説明

光導波路の製造方法

【課題】光導波路を構成する下部クラッド層及び/又はコア層の膜厚を容易に制御できる光導波路の製造方法を提供する。
【解決手段】本発明は、下部クラッド層2,3、コア層4、上部クラッド層6を順に積層する光導波路の製造方法であって、下部クラッド層2,3、コア層4、上部クラッド層6の少なくともいずれかの層が複数層からなり、前記複数層を構成する各層を積層するごとにパターン露光し、一括現像して、下部クラッド層2,3、コア層4、上部クラッド層6の少なくともいずれかの層を複数層に形成する光導波路の製造方法である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は光導波路の製造方法に関し、特に、光導波路を構成する下部クラッド層、コア層、上部クラッド層の膜厚を容易に制御できる光導波路の製造方法に関する。
【背景技術】
【0002】
情報容量の増大に伴い、幹線やアクセス系といった通信分野のみならず、ルータやサーバ内の情報処理にも光信号を用いる光インターコネクション技術の開発が進められている。具体的には、ルータやサーバ装置内のボード間あるいはボード内の短距離信号伝送に光を用いるために、光伝送路として、光ファイバに比べ、配線の自由度が高く、かつ高密度化が可能な光導波路が用いられている。
また、光導波路は、光学製品のデバイスとして用いられる際、他の光学素子、例えば光ファイバと接続して用いられることがあり(例えば、特許文献1)、このため、光導波路と光学素子と接続する際の位置合わせトレランスの確保や位置ずれの防止のために、光導波路を構成する層の膜厚を制御できることが求められる。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2001−42149号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
本発明は、前記の課題を解決するためになされたもので、光導波路を構成する下部クラッド層、コア層、上部クラッド層の膜厚を容易に制御できる光導波路の製造方法を提供することを目的とする。
【課題を解決するための手段】
【0005】
本発明者らは鋭意検討を重ねた結果、下部クラッド層、コア層、上部クラッド層を複数層とし、前記複数層を構成する各層を積層するごとにパターン露光し、パターン化された複数層としてから、一括現像することにより、上記課題を解決することを見出し、本発明に至った。
すなわち、本発明は、以下の発明を提供するものである。
(1)下部クラッド層、コア層、上部クラッド層の少なくともいずれかの層が複数層からなり、前記複数層を構成する各層を積層するごとにパターン露光し、パターン化された複数層としてから、一括現像して、前記下部クラッド層、コア層、上部クラッド層の少なくともいずれかの層を複数層に形成することを特徴とする光導波路の製造方法。
(2)基板上に、前記下部クラッド層を積層する前記(1)に記載の光導波路の製造方法。
(3)前記下部クラッド層及び/又はコア層の一部を複数層にすることを特徴とする前記(1)又は(2)に記載の光導波路の製造方法。
(4)前記現像後の複数層が、各層で幅が異なり、段差を有することを特徴とする前記(1)〜(3)のいずれかに記載の光導波路の製造方法。
(5)前記下部クラッド層が第1下部クラッド層と第2下部クラッド層とからなり、前記第1下部クラッド層をパターン露光し、前記パターン露光された第1下部クラッド層上に、前記第2下部クラッド層を積層し、前記第2下部クラッド層をパターン露光又は、前記第1下部クラッド層及び前記第2下部クラッド層を同時にパターン露光し、前記第1下部クラッド層及び前記第2下部クラッド層の未硬化部分を現像することによって除去することを特徴とする前記(1)〜(4)のいずれかに記載の光導波路の製造方法。
(6)前記コア層が第1コア層と第2コア層とからなり、前記下部クラッド層上に第1コア層を形成した後に前記第1コア層をパターン露光し、前記パターン露光された第1コア層上に、前記第2コア層を積層し、前記第2コア層をパターン露光又は、前記第1コア層及び前記第2コア層を同時にパターン露光し、前記第1コア層及び前記第2コア層の未硬化部分を現像することによって除去することを特徴とする前記(1)〜(4)のいずれかに記載の光導波路の製造方法。
(7)前記パターン露光により形成された第1下部クラッド層硬化部よりも第2下部クラッド層硬化部の横幅を小さくすることを特徴とする前記(5)に記載の光導波路の製造方法。
【発明の効果】
【0006】
本発明の光導波路の製造方法によると、光導波路を構成する下部クラッド層、コア層、上部クラッド層の膜厚を容易に制御でき、しかも複数層の下部クラッド層、コア層、上部クラッド層を一括して形成できるため製造効率が高い。
【図面の簡単な説明】
【0007】
【図1】本発明の光導波路の製造方法を説明する図である。
【図2】本発明の光導波路の製造方法を説明する別の図である。
【図3】本発明の製造方法により得られた光導波路を示す図である。
【発明を実施するための形態】
【0008】
本発明の光導波路の製造方法は、図1〜3に示すように、下部クラッド層2(及び3)、コア層4(及び5)、上部クラッド層6(及び7)を順に積層する光導波路の製造方法であって、下部クラッド層2(及び3)、コア層4(及び5)、上部クラッド層6(及び7)の少なくともいずれかの層が複数層からなり、前記複数層を構成する各層を積層するごとにパターン露光し、パターン化された複数層としてから、一括現像して、前記下部クラッド層2(及び3)、コア層4(及び5)、上部クラッド層6(及び7)の少なくともいずれかの層を複数層に形成する。
図1、2に示すように、下部クラッド層2,3及び/又はコア層4,5の一部を複数層にする方法であっても良い。
前記現像後の複数層が、各層で幅が異なり、段差を有するように形成しても良い。
【0009】
図1に示すように、基板1上に第1下部クラッド層2を積層し、露光することによって、第1下部クラッド層硬化部21及び第1下部クラッド層未硬化部22とを形成し、その後に、第1下部クラッド層2上に第2下部クラッド層3を積層し、露光することによって、第2下部クラッド層硬化部31及び第2下部クラッド層未硬化部32とを形成し、現像によって第1下部クラッド層未硬化部22及び第2下部クラッド層未硬化部32を除去することによって得られる第1下部クラッドパターン23及び第2下部クラッドパターン33は、第1下部クラッドパターン23の横幅が、第2下部クラッドパターン33の横幅以上であれば好ましい。こうすることによって、多段の下部クラッド層を形成する場合でも、各層の膜厚を制御することが可能となる。
【0010】
また、図2に示すように、下部クラッド層2上に第1コア層4を積層し、露光することによって、第1コア層硬化部41及び第1コア層未硬化部42とを形成し、その後に、第1コア層4上に第2コア層5を積層し、露光することによって、第2コア層硬化部51及び第2コア層未硬化部52とを形成する。このとき、例えば、露光部が硬化するネガ型のコア層形成用樹脂を用いると、図2のように、第2コア層硬化部51を形成すると同時に、第1コア層未硬化部42を第2コア層硬化部51と同一パターンの第1コア層硬化部41とすることができる。これにより、現像によって第1コア層未硬化部42及び第2コア層未硬化部52を除去することによって得られる第1コアパターン43及び第2コアパターン53は、第1コアパターン43のみからなる単層のコアパターンと第1コアパターン43と第2コアパターン53の2層からなるコアパターンが得られ、それぞれ幅及び高さが異なっていても良い。こうすることによって、異なる高さのコアパターンを膜厚の精度良く形成することができる。
ポジ型のコア層形成用樹脂を用いる場合には、第1コア層4を露光する際に、第1コア層硬化部41(未露光部)を形成すると同時に、第2コア層硬化部51を形成する部分に、第2コア層硬化部51よりも大きい横幅の第1コア層硬化部41(未露光部)を形成し、その後、第2コア層5を積層し、第2コア層硬化部51(未露光部)及び第1コア層硬化部41(未露光部)を形成するとできる。
【0011】
また、上述の第1及び第2下部クラッドパターンの形成方法は、第1及び第2コアパターンの形成方法にも適用でき、第1及び第2コアパターンの形成方法は、第1及び第2下部クラッドパターンの形成方法にも適用できる。また、第1及び第2下部クラッドパターンの形成方法と、第1及び第2コアパターンの形成方法を併用しても良い。併用することによって第1及び第2下部クラッドパターン(又は、第1及び第2コアパターン)一方の側壁が垂直な片側階段構造のパターンとすることも可能である。
しかしながら、上述の第1及び第2クラッドパターンの形成方法を用いる場合は、ネガ型のクラッド層又はコア層形成用樹脂材料である必要があり、上述の第1及び第2コアパターンの形成方法は、ネガ型のクラッド層又はコア層形成用樹脂材料でもポジ型のクラッド層又はコア層形成用樹脂材料であってもよい。
また、上部クラッド層にも上述の第1及び第2下部クラッドパターンの形成方法、並びに第1及び第2コアパターンの形成方法を適用することができる。
【0012】
本発明の光導波路の製造方法の具体例として、下部クラッド層を段付き2層とした図1の例を用いて説明する。以下、ネガ型のクラッド層形成用樹脂を用いた例を示す。
基板1上に、第1下部クラッド層2を積層し、パターン露光することによって、第1下部クラッド層硬化部21と第1下部クラッド層未硬化部22からなる層を形成し[工程(1−a)]、その上に、第2下部クラッド層3を積層し、パターン露光することによって、第2下部クラッド層硬化部31と第2下部クラッド層未硬化部32からなる層を形成し[工程(1−b)]、一括現像することにより、基板1上に第1下部クラッドパターン23及び第2下部クラッドパターン33を形成する[工程(1−c)]。ここで、第1下部クラッド層硬化部22よりも第2下部クラッド層硬化部32の横幅を小さくすることにより、第1下部クラッドパターン23の方が第2下部クラッドパターン層23より横幅を大きくして、段差を設けることができる。また、露光により、第2下部クラッド層硬化部31を形成する際に、第1下部クラッド層未硬化部22を第1下部クラッド層露光部21とすることもできる。
次に、第1下部クラッドパターン23及び第2下部クラッドパターン33を覆うように、コア層4を積層し、パターン露光することによって、コア層硬化部41とコア層未硬化部42からなる層を形成し[工程(1−d)]、露光、現像することにより、コアパターン43を形成する[工程(1−e)]。その後、第1下部クラッドパターン23、第2下部クラッドパターン33及びコアパターン43を覆うように、上部クラッド層6を形成して光導波路を得る[工程(1−f)]。
また、本例示では、2層の下部クラッド層を用いたが、工程(1−b)のあとに、更に下部クラッド層を積層し、パターン露光を行う工程を1回以上行うことにより、3層以上の下部クラッド層としても良い。
【0013】
次に、コア層を2層とした図2の例を用いて説明する。以下、ネガ型のコア層形成用樹脂を用いた例を示す。
基板1上に、下部クラッド層2を形成し[工程(2−a)]、該下部クラッド層2上に第1コア層4を積層し、パターン露光することによって、第1コア層硬化部41と第1コア層未硬化部42からなる層を形成し[工程(2−b)]、さらにその上に、第2コア層5を積層し、パターン露光することによって、同一パターン形状の第1コア層硬化部41及び第2コア層硬化部51とを形成し[工程(2−c)]、現像することにより、第1コアパターン43の単層からなるコアパターンと、第1コアパターン43及び第2コアパターン53の2層からなるコアパターンを一括形成する[工程(2−d)]。その後、下部クラッド層2及び第1コアパターン43及び第2コアパターン53を覆うように、上部クラッド層6を形成して光導波路を得る。
また、本例示では、2層のコア層を用いたが、工程(2−c)のあとに、更にコア層を積層し、パターン露光を行う工程を1回以上行うことにより、3層以上のコア層としても良い。
【0014】
また、図1及び2の製造方法を組み合わせて、図3に示すような、基板1上に設けられた第1下部クラッド層2に、第2下部クラッドパターン33及び第1コアパターン43を形成し、第2下部クラッドパターン33上に第1コアパターン43及び第2コアパターン53を形成し、それらを覆うように上部クラッド層6を形成し、さらにその上に上部クラッド層7を設け、高さ方向に千鳥配線を形成可能にすることもできる。こうすることによって同一平面状にコアパターンを形成するよりも、隣接するコアパターン同士の直線距離が大きくなり、光ファイバや各種光学素子の実装が容易となる。このとき、上部クラッド層を、下部クラッド層形成工程とほぼ同様に、上部クラッド層6を積層後、露光によって全面硬化させ、その後、上部クラッド層7を積層し、上部クラッド層7をパターン露光・現像することによって、全てのコアパターン上部に形成される上部クラッド層の厚みを揃えることもできる。
【0015】
以下、本発明の光導波路を構成する各層について説明する。
(クラッド層形成用樹脂及びクラッド層形成用樹脂フィルム)
以下、本発明で使用される下部クラッド層2,3、上部クラッド層6,7について説明する。
この下部クラッド層及び上部クラッド層としては、クラッド層形成用樹脂又はクラッド層形成用樹脂フィルムを用いることができる。
【0016】
本発明で用いるクラッド層形成用樹脂としては、コア層より低屈折率で、光又は光と熱により硬化する樹脂組成物であれば特に限定されず、感光性樹脂組成物を好適に使用することができる。
本発明においては、クラッド層の形成方法は特に限定されず、例えば、クラッド層形成用樹脂の塗布又はクラッド層形成用樹脂フィルムのラミネートにより形成すれば良い。
【0017】
下部クラッド層及び上部クラッド層の厚さに関しては、乾燥後の厚さで、5〜500μmの範囲が好ましい。5μm以上であると、光の閉じ込めに必要なクラッド厚さが確保でき、500μm以下であると、膜厚を均一に制御することが容易である。以上の観点から、下部クラッド層及び上部クラッド層の厚さは、さらに10〜100μmの範囲であることがより好ましい。
また、コア層を埋め込むために、上部クラッド層の厚さは、コア層を埋め込める厚さの上部クラッドを適宜用いれば良く、コア層の厚さ以上に厚くすることが好ましい。
【0018】
(コア層形成用樹脂及びコア層形成用樹脂フィルム)
以下、本発明で使用されるコア層4,5について説明する。
このコア層としては、コア層形成用樹脂又はコア層形成用樹脂フィルムを用いることができる。
コア層形成用樹脂は、クラッド層より高屈折率であるように設計され、活性光線によりコア層を形成し得る樹脂組成物を用いることができる。
本発明においては、コア層の形成方法は特に限定されず、例えば、コア層形成用樹脂の塗布又はコア層形成用樹脂フィルムのラミネートにより形成すれば良い。
【0019】
コア層形成用樹脂フィルムの厚さについては特に限定されず、乾燥後のコア層10の厚さが、通常は10〜100μmとなるように調整される。該フィルムの厚さが10μm以上であると、光導波路形成後の受発光素子又は光ファイバとの結合において位置合わせトレランスが拡大できるという利点があり、100μm以下であると、光導波路形成後の受発光素子又は光ファイバとの結合において、結合効率が向上するという利点がある。以上の観点から、該フィルムの厚さは、さらに30〜70μmの範囲であることが好ましい。
また、クラッド層形成用樹脂フィルム及びコア層形成用樹脂フィルムはキャリアフィルム上に形成すると良い。キャリアフィルムの種類としては、柔軟性及び強靭性のあるキャリアフィルムとして、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリエチレン、ポリプロピレン、ポリアミド、ポリカーボネート、ポリフェニレンエーテル、ポリエーテルサルファイド、ポリアリレート、液晶ポリマー、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリアミドイミド、ポリイミドが好適に挙げられる。キャリアフィルムの厚さは、5〜200μmであることが好ましい。5μm以上であると、キャリアフィルムとしての強度が得やすいという利点があり、200μm以下であると、コア層及びクラッド層のパターン形成時のマスクとのギャップが小さくなり、より微細なパターンが形成できるという利点がある。以上の観点から、キャリアフィルムの厚さは10〜100μmの範囲であることがより好ましく、15〜50μmであることが特に好ましい。
【0020】
(基板)
基板1の材質としては、特に制限はなく、例えば、ガラスエポキシ樹脂基板、セラミック基板、ガラス基板、シリコン基板、プラスチック基板、金属基板、樹脂層付き基板、金属層付き基板、プラスチックフィルム、樹脂層付きプラスチックフィルム、金属層付きプラスチックフィルム、電気配線板などが挙げられる。
基板1として柔軟性及び強靭性のある基板、例えば、前記クラッド層形成用樹脂フィルム及びコア層形成用樹脂フィルムのキャリアフィルムを基板として用いることで、フレキシブルな光導波路としてもよい。
【0021】
また、基板1と下部クラッド層2,上部クラッド層6,7に密着性が無い場合には、その間に接着層を設けても良い。
接着層の種類としては特に限定されないが、両面テープ、UVまたは熱硬化性接着剤、プリプレグ、ビルドアップ材、電気配線板製造用途に使用される種々の接着剤が好適に挙げられる。
【実施例】
【0022】
以下、本発明を実施例によりさらに詳細に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されない。
実施例1(光導波路の製造:図1の製造方法)
[クラッド層形成用樹脂フィルムの作製]
[(A)ベースポリマー;(メタ)アクリルポリマー(A−1)の作製]
撹拌機、冷却管、ガス導入管、滴下ろうと、及び温度計を備えたフラスコに、プロピレングリコールモノメチルエーテルアセテート46質量部及び乳酸メチル23質量部を秤量し、窒素ガスを導入しながら撹拌を行った。液温を65℃に上昇させ、メチルメタクリレート47質量部、ブチルアクリレート33質量部、2−ヒドロキシエチルメタクリレート16質量部、メタクリル酸14質量部、2,2’−アゾビス(2,4−ジメチルバレロニトリル)3質量部、プロピレングリコールモノメチルエーテルアセテート46質量部、及び乳酸メチル23質量部の混合物を3時間かけて滴下後、65℃で3時間撹拌し、さらに95℃で1時間撹拌を続けて、(メタ)アクリルポリマー(A−1)溶液(固形分45質量%)を得た。
[重量平均分子量の測定]
(A−1)の重量平均分子量(標準ポリスチレン換算)をGPC(東ソー(株)製「SD−8022」、「DP−8020」、及び「RI−8020」)を用いて測定した結果、3.9×104であった。なお、カラムは日立化成工業(株)製「Gelpack GL−A150−S」及び「Gelpack GL−A160−S」を使用した。
[酸価の測定]
A−2の酸価を測定した結果、79mgKOH/gであった。なお、酸価はA−2溶液を中和するのに要した0.1mol/L水酸化カリウム水溶液量から算出した。このとき、指示薬として添加したフェノールフタレインが無色からピンク色に変色した点を中和点とした。
[クラッド層形成用樹脂ワニスの調合]
(A)ベースポリマーとして、前記A−1溶液(固形分45質量%)84質量部(固形分38質量部)、(B)光硬化成分として、ポリエステル骨格を有するウレタン(メタ)アクリレート(新中村化学工業(株)製「U−200AX」)33質量部、及びポリプロピレングリコール骨格を有するウレタン(メタ)アクリレート(新中村化学工業(株)製「UA−4200」)15質量部、(C)熱硬化成分として、ヘキサメチレンジイソシアネートのイソシアヌレート型三量体をメチルエチルケトンオキシムで保護した多官能ブロックイソシアネート溶液(固形分75質量%)(住化バイエルウレタン(株)製「スミジュールBL3175」)20質量部(固形分15質量部)、(D)光重合開始剤として、1−[4−(2−ヒドロキシエトキシ)フェニル]−2−ヒドロキシ−2−メチル−1−プロパン−1−オン(チバ・ジャパン(株)製「イルガキュア2959」)1質量部、ビス(2,4,6−トリメチルベンゾイル)フェニルホスフィンオキシド(チバ・ジャパン(株)製「イルガキュア819」)1質量部、及び希釈用有機溶剤としてプロピレングリコールモノメチルエーテルアセテート23質量部を攪拌しながら混合した。孔径2μmのポリフロンフィルタ(アドバンテック東洋(株)製「PF020」)を用いて加圧濾過後、減圧脱泡し、クラッド層形成用樹脂ワニスを得た。
上記で得られたクラッド層形成用樹脂組成物を、PETフィルム(東洋紡績(株)製「コスモシャインA4100」、厚み50μm)の非処理面上に、前記塗工機を用いて塗布し、100℃で20分乾燥後、保護フィルムとして表面離型処理PETフィルム(帝人デュポンフィルム(株)製「ピューレックスA31」、厚み25μm)を貼付け、クラッド層形成用樹脂フィルムを得た。このとき樹脂層の厚みは、塗工機のギャップを調節することで任意に調整可能であり、本実施例では使用した第1下部クラッド層及び第2下部クラッド層の厚みに付いては、実施例中に記載する。また、第1下部クラッド層及び第2下部クラッド層の硬化後の膜厚と塗工後の膜厚は同一であった。本実施例で用いた上部クラッド層形成用樹脂フィルムの膜厚についても実施例中に記載する。実施例中に記載する上部クラッド層形成用樹脂フィルムの膜厚は乾燥後の膜厚とする。
【0023】
[コア層形成用樹脂フィルムの作製]
(A)ベースポリマーとして、フェノキシ樹脂(商品名:フェノトートYP−70、東都化成株式会社製)26質量部、(B)光重合性化合物として、9,9−ビス[4−(2−アクリロイルオキシエトキシ)フェニル]フルオレン(商品名:A−BPEF、新中村化学工業株式会社製)36質量部、及びビスフェノールA型エポキシアクリレート(商品名:EA−1020、新中村化学工業株式会社製)36質量部、(C)光重合開始剤として、ビス(2,4,6−トリメチルベンゾイル)フェニルフォスフィンオキサイド(商品名:イルガキュア819、チバ・スペシャリティ・ケミカルズ社製)1質量部、及び1−[4−(2−ヒドロキシエトキシ)フェニル]−2−ヒドロキシ−2−メチル−1−プロパン−1−オン(商品名:イルガキュア2959、チバ・スペシャリティ・ケミカルズ社製)1質量部、有機溶剤としてプロピレングリコールモノメチルエーテルアセテート40質量部を用いたこと以外は上記製造例と同様の方法及び条件でコア層形成用樹脂ワニスBを調合した。その後、上記製造例と同様の方法及び条件で加圧濾過さらに減圧脱泡した。
上記で得られたコア層形成用樹脂ワニスBを、PETフィルム(商品名:コスモシャインA1517、東洋紡績株式会社製、厚さ:16μm)の非処理面上に、上記製造例と同様な方法で塗布乾燥し、次いで保護フィルムとして離型PETフィルム(商品名:ピューレックスA31、帝人デュポンフィルム株式会社、厚さ:25μm)を離型面が樹脂側になるように貼り付け、コア層形成用樹脂フィルムを得た。このとき樹脂層の厚みは、塗工機のギャップを調節することで任意に調整可能であり、本実施例おいて使用したコア層形成用樹脂フィルム厚みに付いては、実施例中に記載する。実施例中に記載するコア層形成用樹脂フィルムの膜厚は塗布乾燥後の膜厚とする。
【0024】
[光導波路の作製]
第1下部クラッド層2として、上記で得られたクラッド層形成用樹脂フィルムの保護フィルムを剥離した厚さ10μmのクラッド層形成フィルムを、基板1である厚さ25μmのポリイミドフィルム(商品名;ユーピレックスRN)に、平板型ラミネータとして真空加圧式ラミネータ(株式会社名機製作所製、MVLP−500)を用い、500Pa以下に真空引きした後、圧力0.4MPa、温度70℃、加圧時間30秒の条件にて加熱圧着した。その後、支持フィルム越しに、50mm×300μmのネガ型フォトマスクを介して、紫外線露光機(株式会社オーク製作所製、EXM−1172)にて紫外線(波長365nm)を0.25J/cm2照射し、支持フィルムを剥離した[工程(1−a)]。次いで、第2下部クラッド層3として、上記と同じ10μmのクラッド層形成用樹脂フィルムを、保護フィルムを剥離して積層し、上記の紫外線露光機を用いて、45mm×150μmの開口部を有するネガ型フォトマスクを介して紫外線(波長365nm)を0.25J/cm2照射し、支持フィルムを剥離した[工程(1−b)]。次に、1%炭酸カリウム水溶液を用いて第1下部クラッド層未硬化部22及び第2下部クラッド層未硬化部32を一括現像し、第1下部クラッドパターン23及び第2下部クラッドパターン33を形成した[工程(1−c)]。
次に、第1下部クラッドパターン23及び第2下部クラッドパターン33を覆うように、保護フィルムを剥離した厚さ70μmの上記コア層形成用樹脂フィルムを、上の熱板に厚さ2mmのSUS板を装着した平板型ラミネータとして真空加圧式ラミネータ(株式会社名機製作所製、MVLP−500)を用い、500Pa以下に真空引きした後、圧力0.4MPa、温度70℃、加圧時間30秒の条件にて加熱圧着して、コア層4の表面を平坦化した[工程(1−d)]。
次に、コア層4を形成するための形状を有するネガ型フォトマスクを介し、上記紫外線露光機にて紫外線(波長365nm)を0.6J/cm2照射し、次いで80℃で5分間露光後加熱を行った。その後、キャリアフィルムであるPETフィルムを剥離し、現像液(プロピレングリコールモノメチルエーテルアセテート/N,N−ジメチルアセトアミド=8/2、質量比)を用いて、コア層4を現像した。続いて、洗浄液(イソプロパノール)を用いて洗浄し、100℃で10分間加熱乾燥し、大きさ44mm×50μm、厚さ50μm(第2下部クラッドパターン33上の厚み)のコア層4を形成した[工程(1−e)]。
次いで、上部クラッド層6として厚さ80μmの上記クラッド層形成用樹脂フィルムをラミネートした。さらに、紫外線(波長365nm)を4J/cm2照射後、支持フィルムを剥離し、170℃で1時間加熱処理することによって、厚さ12μm(コア層4上の厚み)の上部クラッド層6を形成し、光導波路を作製した[工程(1−f)]。
【0025】
実施例2(光導波路の製造:図2の製造方法)
実施例1において、基板1上に第1下部クラッド層2をパターニングせずに硬化した後に、厚さ40μmの第1コア層をロールラミネータ(日立化成テクノプラント株式会社製、HLM−1500)を用い圧力0.4MPa、温度50℃、ラミネート速度0.2m/minの条件でラミネート形成した。その後、50mm×40μm(250μmピッチ、2本)の開口部を有するネガ型フォトマスクを介して、上記の紫外線露光機を用い、0.6J/cm2照射し、次いで80℃で5分間露光後加熱を行った。次いで、キャリアフィルムであるPETフィルムを剥離し、厚み10μmの第2コア層5を上記のロールラミネータを用いて形成し、50mm×50μm(250μmピッチ、2本)の開口部を有するネガ型フォトマスクを介して、上記の紫外線露光機を用い、0.6J/cm2照射し、次いで80℃で5分間露光後加熱を行った。その後、キャリアフィルムであるPETフィルムを剥離し、現像液(プロピレングリコールモノメチルエーテルアセテート/N,N−ジメチルアセトアミド=8/2、質量比)を用いて、コア層4を現像した。続いて、洗浄液(イソプロパノール)を用いて洗浄し、100℃で10分間加熱乾燥し、断面形状が、40μm×40μmのコアパターンと、50μm×50μmのコアパターンとが交互に整列したコアパターンを形成した。
その後、実施例1と同様に上部クラッド層を形成し、光導波路とした(工程2−(e))。
【産業上の利用可能性】
【0026】
以上詳細に説明したように、本発明の光導波路の製造方法によると、光導波路を構成する下部クラッド層、コア層、上部クラッド層の膜厚を容易に制御でき、しかも複数層の下部クラッド層、コア層、上部クラッド層を一括形成できるため製造効率がよく、低コストで光導波路を製造できる。
このため、光導波路と光学素子と接続する際の位置合わせトレランスの確保や位置ずれの防止ができる光導波路の形成方法として極めて実用性が高い。
【符号の説明】
【0027】
1:基板
2:第1下部クラッド層(下部クラッド層)
21:第1下部クラッド層硬化部
22:第1下部クラッド層未硬化部
23:第1下部クラッドパターン
3:第2下部クラッド層
31:第2下部クラッド層硬化部
32:第2下部クラッド層未硬化部
33:第2下部クラッドパターン
4:第1コア層(コア層)
41:第1コア層硬化部(コア層硬化部)
42:第1コア層未硬化部(コア層未硬化部)
43:第1コアパターン(コアパターン)
5:第2コア層
51:第2コア層硬化部
52:第2コア層未硬化部
53:第2コアパターン
6:第1上部クラッド層(上部クラッド層)
7:第2上部クラッド層

【特許請求の範囲】
【請求項1】
下部クラッド層、コア層、上部クラッド層を順に積層する光導波路の製造方法であって、下部クラッド層、コア層、上部クラッド層の少なくともいずれかの層が複数層からなり、前記複数層を構成する各層を積層するごとにパターン露光し、パターン化された複数層としてから、一括現像して、前記下部クラッド層、コア層、上部クラッド層の少なくともいずれかの層を複数層に形成することを特徴とする光導波路の製造方法。
【請求項2】
基板上に、前記下部クラッド層を積層する請求項1に記載の光導波路の製造方法。
【請求項3】
前記下部クラッド層及び/又はコア層の一部を複数層にすることを特徴とする請求項1又は2に記載の光導波路の製造方法。
【請求項4】
前記現像後の複数層が、各層で幅が異なり、段差を有することを特徴とする請求項1〜3のいずれかに記載の光導波路の製造方法。
【請求項5】
前記下部クラッド層が第1下部クラッド層と第2下部クラッド層とからなり、前記第1下部クラッド層をパターン露光し、前記パターン露光された第1下部クラッド層上に、前記第2下部クラッド層を積層し、前記第2下部クラッド層をパターン露光又は、前記第1下部クラッド層及び前記第2下部クラッド層を同時にパターン露光し、前記第1下部クラッド層及び前記第2下部クラッド層の未硬化部分を現像することによって除去することを特徴とする請求項1〜4のいずれかに記載の光導波路の製造方法。
【請求項6】
前記コア層が第1コア層と第2コア層とからなり、前記下部クラッド層上に第1コア層を形成した後に前記第1コア層をパターン露光し、前記パターン露光された第1コア層上に、前記第2コア層を積層し、前記第2コア層をパターン露光又は、前記第1コア層及び前記第2コア層を同時にパターン露光し、前記第1コア層及び前記第2コア層の未硬化部分を現像することによって除去することを特徴とする請求項1〜4のいずれかに記載の光導波路の製造方法。
【請求項7】
前記パターン露光により形成された第1下部クラッド層硬化部よりも第2下部クラッド層硬化部の横幅を小さくすることを特徴とする請求項5に記載の光導波路の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate