説明

位置姿勢制御装置及び位置姿勢制御方法

【課題】小回りの効く浮遊体の位置姿勢制御を可能にするとともに、一方向だけでなくその他の種々の方向についても同一姿勢を維持しながら移動する位置姿勢制御を可能にする。
【解決手段】それぞれ推力を発生させる6つの推力発生器14を備え、推力発生器14の何れもが、異なる方向に推力を発生させる設定とされている。各推力発生器14は、推力方向に延びる仮想直線30が隣の推力発生器14の推力方向に延びる仮想直線30と仮想軸40に垂直な2つの仮想平面上で交差するように位置決めされるとともに、前記一方の仮想平面上における仮想直線30の交点が仮想軸40上に重心位置のある正三角形の各頂点位置となり、かつ前記他方の仮想平面上における仮想直線30の交点が仮想軸40上に重心位置のある正三角形の各頂点位置となるように位置決めされている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、浮遊体の位置及び姿勢を制御する位置姿勢制御装置及び位置姿勢制御方法に関するものである。
【背景技術】
【0002】
浮遊体の一例として深海調査艇が挙げられる。この深海調査艇の一例として、下記非特許文献1にも掲載されている「しんかい6500」があり、この深海調査艇には、図15に示すように艇を前後方向に推進させることを主目的とした推進装置91と、上下移動を担う垂直スラスタ92と、左右方向への頭部旋回を担う水平スラスタ93とが設けられている。そして、深海調査艇は、これら推進装置91及び両スラスタ92,93による推力を制御することにより、調査海域において縦横無尽に、かつ調査物体を捕捉したまま追跡を行うことができるようになっている。この深海調査艇では、前後・上下・左右の三軸方向の推力で位置姿勢制御を行うので、非ホロノミックな拘束条件となっている。
【非特許文献1】「平成17年6月27日検索」、インターネット<URL;http://www.jamstec.go.jp/ships/shinkai3.html>
【発明の開示】
【発明が解決しようとする課題】
【0003】
前記従来の深海調査艇では、三軸方向に推力を与える構成であり、非ホロノミックな拘束条件となっている。このため、ある地点に留まった状態で方向を変えるのは困難であり、浮遊地点を徐々に変化させながら位置及び姿勢を所望の値に制御する必要がある。この結果、小回りの効く姿勢制御ができないという問題がある。また、同一姿勢を保ちながら前後方向に移動することは可能でも、左右方向等には同一姿勢を保ちながら移動することが困難であるという問題もある。
【0004】
そこで、本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、小回りの効く浮遊体の位置姿勢制御を可能にするとともに、一方向だけでなくその他の種々の方向についても同一姿勢を維持しながら移動する位置姿勢制御を可能にすることにある。
【課題を解決するための手段】
【0005】
前記の目的を達成するため、本発明は、浮遊体の位置及び姿勢を制御する位置姿勢制御装置を前提として、それぞれ推力を発生させる6つの推力発生器と、前記各推力発生器を制御する制御部とを備え、前記推力発生器の何れもが、異なる方向に推力を発生させる設定とされている。
【0006】
本発明では、推力発生器が全て異なる向きで6つ設けられることで非ホロノミックな拘束条件とならない6軸方向の位置姿勢制御が可能となる。したがって、制御部によって各推力発生器が発生する推力を調整することにより、簡易な構造で小回りの効く位置姿勢制御を行うことができるとともに、一方向だけでなく種々の方向に対して同一姿勢を維持しながら移動する位置姿勢制御を行うことができる。また各推力発生器が位置固定されているので、通常のパラレルメカニズムのようにリンク長が伸縮することによって幾何学的形状が変化するものと異なり、形状パラメータを推定し直しながら位置姿勢制御をする必要がなく、幾何学的形状が一度設定されるとその形状パラメータを使った位置姿勢制御が可能となる。この結果、制御演算をより簡素なものにすることができ、迅速かつ正確な制御が可能となる。
【0007】
ここで、仮想軸に垂直な2つの仮想平面を規定したときに、前記各推力発生器は、推力方向に延びる仮想直線が隣の推力発生器の推力方向に延びる仮想直線と前記仮想平面上で交差するように位置決めされるとともに、前記一方の仮想平面上における前記仮想直線の交点が前記仮想軸上に重心位置のある正三角形の各頂点位置となり、かつ前記他方の仮想平面上における前記仮想直線の交点が前記仮想軸上に重心位置のある正三角形の各頂点位置となるように位置決めされているのが好ましい。
【0008】
この態様では、前記両仮想平面上での仮想直線の交点が前記正三角形の各頂点位置となるように各推力発生器が位置決めされているので、前記仮想平面に平行な面内での位置姿勢制御を移動方向及び回転方向によらず種々の方向において安定して行うことができる。
【0009】
そして、前記2つの正三角形の各頂点位置となる各交点が、前記仮想軸の方向に見て正六角形以外の六角形を構成するように前記各推力発生器が位置決めされているのがより好ましい。
【0010】
この態様では、位置姿勢制御における特異点が発生しにくくなるので、浮遊体の位置及び姿勢を確実に目標値に収束させることができるようになる。
【0011】
また、前記各推力発生器の何れもが、前記仮想直線と前記仮想平面とのなす角度が同じ角度になるように設定されているのが好ましい。
【0012】
この態様では、全ての推力発生器に同じものを使用できるようになるので、位置姿勢制御の演算が複雑化するのを抑制することができる。
【0013】
さらに、前記一方の仮想平面上における正三角形の各頂点を通る仮想円の半径に対する前記他方の仮想平面上における正三角形の各頂点を通る仮想円の半径の比をRとし、前記一方の仮想平面上の仮想円の半径に対する前記両仮想平面間の間隔の比をHとしたときに、下記の式(1)
【数1】

(ただし、Rc=−0.1、Hc=0.0、a=0.045、b=0.07、c=12、d=0.25)によって描かれる楕円の内側の領域に前記R及びHが属しているのが好ましい。
【0014】
また、前記推力発生器は、前記仮想直線と前記仮想平面とのなす角度が45度に設定されていてもよい。
【0015】
この態様では、製作上のミスアライメントが生じにくいようにできるので、より正確な制御ができる。
【0016】
また、本発明は、浮遊体の位置及び姿勢を制御する位置姿勢制御方法を前提として、何れも異なる方向に推力を発生させる向きに固定される6つの推力発生器が発生させる推力を調整することによって前記浮遊体の位置及び姿勢を制御する。
【0017】
この位置姿勢制御方法において、仮想軸に垂直な2つの仮想平面を規定したときに、前記各推力発生器が、推力方向に延びる仮想直線が隣の推力発生器の推力方向に延びる仮想直線と前記仮想平面上で交差するように位置決めされるとともに、前記一方の仮想平面上における前記仮想直線の交点が前記仮想軸上に重心位置のある正三角形の各頂点位置となり、かつ前記他方の仮想平面上における前記仮想直線の交点が前記仮想軸上に重心位置のある正三角形の各頂点位置となるように位置決めされ、これら推力発生器が発生させる推力を調整することによって前記浮遊体の位置及び姿勢を制御するのが好ましい。
【0018】
そして、前記2つの正三角形の各頂点位置となる各交点が、前記仮想軸の方向に見て正六角形以外の六角形を構成するように前記各推力発生器が位置決めされているのが好ましい。
【0019】
さらに、前記各推力発生器の何れもが、前記仮想直線と前記仮想平面とのなす角度が同じ角度になるように設定されているのが好ましい。
【発明の効果】
【0020】
以上説明したように、本発明によれば、小回りの効く浮遊体の位置姿勢制御を可能にするとともに、一方向だけでなくその他の種々の方向についても同一姿勢を維持しながら移動する位置姿勢制御を可能にすることができる。
【発明を実施するための最良の形態】
【0021】
以下、本発明を実施するための最良の形態について図面を参照しながら詳細に説明する。
【0022】
図1は、本発明の一実施形態に係る位置姿勢制御装置が適用された浮遊体を示している。この浮遊体は、例えば水中で浮遊可能な潜水艇10として構成されている。ここでいう潜水艇10とは、水中で探索、調査、所定の作業等を行うべく水中で縦横無尽に動き回るためのものを意味している。
【0023】
前記潜水艇10は、機器類が搭載される本体部12を備えている。機器類を例示すると、例えば制御装置、カメラ、作業機器、電源等が挙げられる。また前記潜水艇10が有人の潜水艇の場合には、この機器類に操縦席等が含まれる構成となる。本実施形態では、本体部12は、半球状の2つ割形状を結合させた略球形に形成されている。
【0024】
前記本体部12には、フレーム体16を介して位置決めされている推力発生器14,・・,14が固定されている。推力発生器14,・・,14は、本体部12の赤道周上に外接するように締結固定されたフレーム体16に取り付けられることで本体部12に対して位置決めされている。フレーム体16は、第1のフレームであるベースフレーム18と、第2のフレームであるエンドフレーム20とを備えている。ベースフレーム18及びエンドフレーム20は、それぞれ六角形状に形成されている。そして、ベースフレーム18及びエンドフレーム20は、それぞれ平面状に形成されていて、これら2つの平面が互いに平行となるように配置されている。
【0025】
フレーム体16には、ベースフレーム18とエンドフレーム20との間に架設された連結部材23,・・,23が設けられている。連結部材23,・・,23は6つ設けられており、各連結部材23は、前記平面に対し隣の連結部材23とV字を形成するように傾いた姿勢で配置されている。このV字の頂点は、ベースフレーム18(又はエンドフレーム20)を構成する六角形の各頂点のうち1つおきに選ばれる3つの頂点位置に一致している。すなわち各連結部材23は、一端部がベースフレーム18における六角形の頂点位置で結合されるとともに、他端部がエンドフレーム20における六角形の頂点位置で結合されている。そして、1つおきに選ばれる3つの連結部材23,・・,23の一端部とベースフレーム18との結合部は、正三角形の各頂点位置となるように構成されており、同様に前記連結部材23,・・,23の他端部とエンドフレーム20との結合部は、正三角形の各頂点位置となるように構成されている。
【0026】
前記推力発生器14,・・,14は6つ設けられており(1つは不図示)、これら各推力発生器14が支持部材25を介して連結部材23にそれぞれ固定されている。そして推力発生器14,・・,14は、本体部12を取り囲むように配置されており、隣の推力発生器14,・・,14とV字を形成するように前記平面に対して傾いた姿勢で配置されている。
【0027】
各推力発生器14は、丸みを帯びた細長形状のモータ部27と、このモータ部27の先端部に設けられたプロペラ部28とを備え、このプロペラ部28をモータ部27に内蔵されたモータで駆動することによって推力を発生させる構成となっている。各推力発生器14は、発生する推力の軸が本体部12の中心及び連結部材23を含む平面内となるように取り付けられている。
【0028】
ここで、各推力発生器14,・・,14の位置関係について具体的に説明する。すなわち、図2にも示すように、推力発生器14,・・,14が発生する推力の方向に延びる仮想の直線30,・・,30を規定すると、この各仮想直線30は、その隣の推力発生器14が発生する推力の方向に延びる仮想直線30と交差している。しかもこの交点は、図3(b)に示すようにベースフレーム18を含む仮想平面(第1仮想平面)32上又はエンドフレーム20を含む仮想平面(第2仮想平面)34上に位置している。より詳細には、ある推力発生器14の仮想直線30は、一方側に隣接する推力発生器14の仮想直線30と第1仮想平面32上で交差する一方、もう一方側(反対側)に隣接する推力発生器14の仮想直線30とは第2仮想平面34上で交差している。これにより、第1仮想平面32上に3つの交点が存在し、第2仮想平面34上にも3つの交点が存在している。そして、図3(a)に示すように第1仮想平面32上の3つの交点は、仮想軸40上に重心位置のある正三角形36の各頂点となっており、第2仮想平面34上の3つの交点は、仮想軸40上に重心位置のある正三角形38の各頂点となっている。第1仮想平面32上の正三角形36の各頂点を通る仮想円を第1仮想円41と称し、第2仮想平面34上の正三角形38の各頂点を通る仮想円を第2仮想円42と称することとする。なお、両仮想平面32,34は、仮想軸40に垂直な平面であり、互いに平行である。
【0029】
潜水艇10には、図4に示すように、各推力発生器14,・・,14が発生させる推力を制御する制御部44が設けられている。制御部44は、各推力発生器14,・・,14による推力をベクトルで表したときに、そのベクトルの和で潜水艇10の移動及び姿勢を制御するものであり、その機能として推力導出部46とモータ制御部47とが含まれている。推力導出部46は、各推力発生器14,・・,14が発生すべき推力を導出する。モータ制御部47は、推力導出部46によって求められた推力を各推力発生器14,・・,14が発生させるようにモータのデューティー比を演算してモータの回転方向及び回転数を制御する。なお、制御部44は例えば本体部12内に設けられてもよく、あるいは潜水艇10が有策のものであって図外の母船に繋がれているようなときには、この母船に制御部44を設けるようにしてもよい。
【0030】
ここで、前記推力導出部46による各推力発生器14,・・,14の発生する推力の導出について説明する。潜水艇10に作用する合力FGを前記第1仮想円41の中心Oに作用する集中荷重として求めることにする。図5に示すように、第1仮想平面32上における3つの仮想直線30,・・,30の交点A,B,Cには、推力発生器14,・・,14による推力Fi(i=1〜6の自然数)が作用する。合力Fのx方向成分、y方向成分及びz方向成分をそれぞれFx、Fy及びFzとすると、
=Fx+Fy+Fz ・・・・・ (2)
なる関係式が成立し、これらFx、Fy、Fzをx方向、y方向及びz方向の単位ベクトルuix,uiy,uizを用いて、
【数2】

と表すことができる。
【0031】
次に、潜水艇10に作用する中心O回りの回転モーメントNは、各推力Fiと、中心Oに対する交点A,B,Cの位置ベクトルとの外積によって求めることができるので、
【数3】

なる関係が成立する。
【0032】
【数4】

【0033】
以上により、各推力を調整することにより中心Oにかかる合力の調整が可能であり、実際に調整する際には、下記式(6)
【数5】

により推力が求められる。ここで、Cは、推力発生器14,・・,14の形状及び配置関係に依存する行列である。
【0034】
次に、各推力発生器14,・・,14の配置関係についての好適な範囲について説明する。この好適な範囲とは、推力に外乱が加わった場合においても、種々の方向に対する位置姿勢制御がその影響を受け難くなる範囲を意味している。この好適範囲を求めるために、図6に示すスチュワートプラットフォームに基づいたモデルを採用した。そして拘束条件として、以下の条件を採用した。
1.上下両円盤54,56は互いに平行である。
2.各々の円盤中心を結ぶ軸線58は円盤54,56に対して垂直である。
3.円盤54,56と2本のリンク60,60が1つの節で接続されている。
4.円盤54,56とリンク60,・・,60との節は各円盤54,56の円周部に均等に配置されている。すなわち、120度間隔である。
5.各リンク60,・・,60の長さは同一である。
【0035】
リンク60,・・,60の方向に推力が付加されるものとし、上部円盤54の中心に(F N)を発生するために必要な各リンク60,・・,60方向の推力Fを求める。そして、求められた推力Fに対して最大で10%の誤差を与え、その結果として上部円盤54の中心に(Fc Nc)が発生するとする(図7参照)。ここで、(F N)の各方向、大きさ、付加誤差は、|F|≠0、|N|≠0となるようにランダムに生成した。そして、評価関数として式(7)
【数6】

で表現される評価値Sを求めた。この評価値Sは、目標並進力の大きさ|F|や目標回転モーメント|N|を正規化したものである。(F N)の様々な組み合わせにより評価値Sの等高線図を作成した。この等高線図を図8及び図9に示す。この図9の横軸は、下部円盤56の半径を1としたときの上部円盤54の半径Rの対数値であり、縦軸は、下部円盤56の半径を1としたときの両円盤間の間隔Hの対数値である。図8は評価値Sを三次元的に示したものである。
【0036】
評価値Sの最適値を求めるべく最急降下法を用いてR方向とH方向に交互に探索を行った。このときR、Hの対数値に対して評価値Sの2次近似式を求め、各方向での極小値を近似式により順次求める探索方法も併用した。その結果、最適値としてR=0.80、H=0.97、リンク60,・・,60と円盤とのなす角度43度が得られた。
【0037】
また、評価値Sの等高線の近似をR及びHの対数値を各軸とする対数グラフである図10に示す。図中の数字は評価値Sであり、等高線として表された評価値Sは、楕円を表す以下の式(1)
【数7】

で近似することができる。楕円の中心座標(log(Rc)、log(Hc))は、最適値R=0.80、H=0.97の対数値の近似値としての(−0.1,0.0)である。
【0038】
好適な範囲としては、評価値Sが1.0未満となる式(7)中の係数がa=0.045、b=0.07、c=12、d=0.25で表される楕円の内側が好ましく、さらに評価値Sが0.5未満となる係数がa=0.05、b=0.07、c=5.3、d=0.25で表される楕円の内側がより好ましく、さらに評価値Sが0.3未満となる係数がa=0.07、b=0.09、c=1.3、d=0.30で表される楕円の内側がより好ましく、さらに評価値Sが0.23未満となるa=0.07、b=0.09、c=0.11、d=0.35で表される楕円の内側がより好ましい。
【0039】
遡って本実施形態では、第1仮想平面32上の正三角形36が第2仮想平面34上の正三角形38よりも少し大きくなる設定となっており、前記第1仮想円41の半径を1とすると、前記第2仮想円42の半径(前記上部円盤54の半径Rに相当)は0.80となっている。また、第1仮想円41の半径を1とすると、両仮想平面32,34間の間隔(両円盤間の間隔Hに相当)は0.97となっている。そして、前記仮想直線30,・・,30が各仮想平面32,34となす傾き角度は何れも同じ角度に設定されており、その角度は43度となっている。したがって、推力に外乱が加わった場合においても、あらゆる方向に対するその影響を最も受け難い配置関係にすることができる。なお、傾き角度は45度としてもよい。この場合には第2仮想円42の半径は0.81となり、両仮想平面間の間隔は0.92となる。傾き角度を45度に設定するとフレーム体16を製作しやすくなるため、推力の誤差の影響を受け難くしつつ、ミスアライメントの影響を受け難くすることができる。また傾き角度が45度の場合でも評価値Sが0.23未満となるので、外乱の影響を受け難く各方向への位置姿勢制御を正確に行うことができる。
【0040】
以上のような構成の潜水艇10について、試作小型艇を水槽内で運動させる実験を行った。その検証結果について並進及び回転のそれぞれについて説明する。水槽は高さ500mm、幅1000mm、奥行き450mmのものであり、並進運動についてはX軸方向の並進推進力を一定として、約7秒間運動させ、そのときの移動軌跡を水槽側方からCCDカメラで連続撮影した。その結果を図11に示す。推進力を一定にしているが粘性抵抗のため早期に速度が収束し、試作小型艇はX軸方向にほぼ定速運動を行っていることが分かる。また上下動(Y軸方向の動き)は約±5mm以内に抑えられており、姿勢を維持したまま並進運動していることが分かる。
【0041】
次に、Z軸回りの回転運動を行ったときの結果の一例を図12に示す。この回転運動は、約2秒間回転させたときの結果であり、並進運動時と同様、粘性抵抗力と推力の合力との釣合いのため、回転角は直線的に増加しており、等速の回転運動をしていることがわかる。また側方及び上方からの観察により、上下動や並進運動が発生しないことが確認されている。したがって、水中での6軸方向の自由な移動と姿勢制御が可能である。
【0042】
以上説明したように、本実施形態によれば、推力発生器14,・・,14が全て異なる向きで6つ設けられることで非ホロノミックな拘束条件とならない6軸方向の位置姿勢制御が可能となる。したがって、各推力発生器14,・・,14が発生される推力を調整することにより、簡易な構造で小回りの効く位置姿勢制御を行うことができるとともに、一方向だけでなく種々の方向に対して同一姿勢を維持しながら移動する位置姿勢制御を行うことができる。また各推力発生器14,・・,14が固定されているので、パラレルメカニズムのように幾何学的形状が変化するものと異なり、形状パラメータを推定し直しながら位置姿勢制御をする必要がなく、幾何学的形状が一度設定されると常時その形状パラメータを使った位置姿勢制御が可能となる。この結果、制御演算をより簡素なものにすることができ、迅速かつ正確な制御が可能となる。
【0043】
また本実施形態では、各仮想直線30,・・,30の交点が第1仮想平面32内の正三角形36の各頂点位置又は第2仮想平面34内の正三角形38の各頂点位置となるように各推力発生器14,・・,14が位置決めされているので、前記仮想平面32,34に平行な面内での位置姿勢制御を移動方向及び回転方向によらず種々の方向において安定して行うことができる。しかも本実施形態では、前記各交点が前記仮想軸40の方向に見て正六角形以外の六角形を構成するように各推力発生器14,・・,14が位置決めされているので、位置姿勢制御における特異点が発生しにくくなり、この結果、潜水艇10の位置及び姿勢を確実に目標値に収束させることができるようになる。
【0044】
また本実施形態では、各推力発生器14,・・,14の何れもが仮想平面とのなす角度が同じになるように設定されているので、全ての推力発生器14,・・,14に同じものを使用でき、この結果、位置姿勢制御の演算が複雑化するのを抑制することができる。
【0045】
なお、本発明は、前記実施形態に限られるものではなく、特許請求の範囲に記載された発明の範囲内で適宜変更が可能である。例えば、前記実施形態では、プロペラ部28がベースフレーム18の近傍に位置するように推力発生器14,・・,14が固定されているが、プロペラ部28がエンドフレーム20とベースフレーム18の中間位置に配置されていてもよい。
【0046】
また、前記実施形態では、本体部12にフレーム体16を固定し、そのフレーム体16に推力発生器14,・・,14を取り付ける構成としたが、これに限られるものではない。例えば図13に示すように、潜水艇10の本体部12に直接推力発生器14,・・,14を設ける構成としてもよい。すなわち、本体部12は、例えば球状に形成されており、この本体部12に6つの貫通孔70,・・,70が形成されている。これら各貫通孔70内には、それぞれ推力発生器14が配設されていて、この推力発生器14が駆動することによって貫通孔70を通して水が吐き出されて、この貫通孔70の向きに推力が発生する。この貫通孔70,・・,70の向きは、前記実施形態における連結部材23,・・,23の向きと同様に構成されている。この態様では、フレーム体16を省略できるばかりでなく、流動抵抗を低減できてさらに高精度な制御が可能となる。
【0047】
また、図1に示す推力発生器14,・・,14に代え、図14に示すように、モータ部27よりもプロペラ部28の方が径の大きいものによって構成されていれば、プロペラ部28をどちらに回転させる場合であっても推力を効果的に発生させることができる。
【0048】
また前記実施形態では、浮遊体の一例として潜水艇10に構成された例について説明したが、これに限られるものではなく、浮遊体として例えば気球、飛行船、潜水艦、水中ブイ、宇宙船等として構成されていてもよい。
【図面の簡単な説明】
【0049】
【図1】本発明の実施形態に係る潜水艇の斜視図である。
【図2】仮想直線の幾何学的配置関係を説明するための概念図である。
【図3】(a)仮想軸方向に見た仮想直線、第1仮想円、第2仮想円、2つの正三角形の位置関係を説明するための説明図であり、(b)仮想軸に直交する方向に見た第1仮想平面及び第2仮想平面を説明するための説明図である。
【図4】制御部に含まれる機能を示すブロック図である。
【図5】各推力発生器が発生させる推力を導出するために使用されるベクトルを示す図である。
【図6】スチュワートプラットフォームに基づいたモデルを示す図である。
【図7】スチュワートプラットフォームに基づいたモデルを示す図である。
【図8】評価値Sの等高線図である。
【図9】評価値Sの等高線図である。
【図10】評価値Sの等高線図である。
【図11】前記潜水艇をX軸方向に移動させる制御を行ったときの結果の一例を示す特性図である。
【図12】前記潜水艇をZ軸回りに回転させる制御を行ったときの結果の一例を示す特性図である。
【図13】本発明の他の実施形態に係る潜水艇を概略的に示す斜視図である。
【図14】本発明のさらに他の実施形態に係る潜水艇に設けられる推力発生器を示す図である。
【図15】従来の深海調査艇の側面図である。
【符号の説明】
【0050】
10 潜水艇
14 推力発生器
30 仮想直線
32 第1仮想平面
34 第2仮想平面
36 正三角形
38 正三角形
40 仮想軸
41 第1仮想円
42 第2仮想円

【特許請求の範囲】
【請求項1】
浮遊体の位置及び姿勢を制御する位置姿勢制御装置であって、
それぞれ推力を発生させる6つの推力発生器と、
前記各推力発生器を制御する制御部とを備え、
前記推力発生器の何れもが、異なる方向に推力を発生させる設定とされている位置姿勢制御装置。
【請求項2】
仮想軸に垂直な2つの仮想平面を規定したときに、
前記各推力発生器は、推力方向に延びる仮想直線が隣の推力発生器の推力方向に延びる仮想直線と前記仮想平面上で交差するように位置決めされるとともに、前記一方の仮想平面上における前記仮想直線の交点が前記仮想軸上に重心位置のある正三角形の各頂点位置となり、かつ前記他方の仮想平面上における前記仮想直線の交点が前記仮想軸上に重心位置のある正三角形の各頂点位置となるように位置決めされている請求項1に記載の位置姿勢制御装置。
【請求項3】
前記2つの正三角形の各頂点位置となる各交点が、前記仮想軸の方向に見て正六角形以外の六角形を構成するように前記各推力発生器が位置決めされている請求項2に記載の位置姿勢制御装置。
【請求項4】
前記各推力発生器の何れもが、前記仮想直線と前記仮想平面とのなす角度が同じ角度になるように設定されている請求項2又は3に記載の位置姿勢制御装置。
【請求項5】
前記一方の仮想平面上における正三角形の各頂点を通る仮想円の半径に対する前記他方の仮想平面上における正三角形の各頂点を通る仮想円の半径の比をRとし、前記一方の仮想平面上の仮想円の半径に対する前記両仮想平面間の間隔の比をHとしたときに、下記の式(1)
【数1】

(ただし、Rc=−0.1、Hc=0.0、a=0.045、b=0.07、c=12、d=0.25)によって描かれる楕円の内側の領域に前記R及びHが属している請求項2又は3に記載の位置姿勢制御装置。
【請求項6】
前記推力発生器は、前記仮想直線と前記仮想平面とのなす角度が45度に設定されている請求項5に記載の位置姿勢制御装置。
【請求項7】
浮遊体の位置及び姿勢を制御する位置姿勢制御方法であって、
何れも異なる方向に推力を発生させる向きに固定される6つの推力発生器が発生させる推力を調整することによって前記浮遊体の位置及び姿勢を制御する位置姿勢制御方法。
【請求項8】
仮想軸に垂直な2つの仮想平面を規定したときに、
前記各推力発生器が、推力方向に延びる仮想直線が隣の推力発生器の推力方向に延びる仮想直線と前記仮想平面上で交差するように位置決めされるとともに、前記一方の仮想平面上における前記仮想直線の交点が前記仮想軸上に重心位置のある正三角形の各頂点位置となり、かつ前記他方の仮想平面上における前記仮想直線の交点が前記仮想軸上に重心位置のある正三角形の各頂点位置となるように位置決めされ、これら推力発生器が発生させる推力を調整することによって前記浮遊体の位置及び姿勢を制御する請求項7に記載の位置姿勢制御方法。
【請求項9】
前記2つの正三角形の各頂点位置となる各交点が、前記仮想軸の方向に見て正六角形以外の六角形を構成するように前記各推力発生器が位置決めされている請求項8に記載の位置姿勢制御方法。
【請求項10】
前記各推力発生器の何れもが、前記仮想直線と前記仮想平面とのなす角度が同じ角度になるように設定されている請求項8又は9に記載の位置姿勢制御方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate


【公開番号】特開2007−118702(P2007−118702A)
【公開日】平成19年5月17日(2007.5.17)
【国際特許分類】
【出願番号】特願2005−311686(P2005−311686)
【出願日】平成17年10月26日(2005.10.26)
【新規性喪失の例外の表示】特許法第30条第1項適用申請有り 2005年(平成17年)6月9日 社団法人日本機械学会発行の「ロボティクス・メカトロニクス講演会2005 講演論文集」に発表
【出願人】(399030060)学校法人 関西大学 (208)