説明

光ノード、光ネットワークシステムおよび偏波モード分散測定方法

【課題】運用中の光信号に影響を与えず、かつ低コストで簡単に区間毎のPMD特性を測定できること。
【解決手段】光ノード100は、伝送路101上に複数配置される。各光ノード100には、偏波モード分散値を測定するための測定信号を生成し、伝送路101上に送信する信号生成部120と、伝送路101から測定信号を検出し、測定信号に対する信号処理を施して信号生成部120との間の区間の偏波モード分散値を測定するモニタ部121とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、光ファイバの伝送路に生じる偏波モード分散を測定する光ノード、光ネットワークシステムおよび偏波モード分散測定方法に関する。
【背景技術】
【0002】
光ネットワークシステムは、伝送路上に複数の光ノードである挿入部と分岐部、および増幅部が設けられ、WDM光を伝送することにより大容量、長距離化が図られている。このようなWDM光伝送システムでは、光ファイバ内を伝播する光信号の2つの偏波モードにおける伝送速度の違いから生じる偏波モード分散(PMD:Polarization Mode Dispersion)が伝送特性に影響を与える。このPMD特性は、1波長あたりの伝送速度が上がる程に影響が大きく現れ、40Gbps、100Gbpsといった超高速伝送システムにおいては、伝送特性の劣化要因として大きな割合を占め、無視できない。PMD特性は、伝送路として敷設された光ファイバの性能に依存し、特に、敷設された時期の古い光ファイバの中にはPMD特性が非常に悪い光ファイバが含まれていることもあり、伝送特性に致命的な影響を及ぼすこともある。
【0003】
また、PMD特性は、外部環境温度や、外圧による光ファイバのたわみ、光ファイバへの衝撃などによってランダムに変化する。変化の程度も外気温度を要因として1年をかけてゆっくりと変化するものから、衝撃の要因により数10kHzの速度差が急激に生じるものもある。このような変動については、伝送路上のどのような場所でどの程度変動が起きているか容易に把握することができない。このように、PMD特性は、超高速、長距離化された光伝送システムの伝送特性、特に、特性劣化があると機器コストの上昇を招き、運用後の保守、管理費用を増大させる。そのため、光伝送システムにおけるPMDの測定とその管理が重要であり要望されている。
【0004】
PMDの測定については、光ファイバーグレーティングなどの光アナログ部品を使用した測定器が一般的に市販されており、その方法も多岐に渡っている(例えば、下記特許文献1参照。)。また、近年、伝送路で発生するPMDを受信器においてデジタル信号処理により補償する技術の研究、開発が進められており、その補償アルゴリズムの過程で得られるフィルタ係数を使用して送信端から受信端までのPMDの瞬時値(DGD:Differential Group Delay)を算出する方法が提案されている(例えば、下記非特許文献1参照。)。これらの方法により、光ファイバのPMDを測定することができる。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2008−209188号公報
【非特許文献】
【0006】
【非特許文献1】F.N.Hauske 「Optical Performace Monitoring from FIR Filter Coefficients In Coherent Receivers」 OFC 2008、OThW2
【発明の概要】
【発明が解決しようとする課題】
【0007】
上述した従来の測定器や、受信器におけるデジタル信号処理を用いたPMD測定では、実際にネットワークの保守、運用時に以下のような問題が生じた。測定器を用いた方法では、運用中の信号に影響を及ぼすことなく、PMD測定を行うことが困難である。また、光ファイバの敷設後から実運用前の限られた時間での測定となるため、運用中における長時間の変動を確認することができない。このように、限られた短い時間だけでPMDを測定するため、環境変動を含めた外部要因に対応できず、ネットワークの状況を把握するための十分な情報として用いることができない。加えて、機器コストが高く、保守運用費用が高価になる。
【0008】
また、受信器におけるデジタル信号処理方法では、送信端から受信端までの経路を総合したPMD測定となる。図18は、従来の受信器を用いたPMD測定の構成を示すネットワーク構成図である。伝送路2000上には、中継器やOADM等の光ノード2001が配置される。複数の送信器2010から出力される光信号は、WDMの各波長毎に複数の信号パスを有して伝送され、複数のうち対応する波長の受信器2020で受信される。この図18に示した例では、送信器2010aから送信された所定波長の光信号が受信器2020aで受信される信号パスa1と、送信器2010bから送信された所定波長の光信号が受信器2020bで受信される信号パスa2と、送信器2010aから送信された所定波長の光信号が受信器2020bで受信される信号パスa3については、それぞれ受信器2020a、2020bにおいてPMDを測定することができる。
【0009】
しかし、信号パスa1,a2,a3は、いずれも複数の光ノード2001を介したPMD測定となり、各光ノード2001間の各スパン(伝送路区)a11,a12,a13,a14,a15単位でのPMD測定は不可能である。この点、伝送路区単位でPMD測定できないと、PMD特性の悪い伝送路区を特定できない。また、信号光そのものを使用しての測定となるため、信号光が存在しない波長におけるPMD特性は測定できない。さらに、受信器2020のデジタル信号処理では、PMDの瞬時値(DGD)しか測定できず、長時間のPMD特性(meanPMD)は測定できない。これにより、光ファイバのPMD特性を正確に得ることができなかった。
【0010】
上記の従来技術によるPMD測定では、具体的には以下のような不都合が生じ、結果として管理、運用コストを大幅に増大させていた。
1.PMD特性の悪い伝送路区を特定できず、特定するには運用中の光信号を遮断して測定する等の手間がかかった。また、信号疎通前のPMD特性の正確な把握ができず、信号疎通後にルート切り替えなどの対処が必要になる。
2.信号パスの経路を冗長切り替えする際、切り替え先のPMD特性の把握ができないため、切り替え後にエラーを起こす恐れがある。
3.温度環境変化など、時間経過に対して緩やかなPMD特性の変動が運用前に把握しきれないため、運用後の温度環境変化によりエラーを起こす可能性がある。
【0011】
開示の技術は、運用中の光信号に影響を与えず、かつ低コストで簡単に区間毎のPMD特性を測定できることを目的とする。
【課題を解決するための手段】
【0012】
上述した課題を解決し、目的を達成するため、開示技術は、光ファイバを用いた伝送路上に配置される光ノードにおいて、偏波モード分散値を測定するための第1の測定信号を生成し、前記伝送路上に送信する第1の信号生成部と、前記伝送路から第2の測定信号を検出し、当該第2の測定信号に対する信号処理を施して偏波モード分散値を測定するモニタ部と、を備えたことを要件とする。
【発明の効果】
【0013】
開示の光ノード、光ネットワークシステムおよび偏波モード分散測定方法によれば、運用中の光信号に影響を与えず、かつ低コストで簡単に区間毎のPMD特性を測定できるという効果を奏する。
【図面の簡単な説明】
【0014】
【図1】実施の形態にかかる光ノードを備えた光ネットワークシステムの構成を示すブロック図である。
【図2】信号生成部の内部構成を示すブロック図である。
【図3】モニタ部の内部構成を示すブロック図である。
【図4】モニタ部の他の内部構成を示すブロック図である。
【図5】デジタル信号処理部の内部構成を示すブロック図である。
【図6】ネットワークマネジメントシステムが行う制御内容の一例を示す図である。
【図7】主信号帯域外の波長を用いてDGDを測定する構成を表すブロック図である。
【図8】DGD測定の信号生成部の構成を示すブロック図である。
【図9】DGD測定の信号生成部の他の構成を示すブロック図である。
【図10】DGD測定のモニタ部の構成を示すブロック図である。
【図11】DGD測定のモニタ部の他の構成を示すブロック図である。
【図12】DGD測定のモニタ部の他の構成を示すブロック図である。
【図13】DGD測定のシステム全体の構成例を示すブロック図である。
【図14】システム構成例1における区間毎のDGD値の取得処理の流れを示す図である。
【図15】DGD測定のシステム全体の他の構成例を示すブロック図である。
【図16】DGD測定のシステム全体の他の構成例を示すブロック図である。
【図17】DGD測定のシステム全体の他の構成例を示すブロック図である。
【図18】従来の受信器を用いたPMD測定の構成を示すネットワーク構成図である。
【発明を実施するための形態】
【0015】
以下に添付図面を参照して、開示技術の好適な実施の形態を詳細に説明する。開示技術は、例えば、各光ノードにPMD特性を測定する測定信号の信号生成部とモニタ部を設け、一区間毎のPMD特性(DGD値)を測定可能とする。信号生成部は、最低一つの光ノードに設けて、モニタ部の信号処理により区間毎のPMD特性を測定する構成にもできる。測定信号は主信号あるいは主信号帯域内のうち使用していない波長の信号光、あるいは主信号帯域外の信号光を用いる。また、ネットワークマネジメントシステム等が各光ノードからPMD特性を収集することにより、一定期間におけるPMD特性の変化(meanPMD値)を算出し、ネットワークの管理および信号パスの経路制御を行う。
【0016】
(実施の形態1:ネットワークシステム全体の基本構成)
(光ノードの構成)
図1は、実施の形態にかかる光ノードを備えた光ネットワークシステムの構成を示すブロック図である。この光ネットワークシステム100は、伝送路101上に複数の光ノードが設けられ、伝送路101の始端には送信部102が設けられ、伝送路101の終端には受信部103が設けられる。送信部102は、運用に用いる複数の波長の光信号(主信号)を送信する送信器112を備え、受信部103は主信号の各波長を受信する受信器113を備える。伝送路101の途中の光ノード110としては、図示のような光増幅器125を有する中継部110aや、OADM118等を備えた分岐挿入部110b等がある。分岐挿入部110bにも光信号を挿入する送信器112と、分岐された光信号を受信する受信器113が配置され、伝送路101上の光信号のパスに応じた波長選択を行う。送信部102、中継部110a、受信部103は光増幅器125を備える。
【0017】
また、送信部102と各光ノード110には、信号生成部120が設けられ、各光ノード110と受信部103には、モニタ部121が設けられる。伝送路101上には、信号生成部120で生成された測定信号を主信号に合波する合波器203と、主信号からモニタ部121に測定信号を分波させる分波器301が設けられる。送信部102に設けられる信号生成部120は、ある送信器112の機能を用いて送信器112と同列に設け、多重化部(MUX)115を介して合波出力する構成としても良い。受信部103においても同様に、多重化分離部(DEMUX)116の後段の受信器113の機能を用いてモニタ部121を構成できる。測定信号に用いるデータは、予め定めた所定のパターンや、ランダムパターンを用いる他、不定データでも良く、データ内容は問わないが信号生成部120とモニタ部121の変復調方式が同じであればよい。
【0018】
上記構成により、伝送路101で見て前段の光ノード110の信号生成部120で生成された測定信号は、後段のモニタ部121によりデジタル信号処理され、PMD特性の瞬時値(DGD値)を求めることができる。このDGD値は、ネットワークマネジメントシステム(NMS)130に送信される。信号生成部120は、DGD値測定用の専用の信号(運用帯域と異なる帯域の信号、例えば後述するOSC等)を使用しても良いし、運用帯域に含まれる波長の信号を使用することもできる。
【0019】
図2は、信号生成部の内部構成を示すブロック図である。信号生成部120は、区間毎のDGD値を算出するための測定信号を生成する。この信号生成部120は、上記の送信部102と、中継部110a、分岐挿入部110bに設けられる。信号生成部120は、光源201より出力された光が変調部202により変調され、伝送路101の光ファイバへの出力部で合波器203により合波されて下流に送信される。合波器203としては、光合波フィルタまたは光カプラが用いられ、測定信号は伝送路101上の主信号と合波される。合波器203としていずれを使用するか、および光源201の波長については、DGD値の測定方法により異なる。変調部202の変調速度は、必ずしも伝送路101上の主信号と同等である必要はない。
【0020】
図3は、モニタ部の内部構成を示すブロック図である。モニタ部121は、信号生成部120から送信された測定信号に基づき、区間毎のDGD値を算出する。このモニタ部121は、中継部110a、分岐挿入部110bと、受信部103に設けられる。伝送路101上に設けた分波器301は、光フィルタまたは光カプラにより構成され、測定信号を分波してモニタ部121に供給する。この測定信号は、偏波分離器(PBS)302により互いに直交するX成分とY成分に分離され、各成分がそれぞれ検出器(PD)303で光電変換された後に、アナログ・デジタル変換器(ADC)304でデジタル変換され、デジタル信号処理部305に出力される。制御部306は、デジタル信号処理部305からFIRフィルタの係数(Tap係数)が入力され、DGDを算出する演算を行い、得られたDGD値を図示しない格納部に格納する(DGD算出の演算内容は後述する)。
【0021】
図4は、モニタ部の他の内部構成を示すブロック図である。図示の構成は、4QAMのDP−QPSK(Dual Polarization Quadrature Phase Shift Keying)の信号光のコヒーレント受信が可能で信号生成部120から送信された測定信号に基づき、区間毎のDGD値を算出する構成となっている。このモニタ部121は、中継部110a、分岐挿入部110bと、受信部103に設けられる。伝送路101上に設けた分波器301は、光フィルタまたは光カプラにより構成され、測定信号を分波してモニタ部121に供給する。
【0022】
モニタ部121は、図3と同様のPBS302と、PD303と、ADC304と、デジタル信号処理部305と、制御部306とを備えている。図4の構成では、さらに、DP−QPSKの受信に対応して局発光源401と、光分岐部(BS)402と、光ハイブリッド回路403とが設けられている。分波器301により分波されたDGD測定用の測定信号は、PBS302により互いに直交するX成分、Y成分に分波され、光ハイブリッド回路403に出力される。直交する2つの偏波(X軸およびY軸)のそれぞれにI(同相成分)とQ(直交成分)の各信号が含まれている。
【0023】
局発光源401は、測定信号と同じ波長の光信号を出力し、BS402により互いに直交するX、Y成分に分岐され光ハイブリッド回路403に出力する。光ハイブリッド回路403は、X,Y成分それぞれに独立した構成を有し、X成分側では、測定信号と局発光源の光信号とをミキシング(検波)し、位相成分XIとXQの成分を出力する。Y成分側では、位相成分YIとYQの成分を出力する。これら光ハイブリッド回路403の4出力は、それぞれPD303で光電変換された後に、アナログ・デジタル変換器(ADC)304でデジタル変換され、デジタル信号処理部305に送られる。
【0024】
図5は、デジタル信号処理部の内部構成を示すブロック図である。デジタル信号処理部305に入力されたX成分、Y成分それぞれのデジタル信号(DP−QPSKの場合はI成分、Q成分にさらに分かれる)は、クロックリカバリ(CR:Crock Recovery)部501でタイミング再生され、イコライザ部502に入力される。イコライザ部502ではX成分、Y成分それぞれの信号を2つに分岐し、計4つのFIRフィルタ502aを通過させる。
【0025】
制御部306は、このFIRフィルタ502aの係数(Tap係数)を用いてDGD値を計算により求める。例えば、制御部306は、周期的(例えば1秒毎に)にデジタル信号処理部305のブロックコントロール部503に対してトリガ(データ受信トリガ)S1を出力する。ブロックコントロール部503は、デジタル信号処理部305の各機能ブロック間の制御を行う。そして、ブロックコントロール部503は、データ受信トリガS1の受信タイミングで各FIRフィルタ502aのTap係数をラッチし、ラッチしたTap係数を制御部306に出力する。制御部306では、DGD計算部306aによりTap係数からDGD値を算出し、記憶部であるRAM306bに格納していく。
【0026】
RAM306bに格納されたDGD値は、監視制御装置550の要求に応じて監視制御装置550に送信する。監視制御装置550の監視制御部551は、上記各光ノード110に設けられるCPU等の処理手段からなる。この監視制御部551は、受信したDGD値の履歴を記憶する記憶部を有している(図示略)。これにより、監視制御部551は、記憶部に記憶されたDGD値の履歴により、所定期間におけるDGD値の変動を得ることができ、meanPMD値を算出する。また、監視制御信号送信部552を介してこれらDGD値、meanPMD値等をネットワークマネジメントシステム(NMS)に送信可能である。例えば、監視制御信号送信部552は、DGD値を監視制御信号(OSC)に載せてNMSに送信する。
【0027】
(NMSの構成および処理内容)
図6は、ネットワークマネジメントシステムが行う制御内容の一例を示す図である。ネットワークマネジメントシステム(NMS)130は、複数の光ノード(N1〜Nn)からDGD値を収集する。そして、各光ノードから収集したDGD値によりmeanPMD値の算出を行う。DGD値は、Maxwell確率分布に従って分散することが知られており、NMS130は、各光ノードから収集したDGD値の分布によってmeanPMD値を算出する(ステップS601)。また、meanPMD値により区間毎のmeanPMD値を算出することもでき(ステップS602)、PMD特性の悪い区間の割り出しを行う(ステップS603)。さらに、各光ノードから収集したDGD値を監視し(ステップS610)、大きな変動箇所の割り出しを行う(ステップS611)。
【0028】
NMS130は、上記の演算結果に基づいて、ネットワーク運用の管理を行う。NMS130の基本機能としては、各波長毎の光信号のルーティングを監視し、光通信の異常時に冗長系へ経路切り替えを行う。そして、上記構成によれば、各光ノードからDGD値を取得できるため、より詳細なネットワーク管理が行える。何例か挙げると、新たに所定波長の送信器112を増設したとき(波長増設時)、PMD特性あるいはDGD値の悪い区間を回避するルーティングを行う(ステップS621)。また、ネットワーク設計時のPMDの実データとして設計装置にデータをフィードバックする(ステップS622)。また、信号劣化が激しく、エラーや信号断が予想される経路を回避するためにのリルーティングを行う(ステップS623)。さらには、PMD特性あるいはDGD値の悪い区間について信号劣化アラームを発生し、保守者に注意を促す(ステップS624)、等の監視、管理を行う。
【0029】
また、NMS130は、タイマにより時間、日、月を計時し、これらの単位でDGD値の平均値を演算により求め、図示しない記憶部に記憶する。そして、記憶部に記憶したDGD値の平均値の分布によりmeanPMD値を求める。これにより、温度環境や経年劣化により、PMD特性が悪化した、危険な区間を通知してルート作成やリルーティング時に回避することが可能になる。
【0030】
(実施の形態2:主信号を用いないDGD測定例)
図7は、主信号帯域外の波長を用いてDGDを測定する構成を表すブロック図である。この場合、主信号帯域外の波長を用いてDGDを測定する。例えば、この主信号帯域外の波長として監視制御光(OSC)を用いる場合は、光源201が監視制御光の波長の光信号を出力し、合波器203は伝送路101上の主信号に監視制御光を合波し、分波器301は主信号から監視制御光を分波する。これにより、測定用に専用の信号を使用することなく、監視制御光を用いてDGD値を得ることができる。図7に記載の構成は、主信号の運用、非運用に関係なく、主信号の運用波長がない場合でもDGDの測定を行うことができる。例えば、主信号の信号疎通前に監視制御光のみを光ノード間で使用してもDGDを測定できる。
【0031】
(実施の形態3:主信号帯域の信号を用いたDGD測定)
(DGD測定の信号生成部の構成例1)
図8は、DGD測定の信号生成部の構成を示すブロック図である。主信号帯域内の専用信号を用いる場合の信号生成部120の構成について説明する。この構成では、光源として波長可変光源801を用いる。対応して、合波器203としては、波長の指向性を持たない光カプラを使用する。この構成によれば、NMS130から波長制御信号を出力し、波長可変光源801の出力波長を可変制御することにより、主信号帯域内の全ての波長に対してDGD値の測定が行えるようになる。
【0032】
(DGD測定の信号生成部の構成例2)
図9は、DGD測定の信号生成部の他の構成を示すブロック図である。この構成では、送信部102または分岐挿入部110bに配置する送信器112と並列に信号生成部120を配置する。送信部102の筐体のスロットに送信器112を並列して挿入するが、このスロットの一部に信号生成部120を挿入する。この信号生成部120は、並列に配置されている送信器112と同一のものを用いることができる。そして、光源としては波長可変光源801を用い、NMS130からの波長制御信号で出力波長を変更する。この構成の場合、光信号の多重化部115としては光カプラまたは波長選択スイッチを使用する。波長選択スイッチを使用する場合は、NMS130の制御により出力される波長制御信号に基づき、多重化部115と波長可変光源801を同期させ、信号生成部120の出力波長が波長選択スイッチから出力されるように制御する。
【0033】
(DGD測定のモニタ部の構成例1)
図10は、DGD測定のモニタ部の構成を示すブロック図である。この構成では、波長多重化された主信号から、信号生成部が生成した光信号を抽出してDGDモニタを行うモニタ部121の構成について説明する。この構成では、主信号から分波器301を用いて光信号を抽出し、波長選択部1001に出力する。波長選択部1001としては、波長可変フィルタまたは波長選択スイッチを用い、DGD測定の光信号の波長を取り出す。このような構成の場合、分波器301としては中継部110a,分岐挿入部110b、あるいは受信部103に予め設けられているモニタポートを使用しても良い。なお、中継部110aでは、図示のように、波長分散を補償する分散補償ファイバ1002が配置されるが、分波器301の後段に分散補償ファイバ1002を配置した場合、この中継部110aのモニタ部121では、分散補償ファイバ1002によるDGD値に対する影響については関与しない。
【0034】
波長選択部1001として用いる波長可変フィルタまたは波長選択スイッチは、DGD測定を行う波長に合わせて、NMS130から出力される波長制御信号により可変制御される。また、モニタ部121については、信号生成部120側で上述した局発光源401を使用する構成の場合(図4参照)には、局発光源401の波長についてもDGD測定を行う波長に同期させて可変制御する。一方、局発光源401を使用する場合において、所望の波長以外の入力光の影響が無視できる場合は、波長選択部1001を省き、波長選択を行わなくても良い。この構成によれば、主信号に影響することなく、また主信号のない区間においても偏波モード分散値をモニタできるようになる。
【0035】
(DGD測定のモニタ部の構成例2)
図11は、DGD測定のモニタ部の他の構成を示すブロック図である。図10との構成の違いは、分波器301による主信号の抽出位置である。図11に示すように、分散補償ファイバ1002の後段に分波器301を配置した場合には、伝送路101だけでなく、分散補償ファイバ1002によるDGDの影響も含めたDGD値を測定できる。
【0036】
(DGD測定のモニタ部の構成例3)
図12は、DGD測定のモニタ部の他の構成を示すブロック図である。この構成では、分岐挿入部110b、または受信部103に配置する受信器113と並列にモニタ部121を配置する。このモニタ部121は、並列に配置されている受信器113と同一のものを用いることができる。そして、NMS130からの波長制御信号により、波長選択スイッチ116やモニタ部121の局発光源は、選択波長をDGD測定の波長に合わせる制御を行う。
【0037】
(DGD測定のシステム構成例1)
図13は、DGD測定のシステム全体の構成例を示すブロック図である。図8記載の信号生成部120と、図10あるいは図11に記載のモニタ部121の構成を用い、区間毎のDGD値を測定する。このような構成によれば、信号生成部120の変調部202で用いる変調信号は、DGD測定が行えれば良いため、変調速度の低いものや光出力の小さいもの、線幅の広いものなどで良く、信号生成部120を安価に構成できる。
【0038】
そして、この構成では、それぞれの光ノード(N1〜N4)に配された信号生成部120とモニタ部121を使用して、主信号帯域における特定の区間L1,L2,L3のDGD値を個別に測定することができる。例えば、光ノードN1の送信部102に設けた信号生成部120から出力した測定信号は、光ノードN1内の光増幅器125を介し、光ノードN2を通過し、光ノードN3、N4まで至る。この場合、光ノードN2のモニタ部121で区間L1のDGD値を測定できる。また、光ノードN2の信号生成部120からの測定信号により、光ノードN3のモニタ部121で区間L2のDGD値を測定できる。同様に、光ノードN3の信号生成部120からの測定信号により、光ノードN4のモニタ部121で区間L3のDGD値を測定できる。
【0039】
図14は、システム構成例1における区間毎のDGD値の取得処理の流れを示す図である。運用中、光ノードN1〜光ノードN4は、それぞれ運用波長情報をNMS130に送付し(ステップS1401〜ステップS1404)、NMS130は、ネットワーク内の運用波長情報を各光ノードN1〜N4から取得する(ステップS1405)。この後、DGD値の取得時には、伝送区間毎に取得指示を出す。
【0040】
まず、区間L1のDGD取得指示を出す(ステップS1406)。この取得指示により、区間L1における信号生成部120が設けられた光ノードN1(102)は、信号生成部120で運用波長以外の全ての波長をスイープ(可変走査)した測定信号を出力する(ステップS1407)。一方、区間L1における測定信号を測定するモニタ部121が設けられた光ノードN2(110a)では、モニタ部121で運用波長を含めた全ての波長のDGD値を測定する(ステップS1408)。この後、NMS130は、区間L1の信号生成部120の出力をOFFに設定し(ステップS1409)、対応して光ノードN1(102)の信号生成部120は出力をOFFにする(ステップS1410)。以上により、区間L1のDGD値を測定することができる。以降、区間L2、L3についても区間L1と同様の処理によりそれぞれのDGD値を測定することができる。
【0041】
上記構成のように、NMS130の制御により、区間L1の測定を行った後は、光ノードN1(102)に設けられた信号生成部120の光信号出力を遮断する。これにより、区間L1の測定が区間L2の測定に影響を及ぼさない。このような構成を用いることにより、運用開始前の伝送区間や、未使用の信号波長において、信号の存在する全領域に渡って、波長可変フィルタまたはLDの波長をスイープすることにより、簡易に、かつ安価にDGD測定を行うことが可能となる。
【0042】
(DGD測定のシステム構成例2)
図15は、DGD測定のシステム全体の他の構成例を示すブロック図である。伝送路101のみでなく、光ノード内の光部品のDGDも含んだ測定を行う構成である。図15に示すように、伝送路101の始端の光ノードN1である送信部102にだけ信号生成部120を配置する構成となっている。これにより、伝送路101上の他の光ノードN2,N3,N4に信号生成部120を配置する必要がない。この構成によれば、送信部102から各光ノードN2〜N4まで総合したDGD値をモニタすることができ、それぞれのモニタ部121のDGD値がNMS130に送信される。
【0043】
そして、各区間毎のmeanPMDを得るには、NMS130は、各光ノードN2〜N4のモニタ部121でモニタしたDGD値の情報から、各区間でのmeanPMD値を得て、その情報に基づき区間毎のmeanPMD値を算出すれば良い。例えば、光ノードN2から得られる区間L1のDGD値(DGD_N1)、光ノードN3から得られる区間L1,L2のDGD値(DGD_N2)の分布に基づいて、それぞれのmeanPMD値(meanPMD_L1と、meanPMD_L1,L2)を求めた後、
meanPMD_L2=√{(meanPMD_L1,L2)2−(meanPMD_L1)2}の算出式を用いた算出により、区間L2のmeanPMD値を求めることができる。
【0044】
(DGD測定のシステム構成例3)
図16は、DGD測定のシステム全体の他の構成例を示すブロック図である。この構成例では、信号生成部120として図9に記載の構成を用い、モニタ部121として図10、あるいは図11に記載の構成を用いている。信号生成部120の変調信号はDGD測定用であるため、速度の低いものや光出力の小さいもの、線幅の広いものなどでも良く、信号生成部120を安価に構成できる。
【0045】
そして、この構成では、送信部102、または分岐挿入部110bにおいて送信器112と並列に配置した信号生成部120を用いる。信号生成部120は、送信部102で運用中以外の波長を選択して測定信号の波長として用いる。モニタ部121では、波長選択部1001によりDGD測定を行う測定信号の波長のみを選択してモニタする。例えば、運用前のシステムにおいては、送信部102、または分岐挿入部110bで測定信号の波長を全帯域に渡ってスイープする。これにより、ネットワークで運用する全波長のDGD値を得ることができる。各光ノードN2〜N4のモニタ部121で得られたモニタ値は、それぞれ構成例2の説明と同様の手法で求めることができる。
【0046】
(DGD測定のシステム構成例4)
図17は、DGD測定のシステム全体の他の構成例を示すブロック図である。この構成例では、送信部102、分岐挿入部110bの運用中の波長をそのまま使用し、モニタ部121として図10、あるいは図11に記載の構成を用いて、区間毎のDGD値を測定する。この構成の場合は、運用中の波長のDGD値を区間L1〜L3毎にモニタすることができる。この際、モニタ部121では、DGD値を測定する波長に合わせて、波長選択部1001のフィルタや、局発光源401の波長を制御する。得られたDGD値は、NMS130に送信され、上記同様に各区間毎のDGD値として得ることができる。
【0047】
上記のシステム構成例では、いずれも各光ノードがNMS130にDGD値を送信し、NMS130により区間毎のDGD値やmeanPMD値を求める構成とした。また、NMS130により各光ノードが集中監視制御される構成とした。しかし、NMS130が集中して監視およびDGD値等の算出を行うに限らず、特定の光ノード、例えば終端の光ノードN4が前方の各光ノードを監視制御し、DGD値等の算出を行う構成にもできる。
【0048】
また、上記のシステムのネットワークは始端および終端を有する縦列(直線状)のネットワーク構成を例に説明したが、開示の技術は、ネットワーク上での信号パスで見て前方の光ノードに信号生成部を配置し、後方の光ノードにモニタ部を配置する構成とすれば良く、リング型ネットワーク等の構成のネットワークであっても同様に上記区間毎のDGD値の測定等を行うことができる。
【0049】
以上説明したように、開示技術によれば、光ノードに配置した信号生成部とモニタ部により、光ノードの区間毎のPMD特性(DGD値)の測定が行え、特に、運用中の主信号に対して影響を及ぼすことなく、DGDの測定が行えるようになる。また、長期に渡ったmeanPMDの管理が行える。これらにより、ネットワーク設計や送信部の波長増設時等にPMD特性の良否に応じたルート(信号パス)を選択できるようになる。上述した実施の形態に関し、さらに以下の付記を開示する。
【0050】
(付記1)光ファイバを用いた伝送路上に配置される光ノードにおいて、
偏波モード分散値を測定するための第1の測定信号を生成し、前記伝送路上に送信する第1の信号生成部と、
前記伝送路から第2の測定信号を検出し、当該第2の測定信号に対する信号処理を施して偏波モード分散値を測定するモニタ部と、
を備えたことを特徴とする光ノード。
【0051】
(付記2)前記第1の信号生成部が配置された光ノードは、
前記第1の信号生成部が生成した測定信号を前記伝送路上の主信号に合波する合波部を有することを特徴とする付記1に記載の光ノード。
【0052】
(付記3)前記モニタ部が配置された光ノードは、
前記伝送路上から前記第2の測定信号を取り出し、前記モニタ部に出力する分波部を備えたことを特徴とする付記1に記載の光ノード。
【0053】
(付記4)前記第1の信号生成部が生成する前記第1の測定信号は、主信号を監視制御するための監視制御信号の波長を用いることを特徴とする付記1〜3のいずれか一つに記載の光ノード。
【0054】
(付記5)前記第1の信号生成部が生成する前記第1の測定信号は、主信号の波長帯域内の運用中以外の波長を用いることを特徴とする付記1〜3のいずれか一つに記載の光ノード。
【0055】
(付記6)前記モニタ部は、
前記第2の測定信号の偏波成分を互いに直交する水平成分と垂直成分に分離する分離部と、
前記分離部により分離された水平成分と垂直成分の光信号を電気信号に光電変換する光検出部と、
前記光検出部のアナログ検出値をデジタル変換する変換部と、
前記変換部により変換されたデジタル検出値をデジタル信号処理することにより、前記偏波モード分散値の算出に用いる係数を算出する信号処理部と、
前記信号処理部が出力する係数に基づき、偏波モード分散値を算出する制御部と、
を備えたことを特徴とする付記1〜5のいずれか一つに記載の光ノード。
【0056】
(付記7)前記モニタ部は、デジタルコヒーレント光をモニタするものであり、
前記第2の測定信号の偏波成分を互いに直交する水平成分と垂直成分に分離する分離部と、
前記第2の測定信号と同じ波長の光信号を出力する局発光源と、
前記第2の測定信号と、前記局発光源の光信号とをミキシングし、位相成分を取り出すミキシング部と、
前記ミキシング部により得られた前記水平成分の位相成分および前記垂直成分の位相成分をそれぞれ電気信号に光電変換する光検出部と、
前記光検出部のアナログ検出値をデジタル変換する変換部と、
前記変換部により変換されたデジタル検出値をデジタル信号処理することにより、前記偏波モード分散値の算出に用いる係数を算出する信号処理部と、
前記信号処理部が出力する係数に基づき、偏波モード分散値を算出する制御部と、
を備えたことを特徴とする付記1〜5のいずれか一つに記載の光ノード。
【0057】
(付記8)前記信号処理部は、
前記第2の測定信号をタイミング再生するクロックリカバリ部と、
前記クロックリカバリ部を通過後の前記第2の測定信号の各位相成分が入力され、周期的にFIRフィルタの係数を出力するイコライザ部と、を備えたことを特徴とする付記6または7に記載の光ノード。
【0058】
(付記9)前記制御部は、
前記信号処理部に対して、偏波モード分散値を得るためのトリガを周期的に送信し、
前記トリガの送信に基づき、前記信号処理部から出力された前記係数を記憶する記憶部と、
前記記憶部に記憶された前記係数に基づき前記偏波モード分散値を計算する計算部と、
を備えることを特徴とする付記8に記載の光ノード。
【0059】
(付記10)前記制御部は、
前記偏波モード分散値の履歴を記憶する記憶部を備え、
時間経過に伴う偏波モード分散値の変動を求めることを特徴とする付記9に記載の光ノード。
【0060】
(付記11)前記制御部は、
前記偏波モード分散値を、ネットワークマネジメントシステムに送信することを特徴とする付記8〜10のいずれか一つに記載の光ノード。
【0061】
(付記12)前記モニタ部の前段には、
前記第2の信号生成部により生成された前記第2の測定信号の波長を選択的に取り出す波長選択部が配置されていることを特徴とする付記1〜11のいずれか一つに記載の光ノード。
【0062】
(付記13)前記第1の信号生成部は、
前記第1の測定信号の波長を制御信号に基づき変更自在な光源部と、
前記第1の測定信号を主信号と合波するための合波部とを有し、
前記第1の測定信号を、運用中の前記主信号以外の波長に変更自在なことを特徴とする付記1〜12のいずれか一つに記載の光ノード。
【0063】
(付記14)前記モニタ部は、
当該モニタ部に設けられた局発光源が、前記第2の測定信号の波長に合わせた波長の光信号を発生することにより、当該測定波長の偏波モード分散値をモニタすることを特徴とする付記13に記載の光ノード。
【0064】
(付記15)前記第1の信号生成部は、生成する前記第1の測定信号を運用中の主信号以外の波長の帯域を可変走査し、
前記モニタ部は、前記第2の測定信号の波長に同期した波長をモニタすることを特徴とする付記14に記載の光ノード。
【0065】
(付記16)光ファイバを用いた伝送路上に光ノードを有する光ネットワークシステムにおいて、
信号パスの前段の前記光ノードには、偏波モード分散値を測定するための第1の測定信号を生成し、伝送路上に送信する第1の信号生成部を配置し、
前記信号パスの後段の前記光ノードには、前記伝送路から第2の測定信号を検出し当該第2の測定信号に対する信号処理を施して偏波モード分散値を測定するモニタ部を配置して偏波モード分散値を測定することを特徴とする光ネットワークシステム。
【0066】
(付記17)前記モニタ部が測定した前記偏波モード分散値を収集する監視部を備え、
当該監視部は、複数の前記光ノードにより測定された前記偏波モード分散値から伝送路の前記信号生成部との間の区間の偏波モード分散値を演算により求めることを特徴とする付記16に記載の光ネットワークシステム。
【0067】
(付記18)前記伝送路の光ノード間毎に前記第1の信号生成部と、前記モニタ部を配置することにより、モニタ部が設けられた各光ノードで前記伝送路の一区間毎の前記偏波モード分散値を求めることを特徴とする付記17に記載の光ネットワークシステム。
【0068】
(付記19)前記各光ノードで求められた前記一区間毎の前記偏波モード分散値を収集するネットワークマネジメントシステムを備えたことを特徴とする付記18に記載の光ネットワークシステム。
【0069】
(付記20)前記ネットワークマネジメントシステムは、
前記各光ノードから収集した偏波モード分散値に基づき、前記伝送路の偏波モード分散値を監視し、規定値を超える区間に対するアラームを報知することを特徴とする付記19に記載の光ネットワークシステム。
【0070】
(付記21)前記ネットワークマネジメントシステムは、
前記各光ノードから収集した偏波モード分散値に基づき、前記伝送路の偏波モード分散値を監視し、規定値を超える区間を回避するリルーティングを行うことを特徴とする付記20に記載の光ネットワークシステム。
【0071】
(付記22)前記各光ノードから収集した偏波モード分散値に基づき、各区間の偏波モード分散の平均値を求めることを特徴とする付記19〜21のいずれか一つに記載の光ネットワークシステム。
【0072】
(付記23)前記第1の信号生成部が生成する前記第1の測定信号は、主信号を監視制御するための監視制御信号の波長を用いることを特徴とする付記19〜22のいずれか一つに記載の光ネットワークシステム。
【0073】
(付記24)前記伝送路の始端の光ノードのみに前記第1の信号生成部を配置し、
前記伝送路の各光ノードに前記モニタ部をそれぞれ配置し、
前記複数の前記光ノードから収集した複数の偏波モード分散値に基づいて、区間毎の偏波モード分散値を求めるネットワークマネジメントシステムを備えた付記19〜22のいずれか一つに記載の光ネットワークシステム。
【0074】
(付記25)前記ネットワークマネジメントシステムは、
前記第1の信号生成部に対し、生成する前記第1の測定信号を運用中の主信号以外の波長の帯域を可変走査する制御信号を送信するとともに、
前記モニタ部に対して、前記第1の信号生成部の走査波長に同期した波長をモニタする制御信号を送信することを特徴とする付記19〜24のいずれか一つに記載の光ネットワークシステム。
【0075】
(付記26)光ファイバを用いた伝送路上に光ノードを有する光ネットワークシステムにおける偏波モード分散測定方法において、
信号パスの前段の光ノードに配置した信号生成部から偏波モード分散値を測定するための第1の測定信号を生成して伝送路上に送信させ、
前記信号パスの後段の光ノードに配置したモニタ部により前記伝送路上の第2の測定信号を検出し、当該第2の測定信号に対する信号処理を施して偏波モード分散値を測定することを特徴とする偏波モード分散測定方法。
【符号の説明】
【0076】
100 光ネットワークシステム
101 伝送路
102 送信部
103 受信部
110a 中継部
110b 分岐挿入部
112 送信器
113 受信器
115 多重化部
116 多重化分離部
120 信号生成部
121 モニタ部
125 光増幅器
130 NMS
201 光源
202 変調部
203 合波器
301 分波器
305 デジタル信号処理部
306 制御部
306a DGD計算部
401 局発光源
403 光ハイブリッド回路
502 イコライザ部
502a FIRフィルタ
503 ブロックコントロール部
550 監視制御装置
551 監視制御部
552 監視制御信号送信部
801 波長可変光源
1001 波長選択部
1002 分散補償ファイバ
L1,L2,L3 区間
N1〜N4 各光ノード

【特許請求の範囲】
【請求項1】
光ファイバを用いた伝送路上に配置される光ノードにおいて、
偏波モード分散値を測定するための第1の測定信号を生成し、前記伝送路上に送信する第1の信号生成部と、
前記伝送路から第2の測定信号を検出し、当該第2の測定信号に対する信号処理を施して偏波モード分散値を測定するモニタ部と、
を備えたことを特徴とする光ノード。
【請求項2】
前記第1の信号生成部が配置された光ノードは、
前記第1の信号生成部が生成した測定信号を前記伝送路上の主信号に合波する合波部を有することを特徴とする請求項1に記載の光ノード。
【請求項3】
前記モニタ部が配置された光ノードは、
前記伝送路上から前記第2の測定信号を取り出し、前記モニタ部に出力する分波部を備えたことを特徴とする請求項1に記載の光ノード。
【請求項4】
前記第1の信号生成部が生成する前記第1の測定信号は、主信号を監視制御するための監視制御信号の波長を用いることを特徴とする請求項1〜3のいずれか一つに記載の光ノード。
【請求項5】
前記第1の信号生成部が生成する前記第1の測定信号は、主信号の波長帯域内の運用中以外の波長を用いることを特徴とする請求項1〜3のいずれか一つに記載の光ノード。
【請求項6】
前記モニタ部は、
前記第2の測定信号の偏波成分を互いに直交する水平成分と垂直成分に分離する分離部と、
前記分離部により分離された水平成分と垂直成分の光信号を電気信号に光電変換する光検出部と、
前記光検出部のアナログ検出値をデジタル変換する変換部と、
前記変換部により変換されたデジタル検出値をデジタル信号処理することにより、前記偏波モード分散値の算出に用いる係数を算出する信号処理部と、
前記信号処理部が出力する係数に基づき、偏波モード分散値を算出する制御部と、
を備えたことを特徴とする請求項1〜5のいずれか一つに記載の光ノード。
【請求項7】
前記モニタ部は、デジタルコヒーレント光をモニタするものであり、
前記第2の測定信号の偏波成分を互いに直交する水平成分と垂直成分に分離する分離部と、
前記第2の測定信号と同じ波長の光信号を出力する局発光源と、
前記第2の測定信号と、前記局発光源の光信号とをミキシングし、位相成分を取り出すミキシング部と、
前記ミキシング部により得られた前記水平成分の位相成分および前記垂直成分の位相成分をそれぞれ電気信号に光電変換する光検出部と、
前記光検出部のアナログ検出値をデジタル変換する変換部と、
前記変換部により変換されたデジタル検出値をデジタル信号処理することにより、前記偏波モード分散値の算出に用いる係数を算出する信号処理部と、
前記信号処理部が出力する係数に基づき、偏波モード分散値を算出する制御部と、
を備えたことを特徴とする請求項1〜5のいずれか一つに記載の光ノード。
【請求項8】
前記信号処理部は、
前記第2の測定信号をタイミング再生するクロックリカバリ部と、
前記クロックリカバリ部を通過後の前記第2の測定信号の各位相成分が入力され、周期的にFIRフィルタの係数を出力するイコライザ部と、を備えたことを特徴とする請求項6または7に記載の光ノード。
【請求項9】
光ファイバを用いた伝送路上に光ノードを有する光ネットワークシステムにおいて、
信号パスの前段の前記光ノードには、偏波モード分散値を測定するための第1の測定信号を生成し、伝送路上に送信する第1の信号生成部を配置し、
前記信号パスの後段の前記光ノードには、前記伝送路から第2の測定信号を検出し当該第2の測定信号に対する信号処理を施して偏波モード分散値を測定するモニタ部を配置して偏波モード分散値を測定することを特徴とする光ネットワークシステム。
【請求項10】
光ファイバを用いた伝送路上に光ノードを有する光ネットワークシステムにおける偏波モード分散測定方法において、
信号パスの前段の光ノードに配置した信号生成部から偏波モード分散値を測定するための第1の測定信号を生成して伝送路上に送信させ、
前記信号パスの後段の光ノードに配置したモニタ部により前記伝送路上の第2の測定信号を検出し、当該第2の測定信号に対する信号処理を施して偏波モード分散値を測定することを特徴とする偏波モード分散測定方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate


【公開番号】特開2011−199688(P2011−199688A)
【公開日】平成23年10月6日(2011.10.6)
【国際特許分類】
【出願番号】特願2010−65282(P2010−65282)
【出願日】平成22年3月19日(2010.3.19)
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成21年度、総務省、「超高速光伝送システム技術の研究開発(デジタルコヒーレント光送受信技術)」研究開発委託契約に基づく開発項目「光トランシーバ技術の研究開発」委託研究、産業技術力強化法第19条の適用を受ける特許出願
【出願人】(000005223)富士通株式会社 (25,993)
【Fターム(参考)】