説明

二次電池

【課題】ハイレートでの使用に対しても良好な耐久性を示す二次電池(リチウムイオン電池等)を提供する。
【解決手段】本発明に係る二次電池20は、捲回型電極体80と、その捲回内周の内側に配置された放熱部材70とを備える。放熱部材70は、電極体80の捲回軸方向の中央部を両端部よりも効率よく放熱させるように構成されている。好ましい一態様では、放熱部材70は、相対的に熱伝導率の高い材料からなり電極体80の軸方向中央部から該軸方向における放熱部材70の少なくともいずれか一方の端まで連続する高熱伝導部72と、該高熱伝導部よりも熱伝導率の低い材料からなる低熱伝導部74,76とを備える。低熱伝導部74,76は、放熱部材70のうち電極体80の内周に対向する外表面の一部では高熱伝導部72を覆い、他の一部では高熱伝導部72を露出させるように設けられている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、正負の電極シートが捲回された構成の電極体(捲回型電極体)を備えた二次電池に関する。
【背景技術】
【0002】
リチウムイオン電池、ニッケル水素電池その他の二次電池(蓄電池)は、車両搭載用電源あるいはパソコンおよび携帯端末等の電源として重要性が高まっている。特に、軽量で高エネルギー密度が得られるリチウムイオン電池は、車両搭載用高出力電源として好ましく用いられるものとして期待されている。このような二次電池の代表的な構造の一つとして、正極シートと負極シートとが典型的にはセパレータを介して積層捲回された構成の電極体(捲回型電極体)を備えるものがある。この種の二次電池に関する従来技術文献として例えば特許文献1〜3が挙げられる。
【0003】
【特許文献1】特開2007−311274号公報
【特許文献2】特開2000−260474号公報
【特許文献3】特開2001−313078号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
ところで、リチウムイオン電池の用途のなかには、ハイレート放電(急速放電)を行う態様で使用されることが想定されるものがある。車両の動力源に用いられるリチウムイオン電池(例えば、動力源として電池と内燃機関等のように作動原理の異なる他の動力源とを併用するハイブリッド車両に搭載される電池であって、典型的には複数の電池を直列に接続した組電池の形態で使用される。)は、このような使用態様が想定されるリチウムイオン電池の代表例である。しかし、従来の一般的なリチウムイオン電池は、ローレートでの使用(充放電)に対しては比較的高い耐久性を示すものであっても、ハイレートで使用されると性能劣化(内部抵抗の上昇等)を起こしやすいことが知られていた。組電池を構成する複数の電池(単電池)のいずれかにおいてこのような性能劣化が起こると、組電池全体としての性能が大幅に低下することとなり得る。
【0005】
そこで本発明は、ハイレートでの使用に対しても良好な耐久性を示す二次電池(例えばリチウムイオン電池)を提供することを目的とする。本発明の他の目的は、かかる二次電池の複数個を用いて構築された組電池であって、ハイレートで使用されても良好な耐久性を示す組電池を提供することである。
【課題を解決するための手段】
【0006】
本発明者は、捲回型電極体を備える二次電池(例えばリチウムイオン電池)に対してハイレート充放電を行うと、該電極体の捲回軸方向の両端部に比べてそれらの中央部の温度上昇が大きいことから、中央部と両端部との間に温度差(温度の偏り)が生じることを見出した。このような温度分布が存在すると、相対的に高温の箇所に電池反応(電流)が集中して当該箇所の劣化が進行しやすくなる結果、電池全体の性能が通常よりも早く劣化することとなり得る。しかも、電池反応が集中する箇所は発熱量も多くなるため、いったん生じた温度差がますます拡大するという悪循環に陥りがちである。そこで本発明者は、かかる温度差を効果的に解消または緩和し得る構成を見出して本発明を完成した。
【0007】
本発明により提供される二次電池(典型的にはリチウムイオン電池)は、正負の電極シートが捲回された電極体と、前記電極体の捲回内周の内側(捲回中心部)に配置された放熱部材とを備える。前記放熱部材は、前記電極体の捲回軸方向の中央部を両端部よりも効率よく放熱させるように構成されている。
かかる構成の二次電池によると、ハイレート使用により電極体の軸方向両端部に比べて中央部の温度が大きく上昇しがちであるところ、上記中央部を両端部よりも高効率に放熱させる(すなわち冷却する)放熱部材を電極体の捲回中心部に配置することによって、該電極体の軸方向中央部と両端部との間に温度差が生じる事象を解消または緩和することができる。これにより、電池内における電池反応の偏りおよびこれに起因する部分的な劣化(例えば内部抵抗の上昇)促進を防止して、該電池のハイレート使用に対する耐久性を向上させることができる。
【0008】
なお、本明細書において「二次電池」とは、繰り返し充電可能な蓄電デバイス一般をいう用語であって、リチウムイオン電池、ニッケル水素電池、ニッケルカドミウム電池等のいわゆる蓄電池ならびに電気二重層キャパシタ等の蓄電素子を包含する。
【0009】
ここに開示される二次電池の好ましい一態様では、前記放熱部材が、相対的に熱伝導率の高い材料(すなわち、後述する低熱伝導部よりも熱伝導率の高い材料、例えば金属材料)からなる高熱伝導部と、該高熱伝導部よりも熱伝導率の低い材料(例えば樹脂材料)からなる低熱伝導部とを備える。前記高熱伝導部は、前記放熱部材のうち前記電極体の軸方向中央部に配置される部分から該軸方向における前記放熱部材の少なくともいずれか一方の端まで連続している。また、前記低熱伝導部は、前記放熱部材のうち前記電極体の捲回内周に対向する外表面(すなわち、放熱部材のうち電極体の内側に配置される部分の表面、典型的には電極シートが巻き付けられる部分の表面)の一部では前記高熱伝導部を覆い、他の一部では前記高熱伝導部を露出させるように設けられている。例えば、前記放熱部材のうち前記電極体の軸方向中央部に配置される部分では両端部に配置される部分よりも前記高熱伝導部が露出する面積の割合が高くなるように構成されていることが好ましい。かかる構成の二次電池では、高熱伝導部を通じて電極体の軸方向中央部の熱を効率よく放熱させる一方、電極体の軸方向両端部では高熱伝導部を覆う低熱伝導部によって放熱が抑えられている。このことによって、電極体の軸方向中央部と両端部との温度差を効果的に解消または緩和することができる。
【0010】
ここに開示される技術の好ましい適用対象として、前記電極シートが扁平に捲回された電極体(すなわち扁平型電極体)を備える二次電池(例えばリチウムイオン電池)が挙げられる。このような形態の二次電池は、電極体の扁平面(特に該扁平面の中央部)において電極体から放熱部材への良好な伝熱を実現しやすいので好ましい。例えば、上記扁平型電極体が扁平な角型形状の容器に収容された構成の二次電池に適用され得る。
【0011】
このように扁平型電極体を備える二次電池の好ましい一態様では、前記放熱部材が、前記高熱伝導部とその両側に配置された前記低熱伝導部とが前記扁平型電極体の厚み方向に積層された構成を有する。かかる態様によると、簡単な構成の放熱部材によって電極体の軸方向中央部と両端部との温度差を効果的に解消または緩和することができる。例えば、前記電極体の扁平面の中央部に配置される部分に前記高熱伝導部を露出させる開口を有する薄板状の低熱伝導部が薄板状の高熱伝導部の両側に積層された構成の放熱部材を好ましく採用し得る。かかる放熱部材を備える二次電池によると、電極体の軸方向中央部と両端部との温度差を効果的に解消または緩和することができる。
【0012】
ここに開示されるいずれかの二次電池(例えばリチウムイオン電池)は、上述のようにハイレートでの使用に対して良好な耐久性を発揮し得ることから、車両に搭載される電池(例えば、自動車等の車両のモータ(電動機)用の電源)として好適である。したがって本発明によると、ここに開示されるいずれかの電池(該電池の複数個を接続した組電池の形態であり得る。)を備えた車両が提供される。
【0013】
ここに開示される技術の好ましい適用対象として、50A以上(例えば50A〜250A)、さらには100A以上(例えば100A〜200A)のハイレート放電を含む充放電サイクルで使用され得ることが想定されるリチウムイオン電池;理論容量が1Ah以上(さらには3Ah以上)の大容量タイプであって10C以上(例えば10C〜50C)さらには20C以上(例えば20C〜40C)のハイレート放電を含む充放電サイクルで使用されることが想定されるリチウムイオン電池;等のリチウムイオン電池、該リチウムイオン電池を用いて(該リチウムイオン電池を単電池として)構築された組電池、および該組電池を備える電源システムが例示される。
【0014】
また、ここに開示される技術の好ましい適用対象として、電極体を捲回軸の側方からみたときのサイズが捲回軸方向(図2の横方向、図9の縦方向)について5cm以上(典型的には5cm〜25cm、例えば7cm〜20cm)であるリチウムイオン電池、該電池を単電池として構築された組電池、および該組電池を備える電源システムが例示される。このように電極体の軸長が比較的長い(大型の)リチウムイオン電池では、軸方向の両端部と中央部との温度差が大きくなりがちであるため、本発明の適用意義が特に大きい。
【0015】
また、ここに開示される技術は、正負の電極シートとセパレータとが扁平に捲回された電極体を備え、該電極体を扁平面の法線方向(捲回軸の横方向)からみたサイズが捲回軸方向について5cm以上(典型的には5cm〜25cm、例えば7cm〜20cm)であり、且つ幅方向(図2の縦方向、典型的には高さ方向)について5cm以上(典型的には5cm〜25cm、例えば7cm〜20cm)であるリチウムイオン電池、該電池を単電池として構築された組電池、および該組電池を備える電源システムに好ましく適用され得る。このように電極体の軸長が比較的長く且つ幅の広い(高さの大きな、大型の)リチウムイオン電池では、軸方向の両端部と中央部とで温度差が大きくなりがちであるため、本発明の適用意義が特に大きい。
【発明を実施するための最良の形態】
【0016】
以下、図面を参照しながら本発明の好適な実施形態を説明する。以下の図面において、同じ作用を奏する部材・部位には同じ符号を付して説明し、重複する説明は省略または簡略化することがある。
なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、正極、負極およびセパレータの構成および製造方法、電極体の製造方法、組電池の構築方法や車両への電池搭載方法等)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
【0017】
<実施形態1>
図1〜6を参照しつつ、扁平形状の捲回型電極体を備えるリチウムイオン電池に本発明を適用した好適な一形態を説明する。
本実施形態に係るリチウムイオン電池20は、正負の電極シート(典型的には、正負極それぞれの集電体に正負極それぞれの活物質が保持されたシート状の電極)とシート状のセパレータとが積層され捲回された扁平形状の捲回型電極体80が、適当な液状電解質(電解液)とともに、該電極体80を収容し得る形状(ここでは扁平な直方体形状すなわち角型)の容器50に収容された構成を有する。ここで、図2,5,6に示されるように、電極体80の捲回内周の内側(すなわち捲回中心部)には放熱プレート70が配置されている。容器50を構成する材質は、例えば典型的なリチウムイオン電池で使用されるものと同様とすることができ、特に制限はない。放熱性等の観点から、金属製(例えばアルミニウム製)の容器50を好ましく使用し得る。容器50の上面からは、電極体80の正極および負極とそれぞれ電気的に接続する正極端子60および負極端子62が突出している。
【0018】
以下、放熱プレート70および捲回型電極体80の構成をより詳しく説明する。
図3および図4によく示されるように、放熱プレート70は、概ね長方形状の金属板(高熱伝導部材)72と、その金属板72の両面にそれぞれ重ね合わされた樹脂シート74,76とから構成されている。樹脂シート74,76には、電極体80の軸方向に対応する方向(以下、説明の便宜上、放熱プレート70およびその構成部材についても「電極体80の軸方向に対応する方向」を「軸方向」というものとする。)の中央部であって且つ幅方向の中央部に、それぞれ開口74A,76Aが設けられている。金属板72の両表面の中央部は、これらの開口74A,76Aから放熱プレート70の外表面に露出する露出部72Aとなっている。一方、金属板72の両表面の周縁部は、該表面が樹脂シート74,76によって覆われた(すなわち、外部に露出していない)被覆部72Bとなっている。このことによって、放熱プレート70は、軸方向の中央部5では両端部6,7よりも金属板72の露出する面積の割合が高くなるように構成されている。すなわち、図5に示す負極側端部7における断面(正極側端部6における断面も同様である。)では、金属板72の両表面の全体が被覆部72Bとなっているのに対して、図6に示す中央部5における断面では、金属板72の幅方向の中央部に、該幅方向長さの例えば10〜90%(典型的には30〜70%)を占める露出部72Aが形成されている。なお、変形例として、樹脂シート74,76が端部6,7のみを覆い、放熱プレート70の中央部5では金属板72の両表面が幅方向の全長に亘って露出するように構成してもよい。
また、図4によく示されるように、金属板72は、中央部5から放熱プレート70の軸方向の両端70A,70Bおよび幅方向の両端70C,70Dまで連続しており、これらの端(外周端)70A,B,C,Dにおいて放熱プレート70の外表面に露出している。
【0019】
放熱プレート70の構成材料としては、使用する電解液や電池反応に対して所望の安定性を示すものであればよく、特に限定されない。例えば、金属板72の構成材料としては、軽量で熱伝導性の高いアルミニウムその他の金属材料を好ましく採用し得る。また、樹脂シート74,76の構成材料としては、軽量で硬質なポリプロピレンその他の合成樹脂材料を好ましく採用し得る。合成樹脂製の多孔質部材を使用してもよい。例えば、セパレータシートとしても使用可能な多孔質ポリオレフィンシートを、単独で、あるいは必要な厚みとなるように重ね合わせて使用することができる。
金属板72の厚みは、例えば凡そ0.02mm〜10mm程度とすることができ、通常は厚みが凡そ0.05mm〜5mm(例えば0.5mm〜2mm)程度の金属板を好ましく採用し得る。高熱伝導部を構成する金属板の厚みが大きすぎると電池20の体格(厚み)および重量が大きくなりがちであり、該金属板の厚みが小さすぎると温度差を緩和する効果が少なくなることがある。
樹脂シート74,76の厚みは、例えば凡そ0.005mm〜2mmとすることができ、通常は厚みが凡そ0.02mm〜1mm(例えば0.05mm〜0.5mm)程度の樹脂シートを好ましく採用し得る。低熱伝導部を構成する樹脂シートの厚みが大きすぎると電池20の体格(厚み)および重量が大きくなりがちであり、該樹脂シートの厚みが小さすぎると温度差を緩和する効果が少なくなることがある。
なお、両樹脂シート74,76の構成材料や形状(厚み、開口部の形状等)は同一であっても異なってもよい。通常は、同一の材料からなる同一形状の樹脂シート74,76が好ましく用いられる。
【0020】
電極体80は、図2に示すように、通常のリチウムイオン電池の捲回型電極体と同様、長尺シート状の正極82(以下「正極シート82」ともいう。)と長尺シート状の負極84(以下「負極シート84」ともいう。)とを計二枚の長尺シート状のセパレータ86(以下「セパレータシート86」ともいう。)とともに積層し、その重ね合わせたシート82,84,86を長手方向に捲回することにより作製され得る。ここで、上記重ね合わせたシート82,84,86(以下「積層シート」ともいう。)を捲回する際、放熱プレート70を巻芯にしてその周囲に上記積層シートを緊密に巻きつけることにより、捲回内周の内側に放熱プレート70が配置された扁平型電極体80を好適に作製することができる。この方法によると、放熱プレート70の外表面(両表面および外周端70C,70D)と積層シートの内周とをよりよく(より広い面積で)接触させ得る。このことによって、放熱プレート70の設置効果(電極体80の中央部と両端部との温度差を緩和する効果)がよりよく発揮され得る。図5,6に示すように、放熱プレート70の外周端70C,70Dを丸みを帯びた形状(典型的にはR形状)とすることにより、放熱プレート70の外周と積層シートの内周とをさらによく接触させることができる。このように外周端70C,70Dに丸みをもたせることにより、放熱プレート70と積層シートとの接触応力を緩和して(分散させて)積層シートの損傷を防止することができる。
【0021】
あるいは、まず積層シートを単独で捲回した後、その捲回内周の内側に放熱プレート70を挿入してもよい。積層シートは扁平状に捲回してもよく、いったん円形状に捲回した後に側面方向(捲回軸に対して横方向)から押しつぶして拉げさせることで扁平状としてもよい。かかる方法によると、放熱プレート70の周囲に積層シートを巻きつける方法に比べて幅方向端70C,70Dと放熱プレート70との密着性が低くなりがちではあるものの、より高い生産性が実現され得るという効果が得られる。また、放熱プレート70の両表面と電極体80の扁平面とを密着させることにより、電極体80の中央部と両端部との温度差を効果的に緩和することができる。
【0022】
なお、正極シート82と負極シート84とは、これら長尺状シートの幅方向に位置をややずらして重ね合わされた状態で捲回される。その結果として、捲回型電極体80の捲回軸方向の一方および他方の端部には、図2に示すように、正極シート82の幅方向の一端が捲回コア部分81(すなわち正極シート82の正極活物質層形成部分と負極シート84の負極活物質層形成部分とセパレータシート86とが密に捲回された部分)から外方にはみ出した部分と、負極シート84の幅方向の一端が捲回コア部分81から外方にはみ出した部分とがそれぞれ形成されている。これら正極はみ出し部(すなわち正極活物質層の非形成部分)および負極はみ出し部(すなわち負極活物質層の非形成部分)には、正極端子60および負極端子62の一端がそれぞれ接続されている。
【0023】
捲回型電極体80を構成する材料および部材自体は、従来のリチウムイオン電池の電極体と同様でよく、特に制限はない。例えば、正極シート82は長尺状の正極集電体の上にリチウムイオン電池用正極活物質層が付与されて形成され得る。正極集電体にはアルミニウム箔(本実施形態)その他の正極に適する金属箔が好適に使用され得る。正極活物質としては従来からリチウムイオン電池に用いられる物質の一種または二種以上を特に限定することなく使用することができる。好適例として、リチウムニッケル系複合酸化物(リチウムとニッケルとを構成金属元素として含む酸化物をいい、ニッケルサイトの一部(典型的には半分以下)がコバルトやアルミニウム等の他の金属元素で置換されたものを包含する意味である。典型的にはLiNiO)、リチウムコバルト系複合酸化物(典型的にはLiCoO)、リチウムマンガン系複合酸化物(典型的にはLiMn)等のリチウム遷移金属複合酸化物が挙げられる。例えば、厚さ5μm〜20μm(例えば15μm)程度の長尺状アルミニウム箔を集電体として使用し、その表面の所定領域に常法によりリチウムニッケル系複合酸化物を主体とする正極活物質層を形成することによって好適な正極シート82が得られる。
【0024】
一方、負極シート84は長尺状の負極集電体の上にリチウムイオン電池用負極活物質層が付与されて形成され得る。負極集電体には銅箔(本実施形態)その他の負極に適する金属箔が好適に使用され得る。負極活物質としては従来からリチウムイオン電池に用いられる物質の一種または二種以上を特に限定することなく使用することができる。好適例として、グラファイトカーボンやアモルファスカーボン等の炭素系材料、リチウム遷移金属酸化物(リチウムチタン酸化物等)、リチウム遷移金属窒化物等が挙げられる。例えば、厚さ5μm〜20μm(例えば10μm)程度の長尺状銅箔を使用し、その表面の所定領域に常法によって炭素系材料(典型的には黒鉛)を主体とする負極活物質層を形成することによって好適な負極シート84が得られる。
【0025】
また、正負極シート82,84間に使用される好適なセパレータシート86としては、合成樹脂(例えばポリエチレン、ポリプロピレン等のポリオレフィン)により構成されたものが例示される。例えば、ポリオレフィン系樹脂からなる厚さ5μm〜30μm(例えば25μm)程度の多孔質セパレータシートを好適に使用し得る。
【0026】
捲回内周に放熱プレート70が配置された扁平形状の捲回型電極体80を容器50内に、図5,6に示すように捲回軸が横倒しになるようにして収容するとともに、適当な非水電解液(図示せず)を注入して封止することによって、本実施形態に係るリチウムイオン電池20が構築され得る。電解液としては、例えば、非水溶媒(ジエチルカーボネートとエチレンカーボネートとの混合溶媒等)中に適当な支持塩(例えばLiPF等のリチウム塩)を適当量(例えば濃度1M)含むものを好ましく用いることができる。
【0027】
このような構成のリチウムイオン電池20によると、放熱プレート70を利用して、電極体80の中央部を両端部よりも高効率に放熱させことができる。すなわち、放熱プレート70のうち電極体80の軸方向中央部かつ幅方向の中央部に配置される部分では、図6に示すように、開口74A,76Aを通して金属板72が外部に露出しているので、電極体80の熱を金属板72へと効率よく伝えることができる。また、金属板72は上記中央部から放熱プレートの外周端70A,B,C,Dまで連続しているので、電極体80から受け取った熱を外部へと効果的に放散させることができる。一方、電極体80の軸方向両端部では、図5に示すように、金属板72の表面が樹脂シート72,74で覆われている(電極体80の内周と金属板72とが樹脂シート72,74により隔てられている)ので、中央部に比べて電極体80の熱が金属板72に伝わりにくい。すなわち、電極体80の軸方向両端部では中央部に比べて放熱が抑えられている。したがって、従来の構成では電極体の軸方向中央部の温度が両端部に比べて大きく上昇しがちな(中央部と両端部との温度差が大きくなりがちな)ハイレート使用時においても、本実施形態の電池20によると電極体80の軸方向中央部と両端部との温度差を効果的に緩和することができる。
なお、図6では樹脂シート72,74の厚みを誇張して表現しているため電極体80の内周と金属板72の表面とが離れているが、通常は樹脂シート72,74の厚みが小さいことから電極体80の内周は開口74A,76Aを通じて金属板72の表面に密着する。電極体80は、典型的には厚み方向にある程度の押圧力が加わるようにして容器50に収容されるので、上記密着がよりよく行われることとなる。
【0028】
かかる構成を採用する意義(必要性)を確認するため、放熱プレート70を有しない点以外は本実施形態と同様の構成を有するリチウムイオン電池を作製し、ハイレート充放電によって両端部と中央部との間に生じる温度差を測定した。
【0029】
すなわち、ニッケル酸リチウム粉末(正極活物質)とアセチレンブラック(導電材)とカルボキシメチルセルロース(CMC)とを、これら材料の質量比が87:10:3となるようにイオン交換水と混合して活物質組成物(正極活物質組成物)を調製した。正極集電体としては長尺状のアルミニウム箔を使用し、該集電体のうち幅方向の一端を残して(正極はみ出し部)それ以外の領域の両面に、上記正極活物質組成物を帯状に塗布して乾燥させた。乾燥後、正極集電体およびその両面に設けられた活物質層を含む全体をプレスして正極シートを得た。
【0030】
また、天然黒鉛(粉末)とスチレンブタジエンゴム(SBR)とCMCとを、これら材料の質量比が98:1:1となるようにイオン交換水と混合して活物質組成物(負極活物質組成物)を調製した。負極集電体としては長尺状の銅箔を使用し、該集電体のうち幅方向の一端を残して(負極はみ出し部)それ以外の領域の両面に、上記負極活物質組成物を帯状に塗布して乾燥させた。乾燥後、負極集電体およびその両面に設けられた活物質層を含む全体をプレスして負極シートを得た。
【0031】
セパレータシートとしては二枚の多孔質ポリエチレンシートを使用した。これらのセパレータシートと上記で得られた正極シートおよび負極シートとを、両電極シートの活物質非形成部分(はみ出し部)がそれぞれの幅方向の両側からはみ出すように積層して長手方向に捲回し、その捲回体を側方から押しつぶして扁平形状の捲回型電極体を得た。
この電極体の正極はみ出し部を構成する正極シートを径方向(扁平面に対する法線方向)に寄せ集めてアルミニウム製の正極端子の一端を溶接し、負極はみ出し部を構成する負極シートを径方向に寄せ集めて銅製の負極端子の一端を溶接した。
【0032】
容器としては、縦方向(扁平形状の捲回型電極体の幅方向)の長さが9.2cmであり、横方向(捲回型電極体の軸方向)の長さが11cmであり、厚さが1.35cmの扁平な箱型の外形を有するアルミニウム容器を使用した。この容器の内部に上記捲回型電極体を収容した。また、各部の温度を外部から測定可能とするため、容器の一方の端部(正極端子側の端部)、他方の端部(負極端子側の端部)およびそれらの中央部にそれぞれ熱電対を配置した。この容器に、ECとDMCとEMCとの混合溶媒に支持塩としてのヘキサフルオロリン酸リチウム(LiPF)を約1mol/リットルの濃度で含有させた電解液を注入した後、該容器を封止した。その後、常法により初期充放電処理(コンディショニング)を行って、理論容量5Ahのリチウムイオン電池を得た。
【0033】
上記で得られたリチウムイオン電池に対し、150A(放電時間率30Cに相当する。)で10秒間のハイレート放電を含む充放電パターンを付与し、これによる各部の温度変化を上記熱電対による検出値から把握した。より具体的には、室温(約25℃)環境下において以下の(1)〜(4)の充放電パターンを付与し、その前後で各部の温度を比較することにより、上記充放電パターンによる各部の温度上昇幅を求めた。
【0034】
[充放電パターン]
(1)150Aで10秒間放電。
(2)5秒間休止。
(3)40Aで120秒間CC−CV充電(40Aで3.72Vまで定電流充電後、合計充電時間が120秒となるまで定電圧充電)。
(4)5秒間休止。
【0035】
その結果、上記充放電パターン(1サイクル)の前後で、電池の両端部における温度上昇幅は1.2℃であったのに対し、中央部の温度上昇幅は2.2℃であった。すなわち、上記のようなハイレート(急速)充放電パターンでは、わずか10秒間のハイレート放電を1回行っただけでも電池の両端部と中央部との間に明確な温度差が生じた。さらに充放電パターンを継続すると、相対的に高温の箇所に電池反応(電流)が集中し、これにより上記高温の箇所においてより多くの熱が発生することにより、いったん生じた温度差がますます拡大することとなる。例えば、上記充放電パターンを連続して繰り返した後における中央部と両端部との温度差は7℃に拡大していた。
【0036】
ハイレート充放電によって上記のような温度分布を生じるリチウムイオン電池(電極体の捲回内周内側に放熱部材を有しない。)の軸方向の温度分布イメージを、図7中に二点鎖線で示す。図中の一点鎖線は、電極体80の捲回内周の内側に金属板を配置した場合(例えば、上記実施形態において放熱プレート70を構成する金属板72を単独で放熱部材として使用した場合)における温度分布イメージを模式的に示している。このように電極体の捲回内周内側に配置する放熱部材として単なる金属板(電極体から放熱部材への熱の伝わりやすさ(ひいては冷却効率)が軸方向の各部で均等である。)を配置すると、該放熱部材を有しない電池に比べて軸方向の各部における冷却効率はそれぞれ上昇するものの、依然として電池20の両端部と中央部との間に温度差が生じる。
【0037】
これに対して本実施形態の放熱プレート70によると、相対的に熱伝導率の高い金属材料からなる金属板72と、該金属材料よりも熱伝導率の低い樹脂材料からなる樹脂シート72,74との積層構造であって、且つ電極体80の軸方向中央部では両端部よりも金属板72の露出面積の割合が高くなるように構成されていることにより、図7中に実線で模式的に示すように、放熱部材を有しない構成(二点鎖線)に比べて中央部の温度を効率よく低下させつつ(図中の下向き矢印)、単なる金属板を用いた場合(一点鎖線)とは異なり中央部に比べて両端部が冷えすぎる事象が抑えられるので、中央部と両端部との間の温度差を効果的に緩和する(温度分布をなだらかにする)ことができる。
【0038】
このように電極体80の捲回内周の内側に放熱プレート70を配置することにより実現され得る他の一つの効果として、電極体80の形状維持性を高める効果が挙げられる。例えば、電極体80が内周側に潰れすぎることを防止することにより、電池性能をより安定化することができる。このように電極体80の形状維持性が向上することは、製造時における作業性の点からも有利である。また、上記構成の放熱プレート70により実現され得る他の一つの効果として、充放電に伴う電極体80の膨張・収縮を緩和するクッション材としての効果が挙げられる。すなわち、樹脂シート72,74は金属板72に比べてクッション性を有するため、電極体80の捲回内周の内側に単なる金属板72からなる放熱部材を配置する場合に比べて電極体80の膨張・収縮をよりよく緩和することができる。このことによって、電極体80内に保持されている電解液が上記膨張・収縮により電極体外に押し出される事象を緩和することができる。
【0039】
なお、上記では高熱伝導部が金属材料(金属板72)からなり、低熱伝導部が樹脂材料(樹脂シート74,76)からなる放熱プレート70について説明したが、高熱伝導部および低熱伝導部の構成材料は金属材料と樹脂材料との組み合わせに限定されない。例えば、高熱伝導部と低熱伝導部との構成材料の組み合わせが、熱伝導率の異なる樹脂材料同士または金属材料同士であってもよい。あるいは、例えば低熱伝導部の構成材料としてポリプロピレン等の樹脂材料を用い、高熱伝導部の構成材料として該樹脂材料と金属との複合材料(例えば、金属粒子、金属繊維等が混入された樹脂材料)を用いてもよい。また、図3〜6では金属板72の表面形状を単純な平面状として示しているが、例えば、金属板72の表面のうち開口74A,76Aに対応する部分(開口74A,76Aを通して外部に露出する部分)に凸部が形成された構成としてもよい。このことによって電極体80の内周と金属板72とをよりよく接触させる(両者の密着性を向上させて電極体80の中央部の放熱性をより高める)ことができる。上記凸部の高さは、樹脂シート74,76の厚みと略同等の高さとすることが好ましい。かかる凸部を形成することは、金属板72と樹脂シート74,76との位置合わせを容易にするという観点からも有利である。
【0040】
<実施形態2>
図8〜10を参照しつつ、円筒型の捲回型電極体を備えるリチウムイオン電池に本発明を適用した好適な一形態を説明する。
本実施形態に係るリチウムイオン電池120は、正負の電極シート182,184の間にセパレータシートを挟んで重ね合わせた積層シートを捲回してなる円筒形状の電極体180が、適当な電解液(実施形態1と同様の電解液等)とともに、該電極体180を収容し得る形状(ここでは円筒形状)の容器150に収容された構成を有する。図9に示されるように、電極体180の捲回中心部には放熱部材170が配置されている。容器150の上端面および下端面からは、正極シート182および負極シート184とそれぞれ電気的に接続する正極端子160および負極端子162がそれぞれ突出している。
【0041】
本実施形態における放熱部材170は、図9,10に示すように、大径部172A,176Aと小径部172B,176Bとが同軸に形成された段付円筒状の高熱伝導部材172,176を、それらの大径部172A,176Aの間に絶縁層175を挟んで同軸に接合した構成を有する。高熱伝導部材172,176の構成材質としては金属材料を、絶縁層175の構成材料としては樹脂材料を好ましく採用し得る。高熱伝導部材172,176の小径部172B,176Bのうち大径部172A,176Aに続く部分の外周は、管状の低熱伝導部材173,177で覆われている。低熱伝導部材173,177の構成材料としては樹脂材料を好ましく採用し得る。この低熱伝導部材173,177の外径は、高熱伝導部材172,176の大径部172A,176Aの外径と略同一である。この高熱伝導部材172,176は電極端子160,162としても利用される。すなわち、小径部172B,176Bの端部は容器150を貫通して外方に突出している。
【0042】
低熱伝導部材173,177およびその間に露出する大径部172A,176Aの周囲に上記積層シートを緊密に巻きつけることにより電極体180が形成されている。ここで、実施形態1と同様に、正極シート182、負極シート184とは幅方向に位置をややずらして重ね合わされている。これにより、電極体180の軸方向の両端には、正極シート182の幅方向の一端が捲回コア部分181から外方にはみ出した部分と、負極シート184の幅方向の一端が捲回コア部分181から外方にはみ出した部分とがそれぞれ形成されている。正極シート182のはみ出し部は、内径側に寄せ集められて、例えばアルミニウム製の高熱伝導部材172(正極端子160)の小径部172Bの外周に接合されている。同様に、負極シート184のはみ出し部は、内径側に寄せ集められて、例えば銅製の高熱伝導部材174(負極端子162)の小径部174Bの外周に接合されている。電極シート182,184と高熱伝導部材172,176との接合は、例えば溶接により行うことができる。
【0043】
このような構成のリチウムイオン電池120によると、放熱部材170を利用して、電極体180の軸方向の中央部を両端部よりも高効率に放熱させことができる。すなわち、放熱部材170のうち電極体180の軸方向中央部かつ幅方向の中央部に配置される部分では高熱伝導部材172,176(大径部172A,176A)が外部に露出しているので、電極体180の熱を高熱伝導部材172,176へと効率よく伝えることができる。また、高熱伝導部材172,176は上記中央部から放熱部材170の軸方向の一端および他端までそれぞれ連続しているので、電極体180から受け取った熱を外部へと効果的に放散させることができる。一方、電極体180の軸方向両端部では、高熱伝導部材172,176(小径部172B,176B)の外周が低熱伝導部材173,177で覆われている(電極体180の内周と高熱伝導部材172,176とが低熱伝導部材173,177により隔てられている)ので、中央部に比べて電極体180の熱が高熱伝導部材172,176に伝わりにくい。すなわち、電極体180の軸方向両端部では中央部に比べて放熱が抑えられている。したがって、本実施形態の電池120によると、実施形態1に係る電池20と同様に、ハイレート使用時においても電極体180の軸方向中央部と両端部との温度差を効果的に解消または緩和することができる。
【0044】
以上、本発明を詳細に説明したが、上記実施形態は例示にすぎず、ここで開示される発明には上述の具体例を様々に変形、変更したものが含まれる。例えば、電池の種類は上述したリチウムイオン電池に限られず、本発明は、電極体構成材料や電解液の組成が異なる種々の二次電池に適用可能である。
【0045】
本発明に係る電池は、特に自動車等の車両に搭載されるモータ(電動機)用電源として好適に使用し得る。したがって本発明は、図11に模式的に示すように、かかる電池20(複数の電池20を電気的に直列に接続してなる組電池の形態であり得る。)を電源として備える車両(典型的には自動車、特にハイブリッド自動車、電気自動車、燃料電池自動車のような電動機を備える自動車)1を提供する。
【図面の簡単な説明】
【0046】
【図1】実施形態1に係る電池を示す斜視図である。
【図2】実施形態1に係る電池の容器内に収容される部材を示す側面図である。
【図3】実施形態1に係る電池の放熱プレートを示す分解斜視図である。
【図4】実施形態1に係る電池の放熱プレートを示す斜視図である。
【図5】図1のV−V線断面図である。
【図6】図1のVI−VI線断面図である。
【図7】扁平な捲回型電極体を備える電池の捲回軸方向に対する温度分布イメージを模式的に示す説明図である。
【図8】実施形態2に係る電池を示す斜視図である。
【図9】実施形態2に係る電池の容器内に収容される部材を示す断面図である。
【図10】実施形態2に係る電池の放熱部材を示す斜視図である。
【図11】本発明に係る電池を備えた車両(自動車)を模式的に示す側面図である。
【符号の説明】
【0047】
1 自動車(車両)
20,120 リチウムイオン電池
60,160 正極端子
62,162 負極端子
70 放熱プレート(放熱部材)
72 金属板(高熱伝導部材、高熱伝導部)
74,76 樹脂シート(低熱伝導部材、低熱伝導部)
74A,76A 開口
80,180 捲回型電極体(電極体)
82,182 正極シート
84,184 負極シート
170 放熱部材
172 高熱伝導部材(高熱伝導部、正極端子)
173 低熱伝導部材(低熱伝導部)
175 絶縁層
176 高熱伝導部材(高熱伝導部、負極端子)
177 低熱伝導部材(低熱伝導部)

【特許請求の範囲】
【請求項1】
正負の電極シートが捲回された電極体と、
前記電極体の捲回内周の内側に配置された放熱部材とを備え、
前記放熱部材は、前記電極体の捲回軸方向の中央部を両端部よりも効率よく放熱させるように構成されている、二次電池。
【請求項2】
前記放熱部材は、相対的に熱伝導率の高い材料からなる高熱伝導部と、該高熱伝導部よりも熱伝導率の低い材料からなる低熱伝導部とを備え、
前記高熱伝導部は、前記放熱部材のうち前記電極体の軸方向中央部に配置される部分から該軸方向における前記放熱部材の少なくともいずれか一方の端まで連続しており、
前記低熱伝導部は、前記放熱部材のうち前記電極体の内周に対向する外表面の一部では前記高熱伝導部を覆い、他の一部では前記高熱伝導部を露出させるように設けられている、請求項1に記載の電池。
【請求項3】
前記放熱部材は、該放熱部材のうち前記電極体の軸方向の中央部に配置される部分では両端部に配置される部分よりも前記高熱伝導部が露出する面積の割合が高くなるように構成されている、請求項2に記載の電池。
【請求項4】
前記電極体として、前記電極シートが扁平に捲回された扁平型電極体を備える、請求項2または3に記載の電池。
【請求項5】
前記放熱部材は、前記高熱伝導部とその両側に配置された前記低熱伝導部とが前記扁平型電極体の厚み方向に積層された構成を有する、請求項4に記載の電池。
【請求項6】
前記電池はリチウムイオン電池である、請求項1から5のいずれか一項に記載の電池。
【請求項7】
請求項1から6のいずれか一項に記載の電池を備える車両。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2010−55887(P2010−55887A)
【公開日】平成22年3月11日(2010.3.11)
【国際特許分類】
【出願番号】特願2008−218477(P2008−218477)
【出願日】平成20年8月27日(2008.8.27)
【出願人】(000003207)トヨタ自動車株式会社 (59,920)
【Fターム(参考)】