、本発明における高温保存後のレート特性改善効果が大きくなるため特に好ましい。
【0035】
過充電防止剤は、2種類以上併用して用いてもよい。2種以上併用する場合は、特に、シクロヘキシルベンゼンやターフェニル(又はその部分水素化体)と、t−ブチルベンゼンやt−アミルベンゼンとを併用することが好ましい。
【0036】
ここで、ターフェニルの部分水素化物とは、ターフェニルのベンゼン環の二重結合に、部分的に水素が付加したものをいう。ターフェニルの部分水素化物は、単一化合物であってもよく、複数の化合物からなる混合物であってもよい。例えば、異なる部分水素化率を有する2以上のターフェニルの部分水素化物の混合物であっても、部分水素化率が等しいターフェニルの部分水素化物であってもよい。また、水素化されたベンゼン環の位置が異なるものの混合物であっても、二重結合の位置が異なる混合物や構造異性体を含む混合物であってもよい。
【0037】
ターフェニルの部分水素化率は、ターフェニルのベンゼン環の二重結合に水素が付加していないものの部分水素化率を0%とし、ターフェニルの完全水素化物、すなわち総ての二重結合に水素が付加した場合(1モルのターフェニルでは18モルの水素原子が付加した場合)の部分水素化率を100%として計算した値とし、混合物の場合は、モル平均あたりの値とする。例えば1モルのターフェニルに2モルの水素原子が付加した場合、部分水素化率は11.1%(=2/18)となる。
【0038】
上記のように定義した部分水素化率を用いた場合、本発明に用いられるターフェニルの部分水素化物の部分水素化率は、0%を超え、100%未満の値をとることができる。ターフェニルの部分水素化物は、ターフェニル(部分水素化率0%)、m−ターフェニルの完全水素化物(部分水素化率100%)を含むことができるが、混合物のモル平均部分水素化率は、0%を超え、100%未満の値をとるものが好ましい。電池の保存特性と電解液への溶解性の点から、ターフェニルの部分水素化率は、好ましくは30〜70%であり、より好ましくは35〜60%である。また、ターフェニル又はターフェニルの部分水素化物としては特に限定はないが、m−ターフェニル又はm−ターフェニルの部分水素化物が特に好ましい。
【0039】
非水系電解液中におけるこれらの過充電防止剤の割合は、それぞれ、通常0.01質量%以上、好ましくは0.1質量%以上、特に好ましくは0.2質量%以上であり、上限は、通常5質量%以下、好ましくは3質量%以下、特に好ましくは2質量%以下である。下限を下回ると過充電時の安全性確保が充分にできない場合があり、上限を上回ると下記特定化合物と混合しても保存特性が良好な電池にならない場合がある。
【0040】
[特定化合物]
本発明の非水系電解液は、一般式(1)で表される環状シロキサン化合物、一般式(2)で表されるフルオロシラン化合物、一般式(3)で表される化合物、分子内にS−F結合を有する化合物、硝酸塩、亜硝酸塩、モノフルオロリン酸塩、ジフルオロリン酸塩、酢酸塩及びプロピオン酸塩からなる群より選ばれた少なくとも1種以上の化合物(これらを「特定化合物」と略記することがある)を含有することを特徴とする。
【0041】
[[一般式(1)で表される環状シロキサン化合物]]
一般式(1)で表される環状シロキサン化合物におけるR及びRは互いに同一であっても異なっていてもよい炭素数1〜12の有機基であるが、R及びRとしては、メチル基、エチル基、n−プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、t−ブチル基等の鎖状アルキル基;シクロヘキシル基、ノルボルニル基等の環状アルキル基;ビニル基、1−プロペニル基、アリル基、ブテニル基、1,3−ブタジエニル基等のアルケニル基;エチニル基、プロピニル基、ブチニル基等のアルキニル基;トリフルオロメチル基等のハロゲン化アルキル基;3−ピロリジノプロピル基等の飽和複素環基を有するアルキル基;アルキル置換基を有していてもよいフェニル基等のアリール基;フェニルメチル基、フェニルエチル基等のアラルキル基;トリメチルシリル基等のトリアルキルシリル基;トリメチルシロキシ基等のトリアルキルシロキシ基等が挙げられる。
【0042】
中でも、炭素数が少ないものの方が特性を発現しやすく、炭素数1〜6の有機基が好ましい。また、アルケニル基は電解液や電極表面の被膜に作用して入出力特性を向上させ、アリール基は充放電時に電池内で発生するラジカルを捕捉して電池性能全般を向上させる作用を有するので好ましい。従って、R及びRとしては、メチル基、ビニル基又はフェニル基が特に好ましい。
【0043】
一般式(1)中、nは3〜10の整数を表すが、3〜6の整数が好ましく、3又は4が特に好ましい。
【0044】
一般式(1)で表される環状シロキサン化合物の例としては、例えば、ヘキサメチルシクロトリシロキサン、ヘキサエチルシクロトリシロキサン、ヘキサフェニルシクロトリシロキサン、1,3,5−トリメチル−1,3,5−トリビニルシクロトリシロキサン等のシクロトリシロキサン;オクタメチルシクロテトラシロキサン等のシクロテトラシロキサン;デカメチルシクロペンタシロキサン等のシクロペンタシロキサン等が挙げられる。このうち、シクロトリシロキサンが特に好ましい。
【0045】
[[一般式(2)で表されるフルオロシラン化合物]]
一般式(2)で表されるフルオロシラン化合物におけるR〜Rは、互いに同一であっても異なっていてもよい炭素数1〜12の有機基であるが、一般式(1)におけるR及びRの例として挙げた鎖状アルキル基、環状アルキル基、アルケニル基、アルキニル基、ハロゲン化アルキル基、飽和複素環基を有するアルキル基、アルキル基を有していてもよいフェニル基等のアリール基、アラルキル基、トリアルキルシリル基、トリアルキルシロキシ基に加え、エトキシカルボニルエチル基等のカルボニル基;アセトキシ基、アセトキシメチル基、トリフルオロアセトキシ基等のカルボキシル基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、フェノキシ基、アリロキシ基等のオキシ基;アリルアミノ基等のアミノ基;ベンジル基等を挙げることができる。
【0046】
一般式(2)中、xは1〜3の整数を表し、p、q及びrはそれぞれ0〜3の整数を表し、1≦p+q+r≦3である。また、x+p+q+r=4である。
【0047】
一般式(2)で表されるフルオロシラン化合物の例としては、トリメチルフルオロシラン、トリエチルフルオロシラン、トリプロピルフルオロシラン、フェニルジメチルフルオロシラン、トリフェニルフルオロシラン、ビニルジメチルフルオロシラン、ビニルジエチルフルオロシラン、ビニルジフェニルフルオロシラン、トリメトキシフルオロシラン、トリエトキシフルオロシラン等のモノフルオロシラン類の他、ジメチルジフルオロシラン、ジエチルジフルオロシラン、ジビニルジフルオロシラン、エチルビニルジフルオロシラン等のジフルオロシラン類;メチルトリフルオロシラン、エチルトリフルオロシラン等のトリフルオロシラン類も挙げられる。
【0048】
一般式(2)で表されるフルオロシラン化合物は、沸点が低いと、揮発してしまうため電解液に所定量含有させるのが難しくなる場合がある。また、電解液に含有させた後も、充放電による電池の発熱や外部環境が高温になる様な条件下で揮発してしまう可能性がある。よって、1気圧で、50℃以上の沸点を持つものが好ましく、中でも60℃以上の沸点を持つものが特に好ましい。
【0049】
また、一般式(1)の化合物と同様に、有機基としては炭素数の少ないものの方が効果が発現しやすく、炭素数1〜6のアルケニル基は電解液や電極表面の被膜に作用して入出力特性を向上させ、アリール基は充放電時に電池内で発生するラジカルを捕捉して電池性能全般を向上させる作用を有する。従って、この観点からは有機基としては、メチル基、ビニル基又はフェニル基が好ましく、化合物の例としては、トリメチルフルオロシラン、ビニルジメチルフルオロシラン、フェニルジメチルフルオロシラン、ビニルジフェニルフルオロシラン等のモノフルオロシラン類が特に好ましい。
【0050】
[[一般式(3)で表される化合物]]
一般式(3)で表される化合物におけるR〜Rは、互いに同一であっても異なっていてもよい炭素数1〜12の有機基であるが、その例としては、一般式(2)のR〜Rの例として挙げた鎖状アルキル基、環状アルキル基、アルケニル基、アルキニル基、ハロゲン化アルキル基、飽和複素環基を有するアルキル基、アルキル基を有していてもよいフェニル基等のアリール基、アラルキル基、トリアルキルシリル基、トリアルキルシロキシ基、カルボニル基、カルボキシル基、オキシ基、アミノ基、ベンジル基等を同様に挙げることができる。
【0051】
一般式(3)で表される化合物におけるAは、H、C、N、O、F、S、Si及び/又はPから構成される基であれば特に制限はないが、一般式(3)中の酸素原子に直接結合する元素としては、C、S、Si又はPが好ましい。これら原子の存在形態としては、例えば、鎖状アルキル基、環状アルキル基、アルケニル基、アルキニル基、ハロゲン化アルキル基、カルボニル基、スルホニル基、トリアルキルシリル基、ホスホリル基、ホスフィニル基等に含まれるものが好ましい。また、一般式(3)で表される化合物の分子量は、1000以下が好ましく、中でも800以下が特に好ましく、500以下が更に好ましい。
【0052】
一般式(3)で表される化合物の例としては、ヘキサメチルジシロキサン、1,3−ジエチルテトラメチルジシロキサン、ヘキサエチルジシロキサン、オクタメチルトリシロキサン等のシロキサン化合物類;メトキシトリメチルシラン、エトキシトリメチルシラン等のアルコキシシラン類;ビス(トリメチルシリル)パーオキサイド等の過酸化物類;酢酸トリメチルシリル、酢酸トリエチルシリル、プロピオン酸トリメチルシリル、メタクリル酸トリメチルシリル、トリフルオロ酢酸トリメチルシリル等のカルボン酸エステル類;メタンスルホン酸トリメチルシリル、エタンスルホン酸トリメチルシリル、メタンスルホン酸トリエチルシリル、フルオロメタンスルホン酸トリメチルシリル等のスルホン酸エステル類;ビス(トリメチルシリル)スルフェート等の硫酸エステル類;トリス(トリメチルシロキシ)ボロン等のホウ酸エステル類;トリス(トリメチルシリル)ホスフェート、トリス(トリメチルシリル)ホスファイト等のリン酸若しくは亜リン酸エステル類等が挙げられる。
【0053】
このうち、シロキサン化合物類、スルホン酸エステル類、硫酸エステル類が好ましく、スルホン酸エステル類が特に好ましい。シロキサン化合物類としては、ヘキサメチルジシロキサンが好ましく、スルホン酸エステル類としては、メタンスルホン酸トリメチルシリルが好ましく、硫酸エステル類としては、ビス(トリメチルシリル)スルフェートが好ましい。
【0054】
[[分子内にS−F結合を有する化合物]]
分子内にS−F結合を有する化合物としては特に限定はないが、スルホニルフルオライド類、フルオロスルホン酸エステル類が好ましい。
【0055】
例えば、メタンスルホニルフルオライド、エタンスルホニルフルオライド、メタンビス(スルホニルフルオライド)、エタン−1,2−ビス(スルホニルフルオライド)、プロパン−1,3−ビス(スルホニルフルオライド)、ブタン−1,4−ビス(スルホニルフルオライド)、ジフルオロメタンビス(スルホニルフルオライド)、1,1,2,2−テトラフルオロエタン−1,2−ビス(スルホニルフルオライド)、1,1,2,2,3,3−ヘキサフルオロプロパン−1,3−ビス(スルホニルフルオライド)、フルオロスルホン酸メチル、フルオロスルホン酸エチル等が挙げられる。中でも、メタンスルホニルフルオライド、メタンビス(スルホニルフルオライド)又はフルオロスルホン酸メチルが好ましい。
【0056】
[[硝酸塩、亜硝酸塩、モノフルオロリン酸塩、ジフルオロリン酸塩、酢酸塩、プロピオン酸塩]]
硝酸塩、亜硝酸塩、モノフルオロリン酸塩、ジフルオロリン酸塩、酢酸塩、プロピオン酸塩のカウンターカチオンとしては特に限定はないが、Li、Na、K、Mg、Ca、Fe、Cu等の金属元素の他、NR9101112(式中、R9〜R12は、各々独立に、水素原子又は炭素数1〜12の有機基を表わす。)で表現されるアンモニウム、4級アンモニウムが挙げられる。ここで、R9〜R12の炭素数1〜12の有機基としては、ハロゲン原子で置換されていてもよいアルキル基、ハロゲン原子で置換されていてもよいシクロアルキル基、ハロゲン原子で置換されていてもよいアリール基、窒素原子含有複素環基等が挙げられる。R9〜R12としては、それぞれ、水素原子、アルキル基、シクロアルキル基、窒素原子含有複素環基等が好ましい。これらのカウンターカチオン中でも、リチウム二次電池に用いたときの電池特性の点から、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム又はNR9101112が好ましく、リチウムが特に好ましい。また、中でも、硝酸塩又はジフルオロリン酸塩が、保存後レート特性改善効果が大きい上、電池のサイクル特性の点で好ましく、ジフルオロリン酸リチウムが特に好ましい。また、これらの化合物は、非水溶媒中で合成されたものを実質的にそのまま用いてもよく、別途合成して実質的に単離されたものを、非水溶媒中又は非水系電解液中に添加してもよい。
【0057】
特定化合物、すなわち、一般式(1)で表される環状シロキサン化合物、一般式(2)で表されるフルオロシラン化合物、一般式(3)で表される化合物、分子内にS−F結合を有する化合物、硝酸塩、亜硝酸塩、モノフルオロリン酸塩、ジフルオロリン酸塩、酢酸塩又はプロピオン酸塩は、1種を単独で用いてもよく、2種類以上の化合物を任意の組み合わせ及び比率で併用してもよい。また、特定化合物で、上記それぞれに分類される化合物の中であっても、1種を単独で用いてもよく、2種類以上の化合物を任意の組み合わせ及び比率で併用してもよい。
【0058】
非水系電解液中のこれら特定化合物の割合は、全非水系電解液に対して、合計で10ppm以上(0.001質量%以上)が必須であるが、好ましくは0.01質量%以上、より好ましくは0.05質量%以上、更に好ましくは0.1質量%以上である。また、上限は、好ましくは5質量%以下、より好ましくは4質量%以下、更に好ましくは3質量%以下である。特定化合物の濃度が低すぎると低温特性の改善効果が得られ難い場合があり、一方、濃度が高すぎると充放電効率の低下を招く場合がある。これら特定化合物は、非水系電解液として実際に二次電池作製に供すると、その電池を解体して再び非水系電解液を取り出しても、その中の含有量が著しく低下している場合が多い。そのため、電池から抜き出した非水系電解液から、少なくとも上記特定化合物が検出できるものは本発明に含まれるとみなす。
【0059】
非水系電解液の調製に際して、各原料は予め脱水しておくのが好ましく、水分含有量が通常50ppm以下、好ましくは30ppm以下、特に好ましくは10ppm以下である。
【0060】
特定の化合物が存在する場合に過充電添加剤による保存後レート特性の悪化が起こりにくい原因は定かではないが、次のように推定される。通常、過充電防止剤は過充電時に正極表面に重合被膜を形成して電池の内部抵抗を大きく上昇させること、若しくはこの重合時に発生するガスにより、電池缶内部の電流遮断装置を作動させることにより、二次電池の安全性を向上させること等ができるが、この重合被膜は充電状態電池の高温保存時にも一部が生成してしまい、電池の放電容量低下やレート特性の悪化の原因となっていると考えられる。ここに本発明で指定する特定化合物が存在すると、化合物が正極表面に作用し、弱いバリアを形成することによって、通常の充電状態における過充電防止剤と正極活物質との反応を抑制する。しかし、電池が過充電となり正極が過度に活性な状態になった場合には、この弱いバリアが崩壊する、或いは正極と過充電防止剤との反応が加速され、バリアによる阻害を上回ることによって重合反応が進行し、目的通り過充電時安全性を確保できると考えられる。
【0061】
[他の化合物]
本発明の非水系電解液は、電解質であるリチウム塩、過充電防止剤及び特定化合物を必須成分として含有するが、必要に応じて他の化合物を、本発明の効果を損なわない範囲で、任意の量で含有させることができる。このような他の化合物としては、例えば、ビニレンカーボネート、ビニルエチレンカーボネート、フルオロエチレンカーボネート、トリフルオロプロピレンカーボネート、無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、シクロヘキサンジカルボン酸無水物等の負極被膜形成剤;亜硫酸エチレン、亜硫酸プロピレン、亜硫酸ジメチル、プロパンスルトン、ブタンスルトン、メタンスルホン酸メチル、ブスルファン、トルエンスルホン酸メチル、硫酸ジメチル、硫酸エチレン、スルフォラン、ジメチルスルホン、ジエチルスルホン、ジメチルスルフォキシド、ジエチルスルフォキシド、テトラメチレンスルフォキシド、ジフェニルスルフィド、チオアニソール、ジフェニルジスルフィド、ジピリジニウムジスルフィド等の正極保護剤等が挙げられる。
【0062】
負極被膜形成剤としては、ビニレンカーボネート、ビニルエチレンカーボネート、フルオロエチレンカーボネート、無水コハク酸、無水マレイン酸等が好ましい。これらは2種類以上併用して用いてもよい。2種類以上を併用する場合は、特に、ビニレンカーボネートとビニルエチレンカーボネートやフルオロエチレンカーボネート、無水コハク酸、無水マレイン酸を併用するのが好ましい。
【0063】
正極保護剤としては、亜硫酸エチレン、亜硫酸プロピレン、プロパンスルトン、ブタンスルトン、メタンスルホン酸メチル、ブスルファン等が好ましい。これらは2種類以上併用して用いてもよい。また、負極皮膜形成剤と正極保護剤との併用が特に好ましい。
【0064】
非水系電解液中におけるこれら他の化合物の含有割合は特に限定はないが、非水系電解液全体に対し、それぞれ、0.01質量%以上が好ましく、特に好ましくは0.1質量%以上、更に好ましくは0.2質量%以上であり、上限は、5質量%以下が好ましく、特に好ましくは3質量%以下、更に好ましくは2質量%以下である。これらの化合物を添加することにより、過充電による異常時に電池の破裂・発火を抑制したり、高温保存後の容量維持特性やサイクル特性を向上させたりすることができる。
【0065】
本発明の二次電池用非水系電解液の調製方法については特に限定はなく、非水溶媒に、常法に従って、リチウム塩、過充電防止剤、特定化合物、必要に応じて他の化合物を溶解させて調製することができる。
【0066】
<非水系電解液二次電池>
以下に、本発明の非水系電解液二次電池について詳細に記す。
[電池形状]
電池形状は特に限定されるものではないが、有底筒型形状、有底角型形状、薄型形状、シート形状、ペーパー形状が挙げられる。システムや機器に組み込まれる際に、容積効率を高めて収納性を上げるために、電池周辺に配置される周辺システムへの収まりを考慮した馬蹄形、櫛型形状等の異型のものであってもよい。電池内部の熱を効率よく外部に放出する観点から、比較的平らで大面積の面を少なくとも一つ有する角型形状が好ましい。
【0067】
有底筒型形状の電池では、充填される発電素子に対する外表面積が小さくなるので、充電や放電時に内部抵抗による発生するジュール発熱を効率よく外部に逃げる設計にすることが好ましい。また、熱伝導性の高い物質の充填比率を高め、内部での温度分布が小さくなるように設計することが好ましい。
【0068】
有底角型形状では、一番大きい面の面積S(端子部を除く外形寸法の幅と高さとの積、単位cm2)の2倍と電池外形の厚さT(単位cm)との比率2S/Tの値が100以上であることが好ましく、200以上であることが更に好適である。最大面を大きくすることにより高出力かつ大容量の電池であってもサイクル性や高温保存等の特性を向上させると共に、異常発熱時の放熱効率を上げることができ、後述する「弁作動」や「破裂」という危険な状態になることを抑制することができる。
【0069】
[電池構成]
本発明の充放電可能な二次電池は、リチウムイオンを吸蔵放出可能な正極及び負極、本発明の上記非水系電解液、正極と負極の間に配設されるセパレータ、集電端子、及び外装ケース等によって少なくとも構成される。要すれば、電池の内部及び/又は電池の外部に保護素子を装着してもよい。
【0070】
[正極]
以下に本発明の非水系電解液二次電池に使用される正極について説明する。
[[正極活物質]]
以下に正極に使用される正極活物質について述べる。
【0071】
[[[組成]]]
正極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば特に制限はない。リチウムと少なくとも1種の遷移金属を含有する物質が好ましく、例えば、リチウム遷移金属複合酸化物、リチウム含有遷移金属リン酸化合物が挙げられる。
【0072】
リチウム遷移金属複合酸化物の遷移金属としてはV、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、具体例としては、LiCoO2等のリチウム・コバルト複合酸化物、LiNiO2等のリチウム・ニッケル複合酸化物、LiMnO2、LiMn、Li2MnO3等のリチウム・マンガン複合酸化物、これらのリチウム遷移金属複合酸化物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Si等の他の金属で置換したもの等が挙げられる。置換されたものの具体例としては、例えば、LiNi0.5Mn0.52、LiNi0.85Co0.10Al0.052、LiNi0.33Co0.33Mn0.332、LiMn1.8Al0.2、LiMn1.5Ni0.5等が挙げられる。
【0073】
リチウム含有遷移金属リン酸化合物の遷移金属としては、V、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、具体例としては、例えば、LiFePO、Li3Fe2(PO3、LiFeP27等のリン酸鉄類、LiCoPO4等のリン酸コバルト類、これらのリチウム遷移金属リン酸化合物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Nb、Si等の他の金属で置換したもの等が挙げられる。
【0074】
[[[表面被覆]]]
また、これら正極活物質の表面に、主体となる正極活物質を構成する物質とは異なる組成の物質が付着したものを用いることもできる。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩等が挙げられる。
【0075】
これら表面付着物質は、例えば、溶媒に溶解又は懸濁させて正極活物質に含浸添加、乾燥する方法、表面付着物質前駆体を溶媒に溶解又は懸濁させて正極活物質に含浸添加後、加熱等により反応させる方法、正極活物質前駆体に添加して同時に焼成する方法等により正極活物質表面に付着させることができる。
【0076】
表面付着物質の量としては、正極活物質に対して質量で、下限として好ましくは0.1ppm以上、より好ましくは1ppm以上、更に好ましくは10ppm以上、上限として好ましくは20%以下、より好ましくは10%以下、更に好ましくは5%以下で用いられる。表面付着物質により、正極活物質表面での電解液の酸化反応を抑制することができ、電池寿命を向上させることができるが、その付着量が少なすぎる場合その効果は十分に発現せず、多すぎる場合には、リチウムイオンの出入りを阻害するため抵抗が増加する場合がある。
【0077】
[[[形状]]]
本発明における正極活物質粒子の形状は、従来用いられるような、塊状、多面体状、球状、楕円球状、板状、針状、柱状等が用いられるが、中でも一次粒子が凝集して、二次粒子を形成して成り、その二次粒子の形状が球状ないし楕円球状であるものが好ましい。通常、電気化学素子はその充放電に伴い、電極中の活物質が膨張収縮をするため、そのストレスによる活物質の破壊や導電パス切れ等の劣化がおきやすい。そのため一次粒子のみの単一粒子活物質であるよりも、一次粒子が凝集して、二次粒子を形成したものである方が膨張収縮のストレスを緩和して、劣化を防ぐため好ましい。また、板状等軸配向性の粒子であるよりも球状ないし楕円球状の粒子の方が、電極の成形時の配向が少ないため、充放電時の電極の膨張収縮も少なく、また電極を作製する際の導電剤との混合においても、均一に混合されやすいため好ましい。
【0078】
[[[タップ密度]]]
正極活物質のタップ密度は、通常1.3g/cm3以上、好ましくは1.5g/cm3以上、更に好ましくは1.6g/cm3以上、最も好ましくは1.7g/cm3以上である。正極活物質のタップ密度が上記下限を下回ると正極活物質層形成時に、必要な分散媒量が増加すると共に、導電材や結着剤の必要量が増加し、正極活物質層への正極活物質の充填率が制約され、電池容量が制約される場合がある。タップ密度の高い複合酸化物粉体を用いることにより、高密度の正極活物質層を形成することができる。タップ密度は一般に大きいほど好ましく特に上限はないが、大きすぎると、正極活物質層内における電解液を媒体としたリチウムイオンの拡散が律速となり、負荷特性が低下しやすくなる場合があるため、通常2.5g/cm3以下、好ましくは2.4g/cm3以下である。
【0079】
本発明においてタップ密度は、目開き300μmの篩を通過させて、20cm3のタッピングセルに試料を落下させてセル容積を満たした後、粉体密度測定器(例えば、セイシン企業社製タップデンサー)を用いて、ストローク長10mmのタッピングを1000回行なって、その時の体積と試料の重量から求めた密度をタップ密度として定義する。
【0080】
[[[メジアン径d50]]]
粒子のメジアン径d50(一次粒子が凝集して二次粒子を形成している場合には二次粒子径)は通常0.1μm以上、好ましくは0.5μm以上、より好ましくは1μm以上、最も好ましくは3μm以上で、通常20μm以下、好ましくは18μm以下、より好ましくは16μm以下、最も好ましくは15μm以下である。上記下限を下回ると、高タップ密度品が得られなくなる場合があり、上限を超えると粒子内のリチウムの拡散に時間がかかるため、電池性能の低下をきたしたり、電池の正極作製すなわち活物質と導電剤やバインダー等を溶媒でスラリー化し、薄膜状に塗布する際に、スジを引く等の問題を生ずる場合がある。ここで、異なるメジアン径d50をもつ正極活物質を2種類以上混合することで、正極作製時の充填性を更に向上させることもできる。
【0081】
なお、本発明におけるメジアン径d50は、公知のレーザー回折/散乱式粒度分布測定装置によって測定される。粒度分布計としてHORIBA社製LA−920を用いる場合、測定の際に用いる分散媒として、0.1質量%ヘキサメタリン酸ナトリウム水溶液を用い、5分間の超音波分散後に測定屈折率1.24を設定して測定される。
【0082】
[[[平均一次粒子径]]]
一次粒子が凝集して二次粒子を形成している場合には、正極活物質の平均一次粒子径としては、通常0.01μm以上、好ましくは0.05μm以上、更に好ましくは0.08μm以上、最も好ましくは0.1μm以上で、通常3μm以下、好ましくは2μm以下、更に好ましくは1μm以下、最も好ましくは0.6μm以下である。上記上限を超えると球状の二次粒子を形成し難く、粉体充填性に悪影響を及ぼしたり、比表面積が大きく低下するために、出力特性等の電池性能が低下する可能性が高くなる場合がある。逆に、上記下限を下回ると、通常、結晶が未発達であるために充放電の可逆性が劣る等の問題を生ずる場合がある。
【0083】
なお、一次粒子径は、走査電子顕微鏡(SEM)を用いた観察により測定される。具体的には、10000倍の倍率の写真で、水平方向の直線に対する一次粒子の左右の境界線による切片の最長の値を、任意の50個の一次粒子について求め、平均値をとることにより求められる。
【0084】
[[[BET比表面積]]]
本発明の二次電池に供する正極活物質のBET比表面積は、0.2m2/g以上、好ましくは0.3m2/g以上、更に好ましくは0.4m2/g以上で、4.0m2/g以下、好ましくは2.5m2/g以下、更に好ましくは1.5m2/g以下である。BET比表面積がこの範囲よりも小さいと電池性能が低下しやすく、大きいとタップ密度が上がりにくくなり、正極活物質形成時の塗布性に問題が発生しやすい場合がある。
【0085】
BET比表面積は、表面積計(例えば、大倉理研製全自動表面積測定装置)を用い、試料に対して窒素流通下150℃で30分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用い、ガス流動法による窒素吸着BET1点法によって測定した値で定義される。
【0086】
[[[製造法]]]
正極活物質の製造法としては、無機化合物の製造法として一般的な方法が用いられる。特に球状ないし楕円球状の活物質を作製するには種々の方法が考えられるが、例えば、遷移金属硝酸塩、硫酸塩等の遷移金属原料物質と、必要に応じ他の元素の原料物質を水等の溶媒中に溶解ないし粉砕分散して、攪拌をしながらpHを調節して球状の前駆体を作成回収し、これを必要に応じて乾燥した後、LiOH、LiCO、LiNO等のLi源を加えて高温で焼成して活物質を得る方法、遷移金属硝酸塩、硫酸塩、水酸化物、酸化物等の遷移金属原料物質と、必要に応じ他の元素の原料物質を水等の溶媒中に溶解ないし粉砕分散して、それをスプレードライヤー等で乾燥成型して球状ないし楕円球状の前駆体とし、これにLiOH、LiCO、LiNO等のLi源を加えて高温で焼成して活物質を得る方法、また、遷移金属硝酸塩、硫酸塩、水酸化物、酸化物等の遷移金属原料物質と、LiOH、LiCO、LiNO等のLi源と、必要に応じ他の元素の原料物質とを水等の溶媒中に溶解ないし粉砕分散して、それをスプレードライヤー等で乾燥成型して球状ないし楕円球状の前駆体とし、これを高温で焼成して活物質を得る方法等が挙げられる。
【0087】
[[正極の構成]]
以下に、本発明に使用される正極の構成について述べる。
[[[電極構造と作製法]]]
正極は、正極活物質粒子と結着剤とを含有する正極活物質層を、集電体上に形成して作製される。正極活物質を用いる正極の製造は、常法により行うことができる。即ち、正極活物質と結着剤、並びに必要に応じて導電材及び増粘剤等を乾式で混合してシート状にしたものを正極集電体に圧着するか、又はこれらの材料を液体媒体に溶解又は分散させてスラリーとして、これを正極集電体に塗布し、乾燥することにより、正極活物質層を集電体上に形成させることにより正極を得ることができる。
【0088】
正極活物質の正極活物質層中の含有量は、通常10質量%以上、好ましくは30質量%以上、特に好ましくは50質量%以上である。また、上限は、通常99.9質量%以下、好ましくは99質量%以下である。正極活物質層中の正極活物質の含有量が低いと電気容量が不十分となる場合がある。逆に含有量が高すぎると正極の強度が不足する場合がある。なお、本発明においては、正極活物質は1種を単独で用いても良く、異なる組成又は異なる粉体物性の2種以上を任意の組み合わせ及び比率で併用しても良い。
【0089】
塗布、乾燥によって得られた正極活物質層は、正極活物質の充填密度を上げるために、ハンドプレス、ローラープレス等により圧密化することが好ましい。
【0090】
正極活物質層の電極化した際の電極構造は特には限定されないが、集電体上に存在している正極活物質層の密度は、下限として好ましくは1g/cm3以上、より好ましくは1.5g/cm3、更に好ましくは2g/cm3以上であり、上限として好ましくは4g/cm3以下、より好ましくは3.5g/cm3以下、更に好ましくは3g/cm3以下の範囲である。この範囲を上回ると集電体/活物質界面付近への電解液の浸透性が低下し、特に高電流密度での充放電特性が低下する場合がある。また下回ると活物質間の導電性が低下し、電池抵抗が増大する場合がある。
【0091】
[[[導電材]]]
導電材としては、公知の導電材を任意に用いることができる。具体例としては、銅、ニッケル等の金属材料;天然黒鉛、人造黒鉛等の黒鉛(グラファイト);アセチレンブラック等のカーボンブラック;ニードルコークス等の無定形炭素等の炭素質材料等が挙げられる。なお、これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
【0092】
導電材は、正極活物質層中に、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは1質量%以上、また、上限は、通常50質量%以下、好ましくは30質量%以下、より好ましくは15質量%以下含有するように用いられる。含有量がこの範囲よりも低いと導電性が不十分となる場合がある。逆に、含有量がこの範囲よりも高いと電池容量が低下する場合がある。
【0093】
[[[結着剤]]]
正極活物質層の製造に用いる結着剤としては、特に限定されず、塗布法の場合は、電極製造時に用いる液体媒体に対して溶解又は分散される材料であれば良いが、具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリイミド、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン−ブタジエンゴム)、NBR(アクリロニトリル−ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物、EPDM(エチレン−プロピレン−ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。なお、これらの物質は、1種を単独で用いても良く、2種以上を任意の組み合わせ及び比率で併用しても良い。
【0094】
正極活物質層中の結着剤の割合は、通常0.1質量%以上、好ましくは1質量%以上、更に好ましくは3質量%以上であり、通常80質量%以下、好ましくは60質量%以下、更に好ましくは40質量%以下、最も好ましくは10質量%以下である。結着剤の割合が低すぎると、正極活物質を十分保持できずに正極の機械的強度が不足し、サイクル特性等の電池性能を悪化させてしまう場合がある。一方で、高すぎると、電池容量や導電性の低下につながる場合がある。
【0095】
[[[液体媒体]]]
スラリーを形成するための液体媒体としては、正極活物質、導電剤、結着剤、並びに必要に応じて使用される増粘剤を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いても良い。
【0096】
水系媒体としては、例えば、水、アルコールと水との混合媒等が挙げられる。有機系媒体としては、例えば、ヘキサン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン、メチルナフタレン等の芳香族炭化水素類;キノリン、ピリジン等の複素環化合物;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;酢酸メチル、アクリル酸メチル等のエステル類;ジエチレントリアミン、N,N−ジメチルアミノプロピルアミン等のアミン類;ジエチルエーテル、プロピレンオキシド、テトラヒドロフラン(THF)等のエーテル類;N−メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド等のアミド類;ヘキサメチルホスファルアミド、ジメチルスルフォキシド等の非プロトン性極性溶媒等を挙げることができる。
【0097】
特に水系媒体を用いる場合、増粘剤と、スチレンブタジエンゴム(SBR)等のラテックスを用いてスラリー化するのが好ましい。増粘剤は、通常、スラリーの粘度を調製するために使用される。増粘剤としては、特に制限はないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用しても良い。更に増粘剤を添加する場合には、活物質に対する増粘剤の割合は、通常0.1質量%以上、好ましくは0.5質量%以上、より好ましくは0.6質量%以上であり、上限としては、通常5質量%以下、好ましくは3質量%以下、より好ましくは2質量%以下の範囲である。この範囲を下回ると、著しく塗布性が低下する場合がある。上回ると、正極活物質層に占める活物質の割合が低下し、電池の容量が低下する問題や正極活物質間の抵抗が増大する問題が生じる場合がある。
【0098】
[[[集電体]]]
正極集電体の材質としては特に制限は無く、公知のものを任意に用いることができる。具体例としては、アルミニウム、ステンレス鋼、ニッケルメッキ、チタン、タンタル等の金属材料;カーボンクロス、カーボンペーパー等の炭素質材料が挙げられる。中でも金属材料、特にアルミニウムが好ましい。
【0099】
集電体の形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられ、炭素質材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。これらのうち、金属薄膜が好ましい。なお、薄膜は適宜メッシュ状に形成してもよい。薄膜の厚さは任意であるが、通常1μm以上、好ましくは3μm以上、より好ましくは5μm以上、また、通常1mm以下、好ましくは100μm以下、より好ましくは50μm以下である。薄膜がこの範囲よりも薄いと集電体として必要な強度が不足する場合がある。逆に、薄膜がこの範囲よりも厚いと取り扱い性が損なわれる場合がある。
【0100】
集電体と正極活物質層の厚さの比は特には限定されないが、(電解液注液直前の片面の活物質層厚さ)/(集電体の厚さ)が150以下であることが好ましく、特に好ましくは20以下、より好ましくは10以下であり、下限は0.1以上が好ましく、特に好ましくは0.4以上、より好ましくは1以上の範囲である。この範囲を上回ると、高電流密度充放電時に集電体がジュール熱による発熱を生じる場合がある。この範囲を下回ると、正極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。
【0101】
[[[電極面積]]]
本発明の非水系電解液二次電池では、異常時等の場合に電極の放熱特性を良好にするため、正極活物質層の面積は、電池外装ケースの外表面積に対して大きくすることが好ましい。具体的には、二次電池の外装の表面積に対する前記正極の電極面積の総和が面積比で20倍以上とすることが好ましく、更に40倍以上とすることがより好ましい。外装ケースの外表面積とは、有底角型形状の場合には、端子の突起部分を除いた発電要素が充填されたケース部分の縦と横と厚さの寸法から計算で求める総面積をいう。有底円筒形状の場合には、端子の突起部分を除いた発電要素が充填されたケース部分を円筒として近似する幾何表面積である。正極の電極面積の総和とは、負極活物質を含む合材層に対向する正極合材層の幾何表面積であり、集電体箔を介して両面に正極合材層を形成してなる構造では、それぞれの面を別々に算出する面積の総和をいう。
【0102】
[[[放電容量]]]
本発明の非水系電解液は、特に高容量、高レート特性、高出力、高寿命、高安全性を求める二次電池に供する場合に効果が大きい。前述のように、これらの条件を全て同時に満たすことは従来困難であったが、高容量電池に本発明の非水系電解液を使用した本発明の非水系電解液二次電池ではこれが実現できる。具体的には、二次電池の1個の電池外装に収納される電池要素のもつ電気容量(電池を満充電状態から放電状態まで放電したときの電気容量)が、3アンペアーアワー(Ah)以上であると特に好ましい。
【0103】
そのため、正極板は、放電容量が満充電で、3アンペアアワー(Ah)以上、20Ah以下になるように設計することが好ましく、更に4Ah以上、10Ah以下がより好ましい。3Ah未満では、高容量、高出力を実現するのが難しい上、大電流の取り出し時に電極反応抵抗による電圧低下が大きくなり電力効率が悪くなる場合がある。20Ahより大きいと、電極反応抵抗が小さくなり電力効率は良くなるため、高容量、高出力となるが、パルス充放電時の電池内部発熱による温度分布が大きく、充放電繰り返しの耐久性が劣り、また、内部短絡等の異常時の急激な発熱に対して放熱効率も悪くなり、内圧が上昇して電池内容物が外に激しく噴出する現象(破裂)に至る確率が上がる場合がある。
【0104】
[[[正極板の厚さ]]]
正極板の厚さは特に限定されるものではないが、高容量かつ高出力、高レート特性の観点から、芯材の金属箔厚さを差し引いた合材層の厚さは、集電体の片面に対して下限として、好ましくは10μm以上、より好ましくは20μm以上で、上限としては、好ましくは200μm以下、より好ましくは100μm以下である。
【0105】
[負極]
以下に本発明の非水系電解液二次電池に使用される負極について説明する。
[[負極活物質]]
以下に負極に使用される負極活物質について述べる。
【0106】
[[[組成]]]
負極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば、特に制限はなく、炭素質材料、酸化錫や酸化ケイ素等の金属酸化物、金属複合酸化物、リチウム単体やリチウムアルミニウム合金等のリチウム合金、SnやSi等のリチウムと合金形成可能な金属等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用しても良い。なかでも炭素質材料又はリチウム複合酸化物が安全性の点から好ましく用いられる。
【0107】
金属複合酸化物としては、リチウムを吸蔵、放出可能であれば特には制限されないが、構成成分としてチタン及び/又はリチウムを含有していることが、高電流密度充放電特性の観点で好ましい。
【0108】
炭素質材料としては、
(1)天然黒鉛、
(2)人造炭素質物質並びに人造黒鉛質物質;炭素質物質[例えば天然黒鉛、石炭系コークス、石油系コークス、石炭系ピッチ、石油系ピッチ、或いはこれらピッチを酸化処理したもの、ニードルコークス、ピッチコークス及びこれらを一部黒鉛化した炭素材、ファーネスブラック、アセチレンブラック、ピッチ系炭素繊維等の有機物の熱分解物、炭化可能な有機物(例えば軟ピッチから硬ピッチまでのコールタールピッチ、或いは乾留液化油等の石炭系重質油、常圧残油、減圧残油の直流系重質油、原油、ナフサ等の熱分解時に副生するエチレンタール等分解系石油重質油、更にアセナフチレン、デカシクレン、アントラセン、フェナントレン等の芳香族炭化水素、フェナジンやアクリジン等のN環化合物、チオフェン、ビチオフェン等のS環化合物、ビフェニル、テルフェニル等のポリフェニレン、ポリ塩化ビニル、ポリビニルアルコール、ポリビニルブチラール、これらのものの不溶化処理品、含窒素性のポリアクニロニトリル、ポリピロール等の有機高分子、含硫黄性のポリチオフェン、ポリスチレン等の有機高分子、セルロース、リグニン、マンナン、ポリガラクトウロン酸、キトサン、サッカロースに代表される多糖類等の天然高分子、ポリフェニレンサルファイド、ポリフェニレンオキシド等の熱可塑性樹脂、フルフリルアルコール樹脂、フェノール−ホルムアルデヒド樹脂、イミド樹脂等の熱硬化性樹脂)及びこれらの炭化物、又は炭化可能な有機物をベンゼン、トルエン、キシレン、キノリン、n−へキサン等の低分子有機溶媒に溶解させた溶液及びこれらの炭化物]を400から3200℃の範囲で一回以上熱処理された炭素材料、
(3)負極活物質層が少なくとも2種類以上の異なる結晶性を有する炭素質から成り立ちかつ/又はその異なる結晶性の炭素質が接する界面を有している炭素材料、
(4)負極活物質層が少なくとも2種類以上の異なる配向性を有する炭素質から成り立ちかつ/又はその異なる配向性の炭素質が接する界面を有している炭素材料、
から選ばれるものが初期不可逆容量、高電流密度充放電特性のバランスが良く好ましい。
【0109】
[[負極の構成、物性、調製方法]]
炭素質材料についての性質や炭素質材料を含有する負極電極及び電極化手法、集電体、リチウムイオン二次電池については、次に示す(1)〜(19)の何れか1項又は複数項を同時に満たしていることが望ましい。
【0110】
(1)X線パラメータ
炭素質材料は、学振法によるX線回折で求めた格子面(002面)のd値(層間距離)が、0.335nm以上であることが好ましく、通常0.360nm以下、好ましくは0.350nm以下、更に好ましくは0.345nm以下であることが望まれる。また、学振法によるX線回折で求めた炭素質材料の結晶子サイズ(Lc)は、1.0nm以上であることが好ましく、中でも1.5nm以上であることが更に好ましい。
【0111】
(2)灰分
炭素質材料中に含まれる灰分は、炭素質材料の全質量に対して、1質量%以下、中でも0.5質量%以下、特に0.1質量%以下、下限としては1ppm以上であることが好ましい。上記の範囲を上回ると充放電時の電解液との反応による電池性能の劣化が無視できなくなる場合がある。この範囲を下回ると、製造に多大な時間とエネルギーと汚染防止のための設備とを必要とし、コストが上昇する場合がある。
【0112】
(3)体積基準平均粒径
炭素質材料の体積基準平均粒径は、レーザー回折・散乱法により求めた体積基準の平均粒径(メジアン径)が、通常1μm以上、好ましくは3μm以上、より好ましくは5μm以上、更に好ましくは7μm以上である。また、上限は、通常100μm以下、好ましくは50μm以下、より好ましくは40μm以下、更に好ましくは30μm以下、特に好ましくは25μm以下である。上記範囲を下回ると、不可逆容量が増大して、初期の電池容量の損失を招くことになる場合がある。また上記範囲を上回ると、塗布により電極を作製する際に、不均一な塗面になりやすく、電池製作工程上望ましくない場合がある。
【0113】
本発明において体積基準平均粒径は、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(約10mL)に炭素粉末を分散させて、レーザー回折・散乱式粒度分布計(例えば、堀場製作所社製LA−700)を用いて測定したメジアン径で定義する。
【0114】
(4)ラマンR値、ラマン半値幅
アルゴンイオンレーザーラマンスペクトル法を用いて測定した炭素質材料のラマンR値は、通常0.01以上、好ましくは0.03以上、より好ましくは0.10以上、上限としては1.50以下、好ましくは1.2以下、より好ましくは1.0以下、更に好ましくは0.50以下の範囲である。ラマンR値がこの範囲を下回ると、粒子表面の結晶性が高くなり過ぎて、充放電に伴ってLiが層間に入るサイトが少なくなる場合がある。即ち、充電受入性が低下する場合がある。また、集電体に塗布した後、プレスすることによって負極を高密度化した場合に電極板と平行方向に結晶が配向しやすくなり、負荷特性の低下を招く場合がある。一方、この範囲を上回ると、粒子表面の結晶性が低下し、電解液との反応性が増し、効率の低下やガス発生の増加を招く場合がある。
【0115】
また、炭素質材料の1580cm-1付近のラマン半値幅は特に制限されないが、通常10cm-1以上、好ましくは15cm-1以上、また上限として、通常100cm-1以下、好ましくは80cm-1以下、より好ましくは60cm-1以下、更に好ましくは40cm-1以下の範囲である。ラマン半値幅がこの範囲を下回ると、粒子表面の結晶性が高くなり過ぎて、充放電に伴ってLiが層間に入るサイトが少なくなる場合がある。即ち、充電受入性が低下する場合がある。また、集電体に塗布した後、プレスすることによって負極を高密度化した場合に電極板と平行方向に結晶が配向しやすくなり、負荷特性の低下を招く場合がある。一方、この範囲を上回ると、粒子表面の結晶性が低下し、電解液との反応性が増し、効率の低下やガス発生の増加を招く場合がある。
【0116】
ラマンスペクトルの測定は、ラマン分光器(例えば、日本分光社製ラマン分光器)を用い、試料を測定セル内へ自然落下させて充填し、セル内のサンプル表面にアルゴンイオンレーザー光を照射しながら、セルをレーザー光と垂直な面内で回転させることにより行なう。得られたラマンスペクトルについて、1580cm-1付近のピークPAの強度IAと、1360cm-1付近のピークPBの強度IBとを測定し、その強度比R(R=IB/IA)を算出して、これを炭素質材料のラマンR値と定義する。また、得られたラマンスペクトルの1580cm-1付近のピークPAの半値幅を測定し、これを炭素質材料のラマン半値幅と定義する。
【0117】
なお、ここでのラマン測定条件は、次の通りである。
・アルゴンイオンレーザー波長:514.5nm
・試料上のレーザーパワー :15〜25mW
・分解能 :10〜20cm-1
・測定範囲 :1100cm-1〜1730cm-1
・ラマンR値、半値幅解析 :バックグラウンド処理、
・スムージング処理 :単純平均、コンボリューション5ポイント
【0118】
(5)BET比表面積
BET法を用いて測定した炭素質材料の比表面積は、通常0.1m2/g以上、好ましくは0.7m2/g以上、より好ましくは1.0m2/g以上、更に好ましくは1.5m2/g以上である。上限は、通常100m2/g以下、好ましくは25m2/g以下、より好ましくは15m2/g以下、更に好ましくは10m2/g以下である。比表面積の値がこの範囲を下回ると、負極材料として用いた場合の充電時にリチウムの受け入れ性が悪くなりやすく、リチウムが電極表面で析出しやすくなるため、安全上の問題が生ずる場合がある。一方、この範囲を上回ると、負極材料として用いた時に電解液との反応性が増加し、ガス発生が多くなりやすく、好ましい電池が得られにくい場合がある。
BET法による比表面積は、表面積計(例えば、大倉理研製全自動表面積測定装置)を用い、試料に対して窒素流通下350℃で15分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用いて、ガス流動法による窒素吸着BET1点法によって測定した値を用いる。
【0119】
(6)細孔径分布
炭素質材料の細孔径分布は、Hgポロシメトリー(水銀圧入法)により求められる、細孔の直径が0.01μm以上、1μm以下に相当する粒子内の空隙、粒子表面のステップによる凹凸、粒子間の接触面等の量が、0.01mL/g以上、好ましくは0.05mL/g以上、より好ましくは0.1mL/g以上、上限として0.6mL/g以下、好ましくは0.4mL/g以下、より好ましくは0.3mL/g以下の範囲である。この範囲を上回ると、極板化時にバインダーが多量に必要となる場合がある。下回ると、高電流密度充放電特性が低下し、かつ充放電時の電極の膨張収縮の緩和効果が得られない場合がある。
【0120】
また、0.01μm〜100μmの範囲の細孔径に相当する全細孔容積が、好ましくは0.1mL/g以上、より好ましくは0.25mL/g以上、更に好ましくは0.4mL/g以上、上限として10mL/g以下、好ましくは5mL/g以下、より好ましくは2mL/g以下の範囲である。この範囲を上回ると極板化時にバインダーが多量に必要となる場合がある。下回ると極板化時に増粘剤や結着剤の分散効果が得られない場合がある。
【0121】
また、平均細孔径は、好ましくは0.05μm以上、より好ましくは0.1μm以上、更に好ましくは0.5μm以上、上限としては、通常50μm以下、好ましくは20μm以下、より好ましくは10μm以下の範囲である。この範囲を上回ると、バインダーが多量に必要となる場合がある。下回ると高電流密度充放電特性が低下する場合がある。
【0122】
Hgポロシメトリー用の装置として、水銀ポロシメータ(オートポア9520:マイクロメリテックス社製)を用いた。試料約0.2gを、パウダー用セルに封入し、室温、真空下(50μmHg以下)にて10分間脱気して前処理を実施した。引き続き、4psia(約28kPa)に減圧し水銀を導入し、4psia(約28kPa)から40000psia(約280MPa)までステップ状に昇圧させた後、25psia(約170kPa)まで降圧させた。昇圧時のステップ数は80点以上とし、各ステップでは10秒の平衡時間の後、水銀圧入量を測定した。こうして得られた水銀圧入曲線からWashburnの式を用い、細孔径分布を算出した。なお、水銀の表面張力(γ)は485dyne/cm、接触角(ψ)は140°とした。平均細孔径には累積細孔体積が50%となるときの細孔径を用いた
【0123】
(7)円形度
炭素質材料の球形の程度として円形度を用い、その粒径が3〜40μmの範囲にある粒子の円形度が0.1以上が好ましく、特に好ましくは0.5以上、より好ましくは0.8以上、更に好ましくは0.85以上、最も好ましくは0.9以上である。円形度が大きいと高電流密度充放電特性が向上するため好ましい。
【0124】
円形度は以下の式で定義され、円形度が1のときに理論的真球となる。
円形度
=(粒子投影形状と同じ面積を持つ相当円の周囲長)/(粒子投影形状の実際の周囲長)
【0125】
円形度の値としては、例えば、フロー式粒子像分析装置(例えば、シスメックスインダストリアル社製FPIA)を用い、試料約0.2gを、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(約50mL)に分散させ、28kHzの超音波を出力60Wで1分間照射した後、検出範囲を0.6〜400μmに指定し、粒径が3〜40μmの範囲の粒子について測定した値を用いる。
【0126】
円形度を向上させる方法は、特に限定されないが、球形化処理を施して球形にしたものが、電極体にしたときの粒子間空隙の形状が整うので好ましい。球形化処理の例としては、せん断力、圧縮力を与えることによって機械的に球形に近づける方法、複数の微粒子をバインダー若しくは、粒子自身の有する付着力によって造粒する機械的・物理的処理方法等が挙げられる。
【0127】
(8)真密度
炭素質材料の真密度は、通常1.4g/cm以上、好ましくは1.6g/cm以上、より好ましくは1.8g/cm以上、更に好ましくは2.0g/cm以上であり、上限としては2.26g/cm以下である。上限は黒鉛の理論値である。この範囲を下回ると炭素の結晶性が低すぎて初期不可逆容量が増大する場合がある。本発明においては、真密度は、ブタノールを使用した液相置換法(ピクノメータ法)によって測定したもので定義する。
【0128】
(9)タップ密度
炭素質材料のタップ密度は、通常0.1g/cm以上であり、好ましくは0.5g/cm以上、更に好ましくは0.7g/cm以上、特に好ましくは1g/cm以上であることが望まれる。また、上限は、好ましくは、2g/cm以下、更に好ましくは、1.8g/cm以下、特に好ましくは1.6g/cm以下である。タップ密度がこの範囲を下回ると、負極として用いた場合に充填密度が上がり難く、高容量の電池を得ることができない場合がある。一方、この範囲を上回ると、電極中の粒子間の空隙が少なくなり過ぎ、粒子間の導電性が確保され難くなり、好ましい電池特性が得られにくい場合がある。タップ密度は、正極活物質の項で記載した方法と同様の方法で測定され定義される。
【0129】
(10)配向比
炭素質材料の配向比は、通常0.005以上であり、好ましくは0.01以上、より好ましくは0.015以上、上限は理論上0.67以下の範囲である。この範囲を下回ると、高密度充放電特性が低下する場合がある。
【0130】
配向比は、試料を加圧成型してからX線回折により測定する。
試料0.47gを直径17mmの成型機に充填し600kgf/cmで圧縮して得た成型体を、粘土を用いて測定用試料ホルダーの面と同一面になるようにセットしてX線回折を測定する。得られた炭素の(110)回折と(004)回折のピーク強度から、(110)回折ピーク強度/(004)回折ピーク強度で表わされる比を算出し、活物質の配向比と定義する。
【0131】
ここでのX線回折測定条件は次の通りである。なお、「2θ」は回折角を示す。
・ターゲット:Cu(Kα線)グラファイトモノクロメーター
・スリット :発散スリット=0.5度、受光スリット=0.15mm、散乱スリット=0.5度
・測定範囲及びステップ角度/計測時間:
(110)面:75度≦2θ≦80度、1度/60秒
(004)面:52度≦2θ≦57度、1度/60秒
【0132】
(11)アスペクト比(粉)
アスペクト比は理論上1以上であり、上限として10以下、好ましくは8以下、更に好ましくは5以下である。上限を上回ると、極板化時にスジ引きがあったり、均一な塗布面が得られず、高電流密度充放電特性が低下する場合がある。
【0133】
なお、アスペクト比は、3次元的に観察した時の炭素質材料粒子の最長となる径をA、それと直交する最短となる径をBとしたとき、A/Bであらわされる。炭素粒子の観察は、拡大観察ができる走査型電子顕微鏡で行う。厚さ50μm以下の金属の端面に固定した任意の50個の黒鉛粒子を選択し、それぞれについて試料が固定されているステージを回転、傾斜させて、A、Bを測定し、A/Bの平均値を求める。
【0134】
(12)副材混合
「副材混合」とは、負極電極中及び/又は負極活物質中に性質の異なる炭素質材料を2種以上含有していることである。ここで述べた性質とは、X線回折パラメータ、メジアン径、アスペクト比、BET比表面積、配向比、ラマンR値、タップ密度、真密度、細孔分布、円形度、灰分量の一つ以上の特性を示す。
【0135】
特に好ましい実施の形態としては、体積基準粒度分布がメジアン径を中心としたときに左右対称とならないことや、ラマンR値が異なる炭素質材料を2種以上含有していること、X線パラメータが異なること等が挙げられる。
【0136】
その効果の一例としては、天然黒鉛、人造黒鉛等の黒鉛(グラファイト)、アセチレンブラック等のカーボンブラック、ニードルコークス等の無定形炭素等の炭素質材料が導電剤として含有されることにより電気抵抗を低減させること等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用しても良い。導電剤として添加する場合には0.1質量%以上、好ましくは0.5質量%以上、より好ましくは0.6質量%以上であり、上限としては45質量%以下、好ましくは40質量%の範囲である。この範囲を下回ると、導電性向上の効果が得にくい場合がある。上回ると、初期不可逆容量の増大を招く場合がある。
【0137】
(13)電極作製
電極の製造は、常法によればよい。例えば、負極活物質に、バインダー、溶媒、必要に応じて、増粘剤、導電材、充填材等を加えてスラリーとし、これを集電体に塗布、乾燥した後にプレスすることによって形成することができる。電池の電解液注液工程直前の段階での片面あたりの負極活物質層の厚さは、通常15μm以上、好ましくは20μm以上、より好ましくは30μm以上であり、上限は、通常150μm以下、好ましくは120μm以下、より好ましくは100μm以下である。この範囲を上回ると、電解液が集電体界面付近まで浸透しにくいため、高電流密度充放電特性が低下する場合がある。またこの範囲を下回ると、負極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。また、負極活物質をロール成形してシート電極としたり、圧縮成形によりペレット電極としても良い。
【0138】
(14)集電体
集電体としては、公知のものを任意に用いることができる。負極の集電体としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられ、中でも加工し易さとコストの点から特に銅が好ましい。集電体の形状は、集電体が金属材料の場合は、例えば金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられる。中でも好ましくは金属薄膜、より好ましくは銅箔であり、更に好ましくは圧延法による圧延銅箔と、電解法による電解銅箔があり、どちらも集電体として用いることができる。銅箔の厚さが25μmよりも薄い場合、純銅よりも強度の高い銅合金(リン青銅、チタン銅、コルソン合金、Cu−Cr−Zr合金等)を用いることができる。
【0139】
圧延法により作製した銅箔からなる集電体は、銅結晶が圧延方向に並んでいるため、負極を密に丸めても、鋭角に丸めても割れにくく、小型の円筒状電池に好適に用いることができる。電解銅箔は、例えば、銅イオンが溶解された電解液中に金属製のドラムを浸漬し、これを回転させながら電流を流すことにより、ドラムの表面に銅を析出させ、これを剥離して得られるものである。上記の圧延銅箔の表面に、電解法により銅を析出させていても良い。銅箔の片面又は両面には、粗面化処理や表面処理(例えば、厚さが数nm〜1μm程度までのクロメート処理、Ti等の下地処理等)がなされていても良い。
【0140】
集電体基板には、更に次のような物性が望まれる。
(1)平均表面粗さ(Ra)
JISB0601−1994に記載の方法で規定される集電体基板の負極活物質薄膜形成面の平均表面粗さ(Ra)は、特に制限されないが、通常0.05μm以上、好ましくは0.1μm以上、特に好ましくは0.15μm以上であり、通常1.5μm以下、好ましくは1.3μm以下、特に好ましくは1.0μm以下である。
【0141】
集電体基板の平均表面粗さ(Ra)を上記した下限と上限の間の範囲内とすることにより、良好な充放電サイクル特性が期待できる。上記下限値以上とすることにより、負極活物質薄膜との界面の面積が大きくなり、負極活物質薄膜との密着性が向上する。平均表面粗さ(Ra)の上限値は特に制限されるものではないが、平均表面粗さ(Ra)が1.5μmを超えるものは電池として実用的な厚みの箔としては一般に入手しにくいため、1.5μm以下のものが好ましい。
【0142】
(2)引張強度
集電体基板の引張強度は、特に制限されないが、通常100N/mm以上、好ましくは250N/mm以上、更に好ましくは400N/mm以上、特に好ましくは500N/mm以上である。
【0143】
引張強度とは、試験片が破断に至るまでに要した最大引張力を、試験片の断面積で割ったものである。本発明における引張強度は、伸び率と同様な装置及び方法で測定される。引張強度が高い集電体基板であれば、充電・放電に伴う負極活物質薄膜の膨張・収縮による集電体基板の亀裂を抑制することができ、良好なサイクル特性を得ることができる。
【0144】
(3)0.2%耐力
集電体基板の0.2%耐力は、特に制限されないが、通常30N/mm以上、好ましくは150N/mm以上、特に好ましくは300N/mm以上である。
【0145】
0.2%耐力とは、0.2%の塑性(永久)歪みを与えるに必要な負荷の大きさであり、この大きさの負荷を加えた後に除荷しても0.2%変形している事を意味している。本発明における0.2%耐力は、伸び率と同様な装置及び方法で測定される。0.2%耐力が高い集電体基板であれば、充電・放電に伴う負極活物質薄膜の膨張・収縮による集電体基板の塑性変形を抑制することができ、良好なサイクル特性を得ることができる。
【0146】
金属薄膜の厚さは任意であるが、通常1μm以上、好ましくは3μm以上、より好ましくは5μm以上である。また、上限は、通常1mm以下、好ましくは100μm以下、より好ましくは30μm以下である。1μmより薄くなると強度が低下するため塗布が困難となる場合がある。また100μmより厚くなると捲回等の電極の形を変形させる場合がある。また、金属薄膜は、メッシュ状でもよい。
【0147】
(15)集電体と活物質層の厚さの比
集電体と活物質層の厚さの比は特には限定されないが、(電解液注液直前の片面の活物質層厚さ)/(集電体の厚さ)が150以下であることが好ましく、特に好ましくは20以下、より好ましくは10以下であり、下限は0.1以上が好ましく、特に好ましくは0.4以上、より好ましくは1以上の範囲である。この範囲を上回ると、高電流密度充放電時に集電体がジュール熱による発熱を生じる場合がある。この範囲を下回ると、負極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。
【0148】
(16)電極密度
負極活物質を電極化した際の電極構造は特には限定されないが、集電体上に存在している活物質の密度は、好ましくは1.0g/cm以上、より好ましくは1.2g/cm、更に好ましくは1.3g/cm以上であり、上限として2.0g/cm以下、好ましくは1.9g/cm以下、よりに好ましくは1.8g/cm以下、更に好ましくは1.7g/cm以下の範囲である。この範囲を上回ると活物質粒子が破壊され、初期不可逆容量の増加や、集電体/活物質界面付近への電解液の浸透性低下による高電流密度充放電特性悪化を招く場合がある。また下回ると活物質間の導電性が低下し、電池抵抗が増大し、単位容積当たりの容量が低下する場合がある。
【0149】
(17)バインダー
活物質を結着するバインダーとしては、電解液や電極製造時に用いる溶媒に対して安定な材料であれば、特に制限されない。具体的には、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン・ブタジエンゴム)、イソプレンゴム、ブタジエンゴム、フッ素ゴム、NBR(アクリロニトリル−ブタジエンゴム)、エチレン・プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物;EPDM(エチレン−プロピレン−ジエン三元共重合体)、スチレン・エチレン・ブタジエン・スチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用しても良い。
【0150】
スラリーを形成するための溶媒としては、負極活物質、バインダー、並びに必要に応じて使用される増粘剤及び導電剤を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いても良い。水系溶媒の例としては水、アルコール等が挙げられ、有機系溶媒の例としてはN−メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N−ジメチルアミノプロピルアミン、テトラヒドロフラン(THF)、トルエン、アセトン、ジエチルエーテル、ジメチルアセトアミド、ヘキサメチルホスファルアミド、ジメチルスルフォキシド、ベンゼン、キシレン、キノリン、ピリジン、メチルナフタレン、ヘキサン等が挙げられる。特に水系溶媒を用いる場合、上述の増粘剤に併せて分散剤等を加え、SBR等のラテックスを用いてスラリー化する。なお、これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用しても良い。
【0151】
活物質に対するバインダーの割合は、0.1質量%以上が好ましく、特に好ましくは0.5質量%以上、より好ましくは0.6質量%以上であり、上限としては通常、20質量%以下、好ましくは15質量%以下、より好ましくは10質量%以下、更に好ましくは8質量%以下の範囲である。この範囲を上回ると、負極活物質層の中で電池容量に寄与しない成分であるバインダーの割合が過多となり、電池容量の低下を招く場合がある。また下回ると、負極電極の強度低下を招く場合がある。特に、SBRに代表されるゴム状高分子を主要成分に含有する場合には、活物質に対するバインダーの割合は、0.1質量%以上、好ましくは0.5質量%以上、より好ましくは0.6質量%以上であり、上限としては5質量%以下、好ましくは3質量%以下、より好ましくは2質量%以下の範囲である。また、ポリフッ化ビニリデンに代表されるフッ素系高分子を主要成分に含有する場合には活物質に対する割合は、1質量%以上、好ましくは2質量%以上、より好ましくは3質量%以上であり、上限としては通常、15質量%以下、好ましくは10質量%以下、より好ましくは8質量%以下の範囲である。
【0152】
増粘剤は、通常、スラリーの粘度を調製するために使用される。増粘剤としては、特に制限はないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用しても良い。
【0153】
更に増粘剤を添加する場合には、活物質に対する増粘剤の割合は、0.1質量%以上、好ましくは0.5質量%以上、より好ましくは0.6質量%以上であり、上限としては5質量%以下、好ましくは3質量%以下、より好ましくは2質量%以下の範囲である。この範囲を下回ると、著しく塗布性が低下する場合がある。上回ると、負極活物質層に占める活物質の割合が低下し、電池の容量が低下する問題や負極活物質間の抵抗が増大する問題が生じる場合がある。
【0154】
(18)極板配向比
極板配向比は、0.001以上が好ましく、特に好ましくは0.005以上、より好ましくは0.01以上、上限は理論値である0.67以下である。この範囲を下回ると、高密度充放電特性が低下する場合がある。
極板配向比の測定は以下のとおりである。目的密度にプレス後の負極電極について、X線回折により電極の活物質配向比を測定する。具体的手法は特に制限されないが、標準的な方法としては、X線回折により炭素の(110)回折と(004)回折のピークを、プロファイル関数として非対称ピアソンVIIを用いてフィッティングすることによりピーク分離を行ない、(110)回折と(004)回折のピークの積分強度を各々算出する。得られた積分強度から、(110)回折積分強度/(004)回折積分強度で表わされる比を算出する。該測定で算出される電極の活物質配向比を極板配向比と定義する。
【0155】
ここでのX線回折測定条件は次の通りである。なお、「2θ」は回折角を示す。
・ターゲット:Cu(Kα線)グラファイトモノクロメーター
・スリット :発散スリット=1度、受光スリット=0.1mm、散乱スリット=1度
・測定範囲、及び、ステップ角度/計測時間:
(110)面:76.5度≦2θ≦78.5度、0.01度/3秒
(004)面:53.5度≦2θ≦56.0度、0.01度/3秒
・試料調整 :硝子板に0.1mm厚さの両面テープで電極を固定
【0156】
(19)インピーダンス
放電状態から公称容量の60%まで充電した時の負極の抵抗が100Ω以下が好ましく、特に好ましくは50Ω以下、より好ましくは20Ω以下、及び/又は二重層容量が1×10−6F以上が好ましく、特に好ましくは1×10−5F以上、より好ましくは1×10−4F以上である。この範囲であると出力特性が良く好ましい。
【0157】
負極の抵抗及び二重層容量は、次の手順で測定する。測定するリチウムイオン二次電池は、公称容量を5時間で充電できる電流値にて充電した後に、20分間充放電をしない状態を維持し、次に公称容量を1時間で放電できる電流値で放電したときの容量が公称容量の80%以上あるものを用いる。前述の放電状態のリチウムイオン二次電池について公称容量を5時間で充電できる電流値にて公称容量の60%まで充電し、直ちにリチウムイオン二次電池をアルゴンガス雰囲気下のグローブボックス内に移す。ここで該リチウムイオン二次電池を負極が放電又はショートしない状態ですばやく解体して取り出し、両面塗布電極であれば、片面の電極活物質を他面の電極活物質を傷つけずに剥離し、負極電極を12.5mmφに2枚打ち抜き、セパレータを介して活物質面がずれないよう対向させる。電池に使用されていた電解液60μLをセパレータと両負極間に滴下して密着し、外気と触れない状態を保持して、両負極の集電体に導電をとり、交流インピーダンス法を実施する。測定は温度25℃で、10-2〜105Hzの周波数帯で複素インピーダンス測定を行ない、求められたコール・コール・プロットの負極抵抗成分の円弧を半円で近似して表面抵抗(R)と、二重層容量(Cdl)を求める。
【0158】
負極板の面積は特に限定されるものではないが、対向する正極板よりもわずかに大きくして正極板が負極板から外にはみ出すことがないように設計する。充放電を繰り返したサイクルの寿命や高温保存による劣化を抑制する観点から、できる限り正極に等しい面積に近づけることが、より均一かつ有効に働く電極割合を高めて特性が向上するので好ましい。特に、大電流で使用される場合には、この電極面積の設計が重要である。負極板の厚さは用いられる正極板に合わせて設計されるものであり、特に限定されるものではないが、芯材の金属箔厚さを差し引いた合材層の厚さは通常15μm以上、好ましくは20μm以上、より好ましくは30μm以上であり、上限は150μm以下、好ましくは120μm以下、より好ましくは100μm以下である。
【0159】
[セパレータ]
本発明の非水系電解液二次電池で用いられるセパレータは、両極間を電子的に絶縁する所定の機械的強度を有し、イオン透過度が大きく、かつ、正極と接する側における酸化性と負極側における還元性への耐性を兼ね備えるものであれば特に限定されるものではない。このような要求特性を有するセパレータの材質として、樹脂、無機物、ガラス繊維等が用いられる。前記樹脂としては、オレフィン系ポリマー、フッ素系ポリマー、セルロース系ポリマー、ポリイミド、ナイロン等が用いられる。具体的には、電解液に対して安定で、保液性の優れた材料の中から選ぶのが好ましく、ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シート又は不織布等を用いるのが好ましい。前記無機物としては、アルミナや二酸化珪素等の酸化物類、窒化アルミニウムや窒化珪素等の窒化物類、硫酸バリウムや硫酸カルシウム等の硫酸塩類が用いられ、粒子形状若しくは繊維形状のものが用いられる。形態としては、不織布、織布、微多孔性フィルム等の薄膜形状のものが用いられる。薄膜形状では、孔径が0.01〜1μm、厚さが5〜50μmのものが好適に用いられる。前記の独立した薄膜形状以外に、前記無機物の粒子を含有する複合多孔層を樹脂製の結着剤を用いて正極及び/又は負極の表層に形成させてなるセパレータを用いることができる。例えば、正極の両面に90%粒径が1μm未満のアルミナ粒子をフッ素樹脂の結着剤を用いて多孔層として形成させたものが挙げられる。
【0160】
[電極群]
電極群は、前述の正極板と負極板とを前述のセパレータを介してなる積層構造のもの、及び前述の正極板と負極板とを前述のセパレータを介して渦巻き状に捲回した構造のものの何れでもよい。電極群の体積が電池内容積に占める割合(以下、電極群占有率と称する)は、40%〜90%にすることが好ましく、50%〜80%にすることが更に好ましい。前記の電極群占有率が40%未満では、電池容量が小さくなり、また、90%以上では空隙スペースが少なく、電池が高温になることによって部材が膨張したり電解質の液成分の蒸気圧が高くなったりして内部圧力が上昇し、電池としての充放電繰り返し性能や高温保存等の諸特性を低下させたり、更には、内部圧力を外に逃がすガス放出弁が作動する場合がある。
【0161】
[集電構造]
集電構造は特に限定されるものではないが、本発明の非水系電解液二次電池の主旨である、高いレート特性を実現するには、配線部分や接合部分の抵抗を低減する構造にする必要がある。こうした内部抵抗が小さい場合、本発明の二次電池用非水系電解液を使用した効果は特に良好に発揮される。
【0162】
電極群が前述の積層構造のものでは、各電極層の金属芯部分を束ねて端子に溶接して形成される構造が好適に用いられる。一枚の電極面積が大きくなる場合には、内部抵抗が大きくなるので、電極内に複数の端子を設けて抵抗を低減することも好適に用いられる。電極群が前述の捲回構造では、正極及び負極にそれぞれ複数のリード構造を設け、端子に束ねることにより、内部抵抗を低くすることができる。
【0163】
前述の構造を最適化することにより、内部抵抗をできるだけ小さくすることができる。大電流で用いられる電池では、10kHz交流法で測定されるインピーダンス(以下、「直流抵抗成分」と略記する)を10ミリオーム(mΩ)以下にすることが好ましく、直流抵抗成分を5ミリオーム(mΩ)以下にすることがより好ましい。直流抵抗成分を0.1ミリオーム以下にすると高出力特性が向上するが、用いられる集電構造材の占める比率が増え、電池容量が減少する場合がある。
【0164】
本発明の二次電池用非水系電解液は、過充電防止剤の反応による電極活物質に対するリチウムの脱挿入に係わる反応抵抗増大の抑制に効果があり、それが良好なレート特性を実現できる要因になっていると考えられる。しかし、直流抵抗が10Ωmより大きい通常の電池では、直流抵抗に阻害されて反応抵抗抑制の効果をレート特性に100%反映できない場合がある。直流抵抗成分の小さな電池を作製することでこれを改善し、本発明の二次電池用非水系電解液の効果を充分に発揮できるようになる。
【0165】
また、非水系電解液の効果を引き出し、高容量、高出力、高レート特性、高寿命、高安全性の電池を作製するという観点からは、この要件と前述した二次電池の1個の電池外装に収納される電池要素のもつ電気容量(電池を満充電状態から放電状態まで放電したときの電気容量)が、3アンペアーアワー(Ah)以上である、という要件を同時に満たすことが特に好ましい。
【0166】
[外装ケース]
外装ケースの材質は用いられる非水系電解質に対して安定な物質であれば特に限定されるものではない。具体的には、ニッケルめっき鋼板、ステンレス、アルミニウム又はアルミニウム合金、マグネシウム合金等の金属類、又は、樹脂とアルミ箔との積層フィルム(ラミネートフィルム)が用いられる。軽量化の観点から、アルミニウム又はアルミニウム合金の金属、ラミネートフィルムが好適に用いられる。
【0167】
前記金属類を用いる外装ケースでは、レーザー溶接、抵抗溶接、超音波溶接により金属同士を溶着して封止密閉構造とするもの、若しくは、樹脂製ガスケットを介して前記金属類を用いてかしめ構造とするものが挙げられる。前記ラミネートフィルムを用いる外装ケースでは、樹脂層同士を熱融着することにより封止密閉構造とするもの等が挙げられる。シール性を上げるために、前記樹脂層の間にラミネートフィルムに用いられる樹脂と異なる樹脂を介在させてもよい。特に、集電端子を介して樹脂層を熱融着して密閉構造とする場合には、金属と樹脂との接合になるので、介在する樹脂として極性基を有する樹脂や極性基を導入した変成樹脂が好適に用いられる。
【0168】
[保護素子]
前述の保護素子として、異常発熱や過大電流が流れた時に抵抗が増大するPTC(Positive Temperature Coefficient)、温度ヒューズ、サーミスター、異常発熱時に電池内部圧力や内部温度の急激な上昇により回路に流れる電流を遮断する弁(電流遮断弁)等が挙げられる。前記保護素子は高電流の通常使用で作動しない条件のものを選択することが好ましく、高出力の観点から、保護素子がなくても異常発熱や熱暴走に至らない設計にすることがより好ましい。
【実施例】
【0169】
以下、実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明は、その要旨を超えない限り、これらの実施例に限定されるものではない。
【0170】
<二次電池の作製>
[正極の作製]
正極活物質としてのコバルト酸リチウム(LiCoO)90質量%と、導電材としてのアセチレンブラック5質量%と、結着剤としてのポリフッ化ビニリデン(PVdF)5質量%とを、N−メチルピロリドン溶媒中で混合して、スラリー化した。得られたスラリーを厚さ15μmのアルミ箔の両面に塗布して乾燥し、プレス機で厚さ80μmに圧延したものを、活物質層のサイズとして幅100mm、長さ100mm及び幅30mmの未塗工部を有する形状に切り出し、正極とした。
【0171】
[負極の作製]
人造黒鉛粉末KS−44(ティムカル社製、商品名)98質量部に、増粘剤、バインダーとしてそれぞれ、カルボキシメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)100質量部、及び、スチレン−ブタジエンゴムの水性ディスパージョン(スチレン−ブタジエンゴムの濃度50質量%)2質量部を加え、ディスパーザーで混合してスラリー化した。得られたスラリーを厚さ10μmの銅箔の両面に塗布して乾燥し、プレス機で厚さ75μmに圧延したものを、活物質層のサイズとして幅104mm、長さ104mm及び幅30mmの未塗工部を有する形状に切り出し、負極とした。
【0172】
[電池の組立]
正極32枚と負極33枚は交互となるように配置し、各電極の間に多孔製ポリエチレンシートのセパレータ(厚さ25μm)が挟まれるよう積層した。この際、正極活物質面が負極活物質面内から外れないよう対面させた。この正極と負極それぞれについての未塗工部同士を溶接して集電タブを作製し、電極群としたものをガス排出弁のついた電池缶(外寸:120×110×10mm)に封入した。その後、電極群を装填した電池缶に非水系電解液を20mL注入して、電極に充分浸透させ、密閉し角型電池を作製した。
【0173】
[電気容量と直流抵抗成分]
この電池の定格放電容量(1個の電池外装に収納される電池要素のもつ電気容量)は、約6Ahと高容量であり、10kHz交流法で測定される直流抵抗成分は約5ミリオームであった。
【0174】
[電池の評価]
(容量の測定方法)
充放電サイクルを経ていない新たな電池に対して、25℃で電圧範囲4.2V〜3.0V、電流値0.2C(1時間率の放電容量による定格容量を1時間で放電する電流値を1Cとする、以下同様)にて5サイクル初期充放電を行った。この時の5サイクル目0.2C放電容量を容量とした。
【0175】
(保存後5C放電容量)
60℃の高温環境下にて保存試験を行った。事前に25℃の環境下で充電上限電圧4.2Vまで定電流定電圧法で充電した電池を、60℃にて1ヶ月間保存した。保存後の電池に対して25℃の環境下にてレート試験を行った。すなわち、事前に25℃の環境下で充電上限電圧4.2Vまで定電流定電圧法で充電した電池を、5Cに相当する定電流値で放電し、保存後5C放電容量とした。
【0176】
(過充電試験)
25℃環境下で過充電試験を行った。放電状態(3V)から3Cの定電流で充電を行い、その挙動を観測した。ここで、「弁作動」は、ガス排出弁が作動し電解液成分が放出される現象を表し、「破裂」は、電池容器が猛烈な勢いで破れ、内容物が強制的に放出される現象を表す。
【0177】
実 施 例 1
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)の混合物(体積比3:3:4)に、ヘキサフルオロリン酸リチウム(LiPF6)を1mol/Lとなるように加えて溶解し、この混合溶液に対して1質量%となる量のシクロヘキシルベンゼン(CHB)と、0.3質量%となる量のヘキサメチルシクロトリシロキサンを混合し、非水系電解液を調製した。この非水系電解液を用いて上述の方法で電池を作製し、保存後5C放電容量を測定した。結果を表1に示す。
【0178】
実 施 例 2
実施例1において、ヘキサメチルシクロトリシロキサンの代わりにフェニルジメチルフルオロシランを混合して調製した非水系電解液を用いて電池を作製し、保存後5C放電容量を測定した。結果を表1に示す。
【0179】
実 施 例 3
実施例1において、ヘキサメチルシクロトリシロキサンの代わりにメタンスルホン酸トリメチルシリルを混合して調製した非水系電解液を用いて電池を作製し、保存後5C放電容量を測定した。結果を表1に示す。
【0180】
実 施 例 4
実施例1において、ヘキサメチルシクロトリシロキサンの代わりにInorganic Nuclear Chemistry Letters(1969),5(7)の第581頁〜第582頁に記載の方法に従って製造したジフルオロリン酸リチウムを混合して調製した非水系電解液を用いて電池を作製し、保存後5C放電容量を測定した。結果を表1に示す。
【0181】
実 施 例 5
実施例1において、シクロヘキシルベンゼンの代わりにビフェニルを混合して調製した非水系電解液を用いて電池を作製し、保存後5C放電容量を測定した。結果を表1に示す。
【0182】
実 施 例 6
実施例5において、ヘキサメチルシクロトリシロキサンの代わりにフェニルジメチルフルオロシランを混合して調製した非水系電解液を用いて電池を作製し、保存後5C放電容量を測定した。結果を表1に示す。
【0183】
実 施 例 7
実施例5において、ヘキサメチルシクロトリシロキサンの代わりにメタンスルホン酸トリメチルシリルを混合して調製した非水系電解液を用いて電池を作製し、保存後5C放電容量を測定した。結果を表1に示す。
【0184】
実 施 例 8
実施例5において、ヘキサメチルシクロトリシロキサンの代わりにInorganic Nuclear Chemistry Letters(1969),5(7)の第581頁〜第582頁に記載の方法に従って製造したジフルオロリン酸リチウムを混合して調製した非水系電解液を用いて電池を作製し、保存後5C放電容量を測定した。結果を表1に示す。
【0185】
実 施 例 9
実施例1において、シクロヘキシルベンゼンの代わりにt−アミルベンゼンを混合して調製した非水系電解液を用いて電池を作製し、保存後5C放電容量を測定した。結果を表1に示す。
【0186】
実 施 例 10
実施例1において、シクロヘキシルベンゼンの代わりに、m−ターフェニルの含有量3.7質量%で、部分水素化率42%の「m−ターフェニルの部分水素化物」を混合して調製した非水系電解液を用いて電池を作製し、保存後5C放電容量を測定した。結果を表1に示す。なお、実施例で用いたm−ターフェニルの部分水素化物は、m−ターフェニルを原料に、白金、パラジウム、又はニッケル系の触媒共存下、高温加圧条件で水素ガスと反応させたものを用いた。また、部分水素化率は、ガスクロマトグラフィー分析により求めたm−ターフェニルの部分水素化物の構成成分の組成比から、平均値として決定した。m−ターフェニルの含有量も、このガスクロマトグラフィー分析値から求めた。
【0187】
比 較 例 1
実施例1において、ヘキサメチルシクロトリシロキサンを混合せずに調製した非水系電解液を用いて電池を作製し、5C放電容量を測定した。結果を表1に示す。
【0188】
比 較 例 2
実施例5において、ヘキサメチルシクロトリシロキサンを混合せずに調製した非水系電解液を用いて電池を作製し、5C放電容量を測定した。結果を表1に示す。
【0189】
比 較 例 3
実施例9において、ヘキサメチルシクロトリシロキサンを混合せずに調製した非水系電解液を用いて電池を作製し、5C放電容量を測定した。結果を表1に示す。
【0190】
比 較 例 4
実施例10において、ヘキサメチルシクロトリシロキサンを混合せずに調製した非水系電解液を用いて電池を作製し、5C放電容量を測定した。結果を表1に示す。
【0191】
比 較 例 5
実施例1において、ヘキサメチルシクロトリシロキサン、CHBのどちらも混合せずに調製した非水系電解液を用いて電池を作製し、5C放電容量を測定した。結果を表1に示す。
【0192】
【表1】

【0193】
表1から明らかなように、過充電防止剤と特定化合物とを非水系電解液中に含有する実施例1〜10のリチウム二次電池は、過充電試験の際に電池が破裂することを回避できるのはもちろんのこと、保存後の大電流(5C)放電試験において、比較例1〜4のリチウム二次電池よりも良好な特性を示した。その特性は過充電防止剤を含有しない比較例5のリチウム二次電池に迫るものがあり、過充電安全性が向上していることと併せて、実用的な価値が非常に高いことが分かった。
【0194】
以上のように、非水溶媒にリチウム塩を混合してなる二次電池用非水系電解液において、過充電防止剤を含有し、更に一般式(1)で表される環状シロキサン化合物、一般式(2)で表されるフルオロシラン化合物、一般式(3)で表される化合物、分子内にS−F結合を有する化合物、硝酸塩、亜硝酸塩、モノフルオロリン酸塩、ジフルオロリン酸塩、酢酸塩及びプロピオン酸塩からなる群より選ばれた少なくとも1種以上の化合物を、非水系電解液全体中に10ppm以上含有することを特徴とする二次電池用非水系電解液を使用することにより、高い大電流放電特性と過充電安全性を同時に満たすことが可能となった。特に、1個の電池外装に収納される電池要素のもつ電気容量が3アンペアーアワー(Ah)以上であるような、従来、これらの2要素を同時に満たすことが困難であった電池に対し、高い実用性を持たせることが可能になった。
【産業上の利用可能性】
【0195】
本発明の二次電池用非水系電解液や非水系電解液二次電池の用途は特に限定されず、公知の各種の用途に用いることが可能である。具体例としては、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、モーター、自動車、バイク、原動機付自転車、自転車、照明器具、玩具、ゲーム機器、時計、電動工具、ストロボ、カメラ等を挙げることができる。特に、本発明の非水系電解液二次電池は、大電流放電特性が得られることから、大電流が必要な用途にとりわけ好適である。

【特許請求の範囲】
【請求項1】
非水溶媒にリチウム塩が含有されてなる二次電池用非水系電解液であって、過充電防止剤を含有し、更に、一般式(1)で表される環状シロキサン化合物、一般式(2)で表されるフルオロシラン化合物、一般式(3)で表される化合物、分子内にS−F結合を有する化合物、硝酸塩、亜硝酸塩、モノフルオロリン酸塩、ジフルオロリン酸塩、酢酸塩及びプロピオン酸塩からなる群より選ばれた少なくとも1種以上の化合物を、非水系電解液全体中に10ppm以上含有することを特徴とする二次電池用非水系電解液。
【化1】

[一般式(1)中、R及びRは互いに同一であっても異なっていてもよい炭素数1〜12の有機基を表し、nは3〜10の整数を表す。]
【化2】

[一般式(2)中、R〜Rは互いに同一であっても異なっていてもよい炭素数1〜12の有機基を表し、xは1〜3の整数を表し、p、q及びrはそれぞれ0〜3の整数を表し、1≦p+q+r≦3である。]
【化3】

[一般式(3)中、R〜Rは互いに同一であっても異なっていてもよい炭素数1〜12の有機基を表し、AはH、C、N、O、F、S、Si及び/又はPから構成される基を表す。]
【請求項2】
該過充電防止剤が、アルキル基及び/又はフッ素原子で置換されていてもよい、ビフェニル、ターフェニル、ジフェニルエーテル若しくはジベンゾフランである請求項1記載の二次電池用非水系電解液。
【請求項3】
該過充電防止剤が、ターフェニルの部分水素化体である請求項1記載の二次電池用非水系電解液。
【請求項4】
該過充電防止剤が、3級アルキル基、シクロアルキル基、フッ素原子及び/又はメトキシ基で置換されているベンゼンである請求項1記載の二次電池用非水系電解液。
【請求項5】
該過充電防止剤の含有量が、非水系電解液全体に対して、0.01質量%以上、5質量%以下である請求項1ないし請求項4の何れかの請求項記載の二次電池用非水系電解液。
【請求項6】
一般式(1)で表される環状シロキサン化合物、一般式(2)で表されるフルオロシラン化合物、一般式(3)で表される化合物、分子内にS−F結合を有する化合物、硝酸塩、亜硝酸塩、モノフルオロリン酸塩、ジフルオロリン酸塩、酢酸塩及びプロピオン酸塩からなる群に属する化合物の合計含有量が、非水系電解液全体に対して、0.01質量%以上、5質量%以下である請求項1ないし請求項5の何れかの請求項記載の二次電池用非水系電解液。
【請求項7】
非水系電解液、リチウムイオンを吸蔵・放出可能な負極及び正極を少なくとも備えた非水系電解液二次電池であって、該非水系電解液が、請求項1ないし請求項6の何れかの請求項記載の二次電池用非水系電解液であることを特徴とする非水系電解液二次電池。
【請求項8】
更に、前記非水系電解液二次電池の1個の電池外装に収納される電池要素のもつ電気容量が、3アンペアーアワー(Ah)以上である請求項7記載の非水系電解液二次電池。
【請求項9】
更に、前記非水系電解液二次電池の直流抵抗成分が、10ミリオーム(mΩ)以下である請求項7又は請求項8記載の非水系電解液二次電池。

【公開番号】特開2007−149654(P2007−149654A)
【公開日】平成19年6月14日(2007.6.14)
【国際特許分類】
【出願番号】特願2006−291064(P2006−291064)
【出願日】平成18年10月26日(2006.10.26)
【出願人】(000005968)三菱化学株式会社 (4,356)
【Fターム(参考)】