説明

光触媒素子、光触媒デバイス及び光触媒清浄装置

【課題】 光利用効率の高い光触媒反応を実現できる光触媒素子、それを用いた光触媒デバイス及び光触媒清浄装置の提供。
【解決手段】 光触媒反応の励起光波長帯域で透明な材質からなる基材4の表面に光触媒が担持された光触媒担持体2と、外部光源から励起光を該光触媒担持体の内部に導く少なくとも1つの光導波路3とからなり、前記光触媒担持体は、多数の光触媒担持体を密接配置した際にそれぞれの光触媒担持体間に流体が通過可能な隙間を生じる形状とされている光触媒素子1。該光触媒素子の光触媒素子を、流体の入口と出口を有する反応槽に多数収容してなる光触媒デバイス。該光触媒デバイスと、反応槽内に収容された光触媒素子の光導波路の入射端に励起光を入射可能に設けられた励起光源とを備えた光触媒清浄装置。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光触媒による酸化還元反応を利用して処理対象の流体中の有機化合物を分解する光触媒素子及び光触媒デバイス、それを用いて流体中の汚染物質、細菌、悪臭などを除去して清浄化する光触媒清浄装置に関する。
【背景技術】
【0002】
酸化チタン(TiO)を代表とする光触媒により、空気中の有毒ガスや水中の汚染物質などを分解する方法は、現在注目されている環境浄化技術である。
しかし、これらの技術の殆どは、光触媒を担持した担持体の表面に励起光を照射する、つまり励起光を外部から担持体表面の光触媒に照射する方法によって、担持体周囲を通過する処理対象である流体(気体又は液体)中の分解対象物を分解する方法である。
【0003】
例えば、光触媒を用いた有害ガス処理の一例として、特許文献1には、粒状光触媒と活性炭を混合して有害ガスと接触させ、外部光源から光触媒に光を照射することによって有害ガスを除去する方法が記載されている。
また、光触媒を用いた水処理の一例として、特許文献2には、浄水フィルターの上に光触媒を固定し、紫外線ランプから紫外光を照射することによってフィルターを通過する水を浄化処理する方法が記載されている。
【特許文献1】特開平6−218234号公報
【特許文献2】特開平10−174968号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
しかし、前述した従来技術では、いずれも光源を光触媒担持体の外部に設置しているため、光触媒の表面に埃や、その他の有機物などのゴミに覆われた場合、光源からの光が光触媒層の表面に十分に到達できなくなり、光触媒反応が起こらなかったり、あるいは反応力不足のため実用上問題を生じるおそれがある。
【0005】
さらに、外部からの光照射では、光源から光触媒層の間に距離があって、出射した光量は散乱や吸収などにより損失し、出射光量の一部しか光触媒反応に利用できず、光の利用効率が悪いという問題がある。例えば、特許文献2の場合には、光源から出射した光は汚水に吸収され、出射光量の一部しか光触媒の表面に到達せず、光の利用効率が悪かった。
【0006】
また、水処理の場合では、照射距離を短くするため、光触媒を担持した粒子を浮遊させた処理層内に直接光を照射するようにした技術も提案されているが、光源の防水密閉などによって余分なコストが生じ、高コストになる問題がある。
【0007】
本発明は前記事情に鑑みてなされ、光利用効率の高い光触媒反応を実現できる光触媒素子、それを用いた光触媒デバイス及び光触媒清浄装置の提供を目的とする。
【課題を解決するための手段】
【0008】
前記目的を達成するため、本発明は、光触媒反応の励起光波長帯域で透明な材質からなる基材の表面に光触媒が担持された光触媒担持体と、外部光源から励起光を該光触媒担持体の内部に導く少なくとも1つの光導波路とからなり、前記光触媒担持体は、多数の光触媒担持体を密接配置した際にそれぞれの光触媒担持体間に流体が通過可能な隙間を生じる形状とされていることを特徴とする光触媒素子を提供する。
【0009】
本発明の光触媒素子において、前記光触媒担持体の形状は、球状であることが好ましい。
【0010】
本発明の光触媒素子において、前記光触媒担持体の形状は、棒状又は表面に凹凸のある不規則形状としてもよい。
【0011】
本発明の光触媒素子において、前記光導波路が光ファイバであることが好ましい。
【0012】
また、前記光ファイバはシリカコアとフッ素添加シリカクラッドからなることが好ましい。
【0013】
本発明の光触媒素子において、前記光触媒担持体の一部に中空腔が設けられ、前記光導波路の出射端が前記中空腔内に埋設、固定されていることが好ましい。
【0014】
本発明の光触媒素子において、前記光触媒担持体の一部に前記光導波路の出射端が融着接続されている構成としてもよい。
【0015】
また本発明は、前述した本発明に係る光触媒素子の光触媒素子を、流体の入口と出口を有する反応槽に多数収容してなることを特徴とする光触媒デバイスを提供する。
【0016】
また本発明は、前述した本発明に係る光触媒デバイスと、前記反応槽内に収容された光触媒素子の光導波路の入射端に励起光を入射可能に設けられた励起光源とを備えたことを特徴とする光触媒清浄装置を提供する。
【0017】
本発明の光触媒清浄装置において、前記励起光源が発光ダイオードであることが好ましい。
【0018】
本発明の光触媒清浄装置において、前記励起光源が発光ダイオードであり、前記光導波路が多数本束ねられて少なくとも入射端側がバンドル化され、そのバンドル化された入射端に発光ダイオードが励起光を入射可能に結合されていることが好ましい。
【発明の効果】
【0019】
本発明の光触媒素子は、光触媒反応の励起光波長帯域で透明な材質からなる基材の表面に光触媒が担持された光触媒担持体と、外部光源から励起光を該光触媒担持体の内部に導く少なくとも1つの光導波路とからなり、前記光触媒担持体は、多数の光触媒担持体を密接配置した際にそれぞれの光触媒担持体間に流体が通過可能な隙間を生じる形状とされたものなので、光導波路の入射端から励起光を入射することで、該励起光が光導波路内を通って光触媒担持体の内部に伝搬され、光触媒担持体表面に担持された光触媒層に裏面側から照射されて光触媒反応を発現し、光触媒に接触した又は近傍の流体(液体又は気体)中の汚染物質等を光触媒分解することができ、光触媒担持体の外部から励起光を照射する従来法に比べ、処理対象物である流体による励起光の吸収や散乱が起こらず、励起光の利用効率を高めることができる。
本発明の光触媒デバイスは、前記本発明の光触媒素子の光触媒担持体を、流体の入口と出口を有する反応槽に多数収容した構成なので、その反応槽の入口から出口に向けて処理対象物である流体を流すことで、該流体が多数の光触媒素子の光触媒担持体間の隙間を通って流れ、光触媒担持体表面の光触媒と効果的に接触し、各光触媒素子の光導波路に励起光を入射することで、効率良く光触媒反応によって流体中の汚染物質等を分解、除去することができる。
本発明の光触媒清浄装置は、前記光触媒デバイスと、前記反応槽内に収容された光触媒素子の光導波路の入射端に励起光を入射可能に設けられた励起光源とを備えたものなので、反応槽の入口から出口に向けて処理対象物である流体を流すとともに、各光触媒素子の光導波路に励起光を入射することによって、該流体が多数の光触媒素子の光触媒担持体間の隙間を通って流れ、光触媒担持体表面の光触媒と効果的に接触し、効率良く光触媒反応によって流体中の汚染物質等を分解、除去することができる。
【発明を実施するための最良の形態】
【0020】
以下、図面を参照して本発明の実施形態を説明する。
図1は、本発明に係る光触媒素子の一実施形態を示す構成図であり、図1中、符号1は光触媒素子、2は光触媒担持体、3は光ファイバなどの光導波路、4は励起光に透明な材料からなる基材、5は光触媒層、6は光触媒担持体3に設けられた中空腔、7は接着剤である。
【0021】
本実施形態の光触媒素子1は、光触媒反応の励起光波長帯域で透明な材質、例えば石英ガラスからなる基材4の表面に光触媒層5が担持された球状をなす光触媒担持体2と、外部光源から励起光を光触媒担持体2の内部に導く光導波路3とからなっている。光触媒担持体2の任意位置には中空腔6が設けられ、該中空腔6には光導波路3の出射端部が挿入され、該腔内に接着剤7を注入、硬化させることによって、光触媒担持体2と光導波路3が接続されている。
【0022】
この光触媒素子1は、光導波路3の入射端に図示しない励起光源から光触媒を励起可能な励起光を入射することによって、光導波路3内を伝搬されて出射端から光触媒担持体2内に伝搬された励起光が、触媒担持体2の基材4を通して表面の光触媒層5に裏面側から照射され、光触媒層5にて光触媒反応を発現できるようになっている。
【0023】
前記の光導波路3は、従来の光ファイバ形状は勿論、リボン状、シート状でも同様な機能を果たすことができる。その中でも、フレキシブルな且つ機動性の良い、比較的製造容易な光ファイバが好ましい。光導波路3の構造は、従来の光導波路と同じく、屈折率の比較的に高いコアとそれを囲む屈折率の比較的低いクラッド部とからなっている。
【0024】
また、光導波路3の光学特性については、屈折率分布がグレーテッドインデックス(GI)タイプでもステップインデックス(SI)タイプでもよく、またマルチモード伝送タイプでもシングルモード伝送タイプでも良いが、光源と高効率に接合するためには、開口数(NA)が光源のNA以上であることが望ましい。従って、励起光源のNAによって光導波路3の比屈折率・コア径などを調整し、最適化すれば良く、光導波路3の光学特性は特に制限されない。
【0025】
また、光導波路3として石英ガラス製の光ファイバを用いる場合、構造的にはシリカコアとフッ素添加シリカクラッドからなる光ファイバを用いることが望ましい。従来の光ファイバの構造は、クラッド部はシリカで、コア部は屈折率を高くするために、Geなどのドーパントを酸化物の状態で添加している。しかし、これらのドーパントの殆どは通常の光触媒励起光波長帯域である紫外線帯域にて吸収があるため、紫外線の伝搬損失を生じる。そこで本発明では、光導波路3として、紫外透過性の高いシリカコアとフッ素添加シリカクラッドを持つ構造の光ファイバを用いることによって、光導波路部分の伝送損失を小さくし、光触媒担持体2まで低損失で励起光を導く構造とすることが望ましい。
【0026】
また、光導波路3のコア部をなす材料としては、シリカに限定されることなく、光触媒を励起する波長域に吸収を持たない材料、例えば、ポリメチルメタクリレートやフッ素系樹脂などの合成樹脂などを用いることもできる。
【0027】
同様にクラッド部をなす材料としては、フッ素添加シリカ以外にも、前記のコアをなす材料の屈折率より低い屈折率を持ち、且つ漏れ光の波長域に吸収を持たない材料、例えば、ポリメチルメタクリレートやフッ素系樹脂などの合成樹脂などを用いることもできる。
【0028】
本発明では、複数の前記光触媒担持体2を充填した反応槽9を有する光触媒デバイス8において、処理対象物である汚染物質を含むガスや汚水などの流体を流すための流路を供給し、かつ流体と光触媒を効率よく接触させるために、光触媒担持体2の形状については、多数の光触媒担持体2を密接配置した際にそれぞれの光触媒担持体2間に流体が通過可能な隙間を生じる形状とし、例えば、図1に示すような球状、あるいは棒状や表面に凹凸のある不規則形状とすることが望ましい。
【0029】
光触媒担持体2のサイズについては、基本的に微小構造にするほど、比表面積が大きくなり、すなわち反応面積が大きくなり、反応能力も高くなるが、必要な分解反応力や製造工程の難易度、コストなど総合的に考えた上で、サイズを自由に変更することができる。従って、本発明において光触媒担持体2のサイズは特に限定されない。
【0030】
前記光触媒担持体2の基材4をなす材料としては、光触媒を励起する光の波長域に吸収を持たない材料が望ましく、例えば、石英ガラス、あるいはポリメチルメタクリレートやフッ素系樹脂などの合成樹脂などが用いられる。
【0031】
この基材としてポリメチルメタクリレートやフッ素系樹脂などの合成樹脂を使用する場合、樹脂自体が有機物なので、光触媒反応により分解されるおそれがあるため、使用に際しては光触媒に対する耐分解能力を持つ材質を使用するか、基材4と光触媒層5の間に透明なアンダーコート材を設けることが望ましい。
【0032】
光触媒層5に用いる光触媒としては、酸化チタン(TiO)、チタンアパタイト、酸化タンタル、酸化スズ、酸化ジルコニウム、酸化ニオブ、酸化バナジウム、チタン酸バリウム(BaTi)、チタン酸ストロンチウム(SrTiO)、チタン酸ナトリウム(NaTi13)、二酸化ジルコニウム、硫化カドミウム、α−Fe、酸化亜鉛(ZnO)などが挙げられ、この中でも酸化チタンが好ましい。酸化チタンからなる光触媒を基材4の表面にコーティングする場合、酸化チタン微粒子を含む市販の光触媒コーティング液を用いることができ、膜厚やコーティング回数などは所定の条件にしたがって形成すればよい。
【0033】
本発明の光触媒素子1において、光導波路3の出射端を光触媒担持体2に接続する方法としては、
a.埋設方式:光導波路3の出射端側を、光触媒担持体2の任意部位に設けた中空腔6内に埋設し、中空腔開口部にて樹脂などの接着剤7で固定する方法、
b.融着接続方式:光導波路3の出射端を光触媒担持体2の任意部位に融着接続する方法、がある。
【0034】
a.埋設方式では、図1に示した通り、光触媒担持体2の任意部位に小さい中空腔6を設け、光導波路3の出射端側を光触媒担持体2の基材4と接触するまで中空腔6内に差し込んだ後、中空腔6開口部に樹脂などの接着剤7を注入、硬化させて固定すればよい。ここで、光導波路3の出射端と光触媒担持体2の基材4とを接触させる目的は、出射端からの反射などを防ぎ、光触媒担持体への入射効率を向上させるためである。
【0035】
光触媒担持体2の任意部位に中空腔6を形成する方法は特に限定されず、光触媒担持体2の基材4の成形工程で形成しても良いし、基材4作製後に、例えばドリルなどで再加工しても良い。ドリルによる加工により、中空腔6内壁や端面の欠けや、微小の切削屑などが生じるが、それらのものは本発明の効果に余り影響を及ぼさない。なぜならば、内壁や端面の欠けや微小の切削屑は光導波路3の出射端からの出射光を散乱する機能を持っているが、散乱された光は、中空腔6内で複数回反射され、最後に殆どの光は光触媒担持体2内部に入り、表面に放射され、一部のみが熱エネルギーとして消滅するからである。
【0036】
b.融着接続方式は、基材4に中空腔6を形成する必要が無く、通常の光ファイバ同士又は光ファイバと他の光学部品との融着接続と同様にして、光触媒担持体2の任意部位に光導波路3の出射端を融着接続することによって実施する。融着接続方法としては、基本的には接続部に熱を提供すればよいが、光導波路3が石英ガラス製の光ファイバであり、光触媒担持体2の基材4がガラス球である場合には、融着するために高温が必要なので、アーク放電方式が好ましい。
【0037】
また、一つの光導波路3からの出射励起光量が限られるため、光触媒担持体2のサイズが大きい時、すなわち表面積が大きい時には、単位面積に照射される励起光密度が小さくなり、十分な分解能力が発現できなくなる。そのため、本発明では、一つの光触媒担持体2に一つの光導波路3を接続することに限定せず、必要な単位面積あたりの励起光密度に応じて光触媒担持体2に複数の光導波路3を接続して使用してもよい。
【0038】
図2は、本発明に係る光触媒デバイスの一実施形態を示す構成図であり、図2中符号8は光触媒デバイス、9は反応層、10は多数本の光導波路3を束ねたバンドルである。本実施形態の光触媒デバイス8は、多数の光触媒素子1を、流体の入口と出口を有する反応槽9に収容し、反応槽9に光触媒担持体2を流体が透過可能に密接状態で充填するとともに、それぞれの光触媒素子1の光導波路3を反応槽9から引き出し、束ねてバンドル10とした構成になっている。反応槽9の形状や大きさ、材質等及び反応槽9内への光触媒担持体2の収容方式は特に限定されず、処理対象となる流体の物性、光触媒担持体2のサイズや形状、必要な流速等に応じて適宜設定することができる。
【0039】
本実施形態の光触媒デバイス8は、円筒状などの入口と出口を有する適当な形状をなしている反応槽9内に、前述した通り、多数の光触媒担持体2を密接配置した際にそれぞれの光触媒担持体2間に流体が通過可能な隙間を生じる形状、例えば球状、棒状あるいは表面に凹凸のある不規則形状の光触媒担持体2を複数配列し、積層したので、反応槽9の一端側の入口(図2中、INと記す。)から他端側の出口(図2中、OUTと記す。)に向けて処理対象物である流体を流すことで、該流体が多数の光触媒担持体2間の隙間を通って流れ、光触媒担持体2表面の光触媒層5と効果的に接触し、各光触媒素子1の光導波路3に励起光を入射することで、効率良く光触媒反応によって流体中の汚染物質等を分解、除去することができる。
【0040】
光触媒の反応面積は、光触媒デバイス8の反応能力の重要なパラメータである。本発明では、前記の球状、棒状あるいは表面に凹凸のある不規則形状の光触媒担持体2を複数配列し、積層することによって、光触媒反応面積(=分解対象の流体との接触面積)及び総励起光量を大きくすることができる。また、光触媒担持体2が処理対象の流体となるべく多く接触するため、多数の光触媒担持体2を反応槽9内になるべく均一に充填配置することが望ましい。
【0041】
図3は、本発明に係る光触媒清浄装置の一実施形態を示す構成図であり、図3中符号11は光触媒清浄装置、12は光触媒デバイス8の入口、13は出口、14は流体を循環させるための管路、15は流体を入れた容器(実験容器)、16はサンプリング部、17は励起光源、18はバンドル10の入射端である。
【0042】
本実施形態の光触媒清浄装置11は、前述した反応槽9とバンドル10とからなる光触媒デバイスと、反応槽9内に収容された光触媒素子1の光導波路3のバンドル化された入射端18に励起光を入射可能に設けられた励起光源17とを備えた構成になっている。さらに、図3に示す例示では、流体を入れた容器15に循環用の管路14を設け、この管路14の途中に反応槽9の入口12と出口13を接続することによって、容器15内の流体の一部を管路14に導いて、反応槽9の入口12から導入し、光触媒反応による清浄化を終えた流体を出口13から管路14を通して容器15内に返送できるように構成されている。
【0043】
本実施形態の光触媒清浄装置11は、反応槽9の入口12から出口13に向けて処理対象物である流体を流すとともに、励起光源17から発した励起光をバンドル10の入射端からバンドル10内に入射し、光触媒担持体2表面の光触媒層5において光触媒反応を発現させることで、該流体が多数の光触媒担持体2間の隙間を通って流れ、光触媒担持体2表面の光触媒層5と効果的に接触し、効率良く光触媒反応によって流体中の汚染物質等を分解、除去することができる。
【0044】
光触媒反応を励起する励起光源17としては、発光ダイオード(以下、LEDと記す。)を用いることが望ましい。小型のLEDを励起光源として用いることで、消費電力を低減でき、光源が小型化できることから、小型で消費電力の少ない光触媒清浄装置11を実現できる。
【0045】
従来の技術では、外部に設けた励起光源17から光触媒層の表面に直接照射するため、光源のサイズが大きくないと照射面積を確保できない。従って、従来の光触媒清浄装置の光源は、比較的大型のブラックライト、水銀キセノンランプなどの光源を使用することが多いが、本実施形態の光触媒清浄装置11では、励起光源17として、通常のブラックライト、水銀キセノンランプなどの光源は勿論、小型LEDでも使用できる。
また本実施形態の光触媒清浄装置11では、微細構造の光導波路3、例えば光ファイバなどを使用するため、数百乃至数千単位の光導波路3があっても、出射端で束ねてバンドル化すれば、小さいスポットとなり、LEDのような小型の励起光源17でも十分結合できる。従って、小型で消費電力の少ない光触媒清浄装置11を実現できるという大きな利点が得られる。
【実施例】
【0046】
[実施例1]
本実施例では、光触媒担持体の基材として石英ガラス球を用い、該石英ガラス球の表面に酸化チタンをコーティングし、光導波路として石英ガラス製光ファイバを用いた。光触媒担持体と光導波路の接続は埋設方式とした。また励起光源として紫外LED(UV LED)を用いた。
【0047】
まず、光触媒担持体の基材となる石英ガラス球200個を用意した。石英ガラス球の直径は10mmである。これらの石英ガラス球の表面に市販の光触媒機能を有する酸化チタンコーティング液を塗布し、乾燥して外周面が光触媒活性を有する酸化チタン膜で被覆された光触媒担持体を得た。得られた光触媒担持体表面の酸化チタン膜の厚みは約1μmであった。
【0048】
光導波路は、シリカコア及びフッ素添加シリカクラッドからなる母材を通常の紡糸工程で線引きして得られた石英ガラスファイバを用いた。得られた光ファイバを1mずつに切断して200本の光ファイバを用意した。この光ファイバの特性は次の通りである。
・コア直径:200μm、
・クラッド直径:250μm、
・比屈折率差:0.6%、
・NA(開口数):0.16、
・被覆樹脂:2層構造。
【0049】
次に、前記光触媒担持体の表面にドリルで直径2mm、深さ2mmの中空腔を形成し、前記の光ファイバを被覆付きのままで1本ずつ、基材と接触するまで中空腔に差し込み、中空腔開口部にエポキシ系接着剤を注入、硬化させて光ファイバを固定し、図1に示す光触媒素子を作製した。
【0050】
光ファイバと接続した200個の光触媒担持体を5×5×8個の配置で、高さ52mm×横幅52mm×高さ100mmのアルミ箱内に積層し、それぞれの光ファイバを箱外に導出し、ファイバ長を入射側で合わせ、余長を切断して入射端部をバンドル化した。
【0051】
得られたアルミ箱を反応槽とし、図3に示すような20Lの実験容器と循環系を構成し、バンドル化した光ファイバの入射端を反応槽から出し、外部に設置したチップ型のUV LEDと結合して励起光を入射可能とし、アセトアルデヒドガスの分解実験を行った。
【0052】
分解実験条件は以下の通りとした。
・光源:チップ型UV LED(出力80mW、中心波長380nm)、
・光触媒担持表面積:約628cm
・単位表面積あたりの平均照度:約0.1mW/cm
・初期アセトアルデヒド濃度:30ppm。
【0053】
また、図3中に示していないが、実験装置内には、ガス循環のために小さいファンを挿入してガスを循環撹拌した。一定時間毎に実験装置内の残留アセトアルデヒドガス濃度をガスクロマトグラフィーで測定し、分解反応の進捗状態を確認した。実験結果を図4に示す。図4に示すように、本実施例によればアセトアルデヒドガスを効率よく分解除去することができる。
【0054】
[実施例2]
本実施例では、光触媒担持体の基材にUV透過型アクリル棒を用い、光導波路にUV透過型アクリル光ファイバを用いた。光触媒担持体と光導波路の接続は融着方式とした。また励起光源として紫外LED(UV LED)を用いた。
【0055】
UV透過型のアクリル樹脂からなる円柱状のアクリル棒を100本用意した。アクリル棒の直径は10mmで、長さ20mmである。これらのアクリル棒の表面に、市販の透明な光触媒アンダーコート材(保護層)を塗布し、さらにその上に光触媒機能を有する酸化チタンコーティング溶液を塗布し、乾燥して外周面が光触媒活性を有する酸化チタン膜で被覆された光触媒担持体を得た。得られた光触媒担持体表面の酸化チタン膜の厚みは約1μmであった。
【0056】
光導波路は、UV透過型のアクリル樹脂からなるアクリルファイバを用い、長さ1mのアクリルファイバを100本用意した。使用したアクリルファイバの特性は次の通りである。
・コア直径:200μm、
・クラッド直径:250μm、
・比屈折率差:0.8%、
・NA(開口数):0.18、
・被覆樹脂:無し。
【0057】
次に、アクリルファイバの先端を熱で溶かし、1本ずつ、光触媒担持体と融着接続した。
【0058】
アクリルファイバを接続した100本の光触媒担持体を5×5×4個の配置で、高さ52mm×横幅52mm×高さ100mmのアルミ箱内に積層し、それぞれの光ファイバを箱外に導出し、ファイバ長を入射側で合わせ、余長を切断して入射端部をバンドル化した。
【0059】
得られたアルミ箱を反応槽とし、実施例1と同様に、図3に示すような20Lの実験容器と循環系を構成し、バンドル化した光ファイバの入射端を反応槽から出し、外部に設置したチップ型のUV LEDと結合して励起光を入射可能とし、アセトアルデヒドガスの分解実験を行った。
【0060】
分解実験条件は以下の通りとした。
・光源:チップ型UV LED(出力80mW、中心波長380nm)、
・光触媒担持表面積:約785cm
・単位表面積あたりの平均照度:約0.05mW/cm
・初期アセトアルデヒド濃度:30ppm。
【0061】
また、実施例1と同様に、図3中に示していないが、実験装置内には、ガス循環のために小さいファンを挿入してガスを循環撹拌した。一定時間毎に実験装置内の残留アセトアルデヒドガス濃度をガスクロマトグラフィーで測定し、分解反応の進捗状態を確認した。実験結果を図4に示す。図4に示すように、本実施例によればアセトアルデヒドガスを効率よく分解除去することができる。
【図面の簡単な説明】
【0062】
【図1】本発明の光触媒素子の一実施形態を示す構成図である。
【図2】本発明の光触媒デバイスの一実施形態を示す構成図である。
【図3】本発明の光触媒清浄装置の一実施形態を示す構成図である。
【図4】本発明に係る実施例の結果を示すグラフである。
【符号の説明】
【0063】
1…光触媒素子、2…光触媒担持体、3…光導波路、4…基材、5…光触媒層、6…中空腔、7…接着剤、8…光触媒デバイス、9…反応槽、10…バンドル、11…光触媒清浄装置、12…入口、13…出口、14…管路、15…実験容器、16…サンプリング部、17…励起光源、18…入射端。

【特許請求の範囲】
【請求項1】
光触媒反応の励起光波長帯域で透明な材質からなる基材の表面に光触媒が担持された光触媒担持体と、外部光源から励起光を該光触媒担持体の内部に導く少なくとも1つの光導波路とからなり、前記光触媒担持体は、多数の光触媒担持体を密接配置した際にそれぞれの光触媒担持体間に流体が通過可能な隙間を生じる形状とされていることを特徴とする光触媒素子。
【請求項2】
前記光触媒担持体の形状が球状であることを特徴とする請求項1に記載の光触媒素子。
【請求項3】
前記光触媒担持体の形状が棒状又は表面に凹凸のある不規則形状であることを特徴とする請求項1に記載の光触媒素子。
【請求項4】
前記光導波路が光ファイバであることを特徴とする請求項1〜3のいずれかに記載の光触媒素子。
【請求項5】
前記光ファイバがシリカコアとフッ素添加シリカクラッドからなることを特徴とする請求項4に記載の光触媒素子。
【請求項6】
前記光触媒担持体の一部に中空腔が設けられ、前記光導波路の出射端が前記中空腔内に埋設、固定されていることを特徴とする請求項1〜5のいずれかに記載の光触媒素子。
【請求項7】
前記光触媒担持体の一部に前記光導波路の出射端が融着接続されていることを特徴とする請求項1〜5のいずれかに記載の光触媒素子。
【請求項8】
請求項1〜7のいずれかに記載された光触媒素子の光触媒素子を、流体の入口と出口を有する反応槽に多数収容してなることを特徴とする光触媒デバイス。
【請求項9】
請求項8に記載の光触媒デバイスと、前記反応槽内に収容された光触媒素子の光導波路の入射端に励起光を入射可能に設けられた励起光源とを備えたことを特徴とする光触媒清浄装置。
【請求項10】
前記励起光源が発光ダイオードであることを特徴とする請求項9に記載の光触媒清浄装置。
【請求項11】
前記励起光源が発光ダイオードであり、前記光導波路が多数本束ねられて少なくとも入射端側がバンドル化され、そのバンドル化された入射端に発光ダイオードが励起光を入射可能に結合されていることを特徴とする請求項9に記載の光触媒清浄装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2006−130365(P2006−130365A)
【公開日】平成18年5月25日(2006.5.25)
【国際特許分類】
【出願番号】特願2004−319066(P2004−319066)
【出願日】平成16年11月2日(2004.11.2)
【出願人】(000005186)株式会社フジクラ (4,463)
【Fターム(参考)】