説明

分離膜エレメント

【課題】 高い分離性能と透過性能を有する分離膜エレメントを提供する。
【解決手段】 分離膜表面(供給流体側)に投影面積比が0.03〜0.6の不連続異素材からなる供給側流路材を配置し、分離膜裏面(透過流体側)に投影面積比が0を超えて1未満の異素材からなる透過側流路材が配置されることを特徴とする分離膜エレメント。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、液体、気体等の流体に含まれる成分を分離するために使用される分離膜エレメントに関する。
【背景技術】
【0002】
液体、気体等の流体に含まれる成分を分離する方法としては、様々なものがある。例えば海水、かん水などに含まれるイオン性物質を除くための技術を例にとると、近年、省エネルギーおよび省資源のためのプロセスとして分離膜エレメントによる分離法の利用が拡大している。分離膜エレメントによる分離法に使用される分離膜には、その孔径や分離機能の点から、精密ろ過膜、限外ろ過膜、ナノろ過膜、逆浸透膜、正浸透膜などがあり、これらの膜は、例えば海水、かん水、有害物を含んだ水などから飲料水を得る場合や、工業用超純水の製造、排水処理、有価物の回収などに用いられており、目的とする分離成分及び分離性能によって使い分けられている。
【0003】
分離膜エレメントは、分離膜の一方の面に原流体を供給し、他方の面から透過流体を得る点では共通している。分離膜エレメントは、各種形状からなる分離膜素子を多数束ねて膜面積を大きくし、単位エレメントあたりで多くの透過流体を得ることができるように構成されており、用途や目的にあわせて、スパイラル型、中空糸型、プレート・アンド・フレーム型、回転平膜型、平膜集積型などの各種エレメントが製造されている。
【0004】
例えば、逆浸透ろ過に用いられる流体分離膜エレメントを例にとると、その分離膜エレメント部材は、原流体を分離膜表面へ供給する供給側流路材、原流体に含まれる成分を分離する分離膜、及び分離膜を透過し供給側流体から分離された透過側流体を中心管へと導くための透過側流路材からなる部材を中心管の周りに巻き付けたスパイラル型分離膜エレメントが、原流体に圧力を付与し、透過流体を多く取り出す点で広く用いられている。
【0005】
スパイラル型逆浸透分離膜エレメントの部材としては、供給側流路材では供給側流体の流路を形成させるために主に高分子製のネットが使用され、分離膜としては、ポリアミドなどの架橋高分子からなる分離機能層、ポリスルホンなどの高分子からなる多孔性支持膜、ポリエチレンテレフタレートなどの高分子からなる不織布がそれぞれ供給側から透過側にかけて積層された複合半透膜が使用され、透過側流路材では膜の落ち込みを防き、かつ透過側の流路を形成させる目的で、供給側流路材よりも間隔の細かいトリコットと呼ばれる織物部材が使用されている。
【0006】
近年、分離膜エレメントに造水コストの低減への高まりから、膜エレメントの高性能化のニーズが求められている。分離膜エレメントの分離性能、単位時間あたりの透過流体量を増やす上では、各流路部材、分離膜、エレメント部材の性能向上が提案されてきた。例えば、特許文献1では凹凸賦形されたシート状物を透過側流路材として使用する方法、特許文献2では、基材を使用せず、供給側表面に凹凸を形成させ、内部に中空通路を有する平膜を使用する方法、特許文献3では、凹凸を有する多孔性支持体と分離活性層とを備えるシート状複合半透膜を用い、ネットなどの供給側流路材やトリコットなどの透過側流路材を用いない方法が提案されている。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2006−247453号公報
【特許文献2】特開平11−114381号公報
【特許文献3】特開2010−99590号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかし、上記した分離膜エレメントは、性能向上、特に長期間にわたり運転を行った際の安定性能の点では、十分とは言えず、例えば特許文献1で記載される、凹凸賦形されたシート状物を透過側流路材として使用する方法では透過側の流動抵抗を軽減するのみであり、かつシート表面の抵抗があるため、流動抵抗低減効果が十分とは言えない。特許文献2で記載される、基材を使用せず、供給側表面に凹凸を形成させ、内部に中空通路を有する平膜を使用する方法では、膜表面と平行な方向に延びる中空通路を平膜内に有するため、表面の凹凸の高さを大きくすることが困難かつ凹凸形状が限定され(実施例では段差0.15mmの溝)、また透過側流路の形状も限定されるため、供給側、透過側の流動抵抗低減効果が十分とは言えない。特許文献3で記載される、凹凸を有する多孔性支持体と分離活性層とを備えるシート状複合半透膜を用い、ネットなどの供給側流路材やトリコットなどの透過側流路材を用いない方法では、特許文献3の実施例に平膜評価用のセルを用いた場合の膜性能のみの記述があるものの、実際に分離膜エレメントを構成した場合の性能は開示されておらず、実際に圧力をかけて分離膜エレメントを運転した場合、供給側流路、透過側流路の断面積が変化しやすく初期だけでなく長期間にわたり運転を実施した際に性能が変化しすい傾向にある。
【0009】
そこで、本発明は、分離膜エレメントにおける分離除去性能向上、単位時間あたりの透過流体量の増加などの分離膜エレメント性能向上、安定性能に有効な分離膜エレメントを提供することを目的とする。
【課題を解決するための手段】
【0010】
上記目的を達成するための本発明は、以下の構成をとる。すなわち、
(1)分離膜表面(供給流体側)に投影面積比が0.03〜0.6の不連続異素材からなる供給側流路材を配置し、分離膜裏面(透過流体側)に投影面積比が0を超えて1未満の異素材からなる透過側流路材が配置されることを特徴とする分離膜エレメント。
(2)透過側流路材の投影面積比が0.1〜0.8であることを特徴とする(1)に記載の分離膜エレメント。
である。
【発明の効果】
【0011】
本発明によれば、分離膜表面(供給流体側)に配置された特定の投影面積比を有する不連続異素材からなる供給側流路材により高効率かつ安定した供給側流路を形成し、分離膜裏面(透過流体側)に配置された特定の投影面積比を有する異素材からなる透過流路材により高効率かつ安定した透過側流路を形成し、分離性能、透過性能が高められた分離膜エレメントを得ることができ、特に、高温流体や酸、アルカリなどの薬品に対する耐久性にも優れる高効率分離膜エレメントを得ることができる。
【図面の簡単な説明】
【0012】
【図1】本発明の分離膜エレメントの例を示す断面模式図である。
【発明を実施するための形態】
【0013】
以下、本発明について、さらに詳細に説明する。
【0014】
本発明は、分離膜表面(供給流体側)に投影面積比が0.03〜0.6の不連続異素材からなる供給側流路材を配置し、分離膜裏面(透過流体側)に投影面積比が0を超えて1未満の異素材からなる透過側流路材が配置されることを特徴とする分離膜エレメントである。
【0015】
ここで、分離膜とは、分離膜表面に供給される流体中の成分を分離し、分離膜を透過した透過流体を得るものであれば限定されないが、分離機能層、多孔性支持膜、基材からなるものが好ましく使用される。分離機能層としては、孔径制御、耐久性の点で架橋高分子が好ましく使用され、成分の分離性能の点で、多孔性支持膜上に、多官能アミンと多官能酸ハロゲン化物とを重縮合させてなるポリアミド分離機能層、有機無機ハイブリッド機能層などが好適に用いることができる。また、セルロース膜、PVDF膜、PES膜、ポリスルホン膜のような分離機能と支持体機能を有する膜を用いることもできる。
【0016】
本発明において、分離機能層を構成するポリアミドを用いる場合を詳述する。ポリアミド膜は、多官能アミンと多官能酸ハロゲン化物との界面重縮合により形成することができる。ここで、多官能アミンまたは多官能酸ハロゲン化物の少なくとも一方が3官能以上の化合物を含んでいることが好ましい。
【0017】
ここで、多官能アミンとは、一分子中に少なくとも2個の第一級アミノ基および/または第二級アミノ基を有し、そのアミノ基のうち少なくとも1つは第一級アミノ基であるアミンをいい、例えば、2個のアミノ基がオルト位やメタ位、パラ位のいずれかの位置関係でベンゼン環に結合したフェニレンジアミン、キシリレンジアミン、1,3,5−トリアミノベンゼン、1,2,4−トリアミノベンゼン、3,5−ジアミノ安息香酸、3−アミノベンジルアミン、4−アミノベンジルアミンなどの芳香族多官能アミン、エチレンジアミン、プロピレンジアミンなどの脂肪族アミン、1,2−ジアミノシクロヘキサン、1,4−ジアミノシクロヘキサン、4−アミノピペリジン、4−アミノエチルピペラジンなどの脂環式多官能アミン等を挙げることができる。中でも、膜の選択分離性や透過性、耐熱性を考慮すると、一分子中に2〜4個の第一級アミノ基および/または第二級アミノ基を有する芳香族多官能アミンであることが好ましく、このような多官能芳香族アミンとしては、m−フェニレンジアミン、p−フェニレンジアミン、1,3,5−トリアミノベンゼンが好適に用いられる。中でも、入手の容易性や取り扱いのしやすさから、m−フェニレンジアミン(以下、m−PDAと記す)を用いることがより好ましい。これらの多官能アミンは、単独で用いても、2種以上を同時に用いてもよい。2種以上を同時に用いる場合、上記アミン同士を組み合わせてもよく、上記アミンと一分子中に少なくとも2個の第二級アミノ基を有するアミンを組み合わせてもよい。一分子中に少なくとも2個の第二級アミノ基を有するアミンとして、例えば、ピペラジン、1,3−ビスピペリジルプロパン等を挙げることができる。
【0018】
多官能酸ハロゲン化物とは、一分子中に少なくとも2個のハロゲン化カルボニル基を有する酸ハロゲン化物をいう。例えば、3官能酸ハロゲン化物では、トリメシン酸クロリド、1,3,5−シクロヘキサントリカルボン酸トリクロリド、1,2,4−シクロブタントリカルボン酸トリクロリドなどを挙げることができ、2官能酸ハロゲン化物では、ビフェニルジカルボン酸ジクロリド、アゾベンゼンジカルボン酸ジクロリド、テレフタル酸クロリド、イソフタル酸クロリド、ナフタレンジカルボン酸クロリドなどの芳香族2官能酸ハロゲン化物、アジポイルクロリド、セバコイルクロリドなどの脂肪族2官能酸ハロゲン化物、シクロペンタンジカルボン酸ジクロリド、シクロヘキサンジカルボン酸ジクロリド、テトラヒドロフランジカルボン酸ジクロリドなどの脂環式2官能酸ハロゲン化物を挙げることができる。多官能アミンとの反応性を考慮すると、多官能酸ハロゲン化物は多官能酸塩化物であることが好ましく、また、膜の選択分離性、耐熱性を考慮すると、一分子中に2〜4個の塩化カルボニル基を有する多官能芳香族酸塩化物であることが好ましい。中でも、入手の容易性や取り扱いのしやすさの観点から、トリメシン酸クロリドを用いるとより好ましい。これらの多官能酸ハロゲン化物は、単独で用いても、2種以上を同時に用いてもよい。
【0019】
さらに、分離機能層を成形性、耐薬品性の点でSi元素などを有する有機・無機ハイブリッド構造とした分離膜も使用することができる。有機無機ハイブリッド膜としては、特に限定されないが、例えば、(A)エチレン性不飽和基を有する反応性基および加水分解性基がケイ素原子に直接結合したケイ素化合物、ならびに(B)前記ケイ素化合物以外のエチレン性不飽和基を有する化合物を用いた、(A)のケイ素化合物の加水分解性基の縮合ならびに(A)のケイ素化合物および(B)のエチレン性不飽和基を有する化合物のエチレン性不飽和基の重合物が使用できる。
【0020】
まず(A)のエチレン性不飽和基を有する反応性基および加水分解性基がケイ素原子に直接結合したケイ素化合物について説明する。
【0021】
エチレン性不飽和基を有する反応性基はケイ素原子に直接結合している。かような反応性基としては、ビニル基、アリル基、メタクリルオキシエチル基、メタクリルオキシプロピル基、アクリルオキシエチル基、アクリルオキシプロピル基、スチリル基が例示される。重合性の観点から、メタクリルオキシプロピル基、アクリルオキシプロピル基、スチリル基が好ましい。
【0022】
またケイ素原子に直接結合している加水分解性基が水酸基に変化するなどのプロセスを経て、ケイ素化合物同士がシロキサン結合で結ばれるという縮合反応が生じ、高分子となる。加水分解性基としてはアルコキシ基、アルケニルオキシ基、カルボキシ基、ケトオキシム基、アミノヒドロキシ基、ハロゲン原子およびイソシアネート基などの官能基が例示される。アルコキシ基としては、炭素数1〜10のものが好ましく、さらに好ましくは炭素数1〜2のものである。アルケニルオキシ基としては炭素数2〜10のものが好ましく、さらには炭素数2〜4、さらには3のものである。カルボキシ基としては、炭素数2〜10のものが好ましく、さらには炭素数2のもの、すなわちアセトキシ基である。ケトオキシム基としては、メチルエチルケトオキシム基、ジメチルケトオキシム基、ジエチルケトオキシム基が例示される。アミノヒドロキシ基は、酸素を介してアミノ基が酸素原子を介してケイ素原子に結合しているものである。このようなものとしては、ジメチルアミノヒドロキシ基、ジエチルアミノヒドロキシ基、メチルエチルアミノヒドロキシ基が例示される。ハロゲン原子としては、塩素原子が好ましく使用される。
【0023】
分離機能層の形成にあたっては、上記加水分解性基の一部が加水分解し、シラノール構造をとっているケイ素化合物も使用できる。また2以上のケイ素化合物が、加水分解性基の一部が加水分解、縮合し架橋しない程度に高分子量化したものも使用できる。
【0024】
ケイ素化合物(A)としては下記一般式(a)で表されるものであることが好ましい。
Si(R(R(R4−m−n ・・・(a)
(Rはエチレン性不飽和基を含む反応性基を示す。Rはアルコキシ基、アルケニルオキシ基、カルボキシ基、ケトオキシム基、ハロゲン原子またはイソシアネート基のいずれかを表す。RはHまたはアルキル基を表す。m、nはm+n≦4を満たす整数であり、m≧1、n≧1を満たすものとする。R、R、Rそれぞれにおいて2以上の官能基がケイ素原子に結合している場合、同一であっても異なっていてもよい。)
はエチレン性不飽和基を含む反応性基であるが、上で解説したとおりである。
【0025】
は加水分解性基であるが、これらは上で解説したとおりである。Rとなるアルキル基の炭素数としては1〜10のものが好ましく、さらに1〜2のものが好ましい。
【0026】
加水分解性基としては、分離機能層の形成にあたって、反応液が粘性を持つことからアルコキシ基が好ましく用いられる。
【0027】
かようなケイ素化合物としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、スチリルトリメトキシシラン、メタクリロキシプロピルメチルジメトキシシラン、メタクリロキシプロピルトリメトキシシラン、メタクリロキシプロピルメチルジエトキシシラン、メタクリロキシプロピルトリエトキシシラン、アクリロキシプロピルトリメトキシシランが例示される。
【0028】
(A)のケイ素化合物の他、エチレン性不飽和基を有する反応性基を有しないが、加水分解性基を有するケイ素化合物を併せて使用することもできる。このようなケイ素化合物は、一般式(a)では「m≧1」と定義されているが、一般式(a)においてmがゼロである化合物が例示される。かようなものとしては、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシランが例示される。
【0029】
次に(A)のケイ素化合物以外のものであって、エチレン性不飽和基を有する化合物(B)について説明する。
【0030】
エチレン性不飽和基は付加重合性を有する。かような化合物としてはエチレン、プロピレン、メタアクリル酸、アクリル酸、スチレンおよびこれらの誘導体が例示される。
【0031】
また、この化合物は、複合半透膜を水溶液の分離などに用いたときに水の選択的透過性を高め、塩の阻止率を上げるために、酸基を有するアルカリ可溶性の化合物であることが好ましい。
【0032】
好ましい酸の構造としては、カルボン酸、ホスホン酸、リン酸およびスルホン酸であり、これらの酸の構造としては、酸の形態、エステル化合物、および金属塩のいずれの状態で存在してもよい。これらのエチレン性不飽和基を1個以上有する化合物は、2つ以上の酸を含有し得るが、中でも1個〜2個の酸基を含有する化合物が、好ましい。
【0033】
上記のエチレン性不飽和基を1個以上有する化合物の中でカルボン酸基を有する化合物としては、以下のものが例示される。マレイン酸、無水マレイン酸、アクリル酸、メタクリル酸、2−(ヒドロキシメチル)アクリル酸、4−(メタ)アクリロイルオキシエチルトリメリト酸および対応する無水物、10−メタクリロイルオキシデシルマロン酸、N−(2−ヒドロキシ−3−メタクリロイルオキシプロピル)−N−フェニルグリシンおよび4−ビニル安息香酸が挙げられる。
【0034】
上記のエチレン性不飽和基を1個以上有する化合物の中でホスホン酸基を有する化合物としては、ビニルホスホン酸、4−ビニルフェニルホスホン酸、4−ビニルベンジルホスホン酸、2−メタクリロイルオキシエチルホスホン酸、2−メタクリルアミドエチルホスホン酸、4−メタクリルアミド−4−メチル−フェニル−ホスホン酸、2−[4−(ジヒドロキシホスホリル)−2−オキサ−ブチル]−アクリル酸および2−[2−ジヒドロキシホスホリル)−エトキシメチル]−アクリル酸−2,4,6−トリメチル−フェニルエステルが例示される。
【0035】
上記のエチレン性不飽和基を1個以上有する化合物の中でリン酸エステルの化合物としては、2−メタクリロイルオキシプロピル一水素リン酸および2−メタクリロイルオキシプロピル二水素リン酸、2−メタクリロイルオキシエチル一水素リン酸および2−メタクリロイルオキシエチル二水素リン酸、2−メタクリロイルオキシエチル−フェニル−水素リン酸、ジペンタエリトリトール−ペンタメタクリロイルオキシホスフェート、10−メタクリロイルオキシデシル−二水素リン酸、ジペンタエリトリトールペンタメタクリロイルオキシホスフェート、リン酸モノ−(1−アクリロイル−ピペリジン−4−イル)−エステル、6−(メタクリルアミド)ヘキシル二水素ホスフェートならびに1,3−ビス−(N−アクリロイル−N−プロピル−アミノ)−プロパン−2−イル−二水素ホスフェートが例示される。
【0036】
上記のエチレン性不飽和基を1個以上有する化合物の中でスルホン酸基を有する化合物としては、ビニルスルホン酸、4−ビニルフェニルスルホン酸または3−(メタクリルアミド)プロピルスルホン酸が挙げられる。
【0037】
本発明の複合半透膜では、分離機能層を形成するために、(A)のケイ素化合物以外に、エチレン性不飽和基を1個以上有する化合物、および重合開始剤を含んだ反応液が使用される。この反応液を多孔質膜上に塗布し、さらに加水分解性基を縮合することに加えて、エチレン性不飽和基の重合によって、これら化合物を高分子量化することが必要である。(A)のケイ素化合物を単独で縮合させた場合、ケイ素原子に架橋鎖の結合が集中し、ケイ素原子周辺とケイ素原子から離れた部分との密度差が大きくなるため、分離機能層中の孔径が不均一となる傾向がある。一方、(A)のケイ素化合物自身の高分子量化および架橋に加え、(B)のエチレン性不飽和基を有する化合物を共重合させることで、加水分解性基の縮合による架橋点とエチレン性不飽和基の重合による架橋点が適度に分散される。このように適度に架橋点を分散させることで、均一な孔径を有する分離機能層が構成され、透水性能と除去性能のバランスが取れた複合半透膜を得ることができる。この際、エチレン性不飽和基を1個以上有する化合物は、低分子量だと複合半透膜使用時に溶出し膜性能低下を引き起こす可能性があるため、高分子量化していることが必要である。
【0038】
本発明の製造方法において、(A)エチレン性不飽和基を有する反応性基および加水分解性基がケイ素原子に直接結合したケイ素化合物の含有量は、反応液に含有される固形分量100重量部に対し10重量部以上であることが好ましく、さらに好ましくは20重量部〜50重量部である。ここで、反応液に含有される固形分とは、反応液に含有される全成分のうち、溶媒および縮合反応で生成する水やアルコールなどの留去成分を除いた、本発明の製造方法によって得られた複合半透膜に最終的に分離機能層として含まれる成分のことを指す。(A)のケイ素化合物量が少ないと、架橋度が不足する傾向があるので、膜ろ過時に分離機能層が溶出し分離性能が低下するなどの不具合が発生するおそれがある。
【0039】
(B)のエチレン性不飽和基を有する化合物の含有量は、反応液に含有される固形分量100重量部に対し90重量部以下であることが好ましく、さらに好ましくは50重量部〜80重量部である。(B)の化合物の含有量がこれらの範囲にあるとき、得られる分離機能層は架橋度が高くなるため、分離機能層が溶出することなく安定に膜ろ過ができる。
【0040】
次に、本発明の複合半透膜の製造方法における、分離機能層を多孔質支持膜上に形成する方法について説明する。
【0041】
分離機能層形成のために例示される方法としては、(A)のケイ素化合物および(B)のエチレン性不飽和基を有する化合物を含有する反応液を塗布する工程、溶媒を除去する工程、エチレン性不飽和基を重合させる工程、加水分解性基を縮合させる工程の順に行うものである。エチレン不飽和基を重合させる工程において、加水分解性基が同時に縮合することがあってもいい。
【0042】
まず、(A)および(B)を含有する反応液を多孔性支持膜に接触させる。かかる反応液は、通常溶媒を含有する溶液であるが、かかる溶媒は多孔性支持膜を破壊せず、(A)および(B)、および必要に応じて添加される重合開始剤を溶解するものであれば特に限定されない。この反応液には、(A)のケイ素化合物のモル数に対して1〜10倍モル量、好ましくは1〜5倍モル量の水を無機酸または有機酸と共に添加して、(A)のケイ素化合物の加水分解を促すことが好ましい。
【0043】
反応液の溶媒としては、水、アルコール系有機溶媒、エーテル系有機溶媒、ケトン系有機溶媒および、これらを混ぜ合わせたものが好ましい。例えば、アルコール系有機溶媒として、メタノール、エトキシメタノール、エタノール、プロパノール、ブタノール、アミルアルコール、シクロヘキサノール、メチルシクロヘキサノール、エチレングリコールモノメチルエーテル(2−メトキシエタノール)、エチレングリコールモノアセトエステル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノアセテート、プロピレングリコールモノエチルエーテル、プロピレングリコールモノアセテート、ジプロピレングリコールモノエチルエーテル、メトキシブタノール等が挙げられる。また、エーテル系有機溶媒として、メチラール、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、ジアミルエーテル、ジエチルアセタール、ジヘキシルエーテル、トリオキサン、ジオキサン等が挙げられる。また、ケトン系有機溶媒として、アセトン、メチルエチルケトン、メチルプロピルケトン、メチルイソブチルケトン、メチルアミルケトン、メチルシクロヘキシルケトン、ジエチルケトン、エチルブチルケトン、トリメチルノナノン、アセトニトリルアセトン、ジメチルオキシド、ホロン、シクロヘキサノン、ダイアセトンアルコール等が挙げられる。また、溶媒の添加量としては、50〜99重量部%が好ましく、さらには80〜99重量部%が好ましい。溶剤の添加量が多すぎると膜中に欠点が生じやすい傾向があり、少なすぎると得られる複合半透膜の透水性が低くなる傾向がある。
【0044】
多孔性支持膜と反応液との接触は、多孔性支持膜面上で均一にかつ連続的に行うことが好ましい。具体的には、例えば、反応液をスピンコーター、ワイヤーバー、フローコーター、ダイコーター、ロールコーター、スプレーなどの塗布装置を用いて多孔性支持膜にコーティングする方法があげられる。また多孔性支持膜を、反応液に浸漬する方法を挙げることができる。
【0045】
浸漬させる場合、多孔性支持膜と反応液との接触時間は、0.5〜10分間の範囲内であることが好ましく、1〜3分間の範囲内であるとさらに好ましい。反応液を多孔性支持膜に接触させたあとは、膜上に液滴が残らないように十分に液切りすることが好ましい。十分に液切りすることで、膜形成後に液滴残存部分が膜欠点となって膜性能が低下することを防ぐことができる。液切りの方法としては、反応液接触後の多孔性支持膜を垂直方向に把持して過剰の反応液を自然流下させる方法や、エアーノズルから窒素などの風を吹き付け、強制的に液切りする方法などを用いることができる。また、液切り後、膜面を乾燥させ、反応液の溶媒分の一部を除去することもできる。
【0046】
ケイ素の加水分解性基を縮合させる工程は、多孔性支持膜上に反応液を接触させた後に加熱処理することによって行われる。このときの加熱温度は、多孔性支持膜が溶融し分離膜としての性能が低下する温度より低いことが要求される。縮合反応を速やかに進行させるために通常0℃以上で加熱を行うことが好ましく、20℃以上がより好ましい。また、前記反応温度は、150℃以下が好ましく、100℃以下がより好ましい。反応温度が0℃以上であれば、加水分解および縮合反応が速やかに進行し、150℃以下であれば、加水分解および縮合反応の制御が容易になる。また、加水分解または縮合を促進する触媒を添加することで、より低温でも反応を進行させることが可能である。さらに本発明では分離機能層が細孔を有するよう加熱条件および湿度条件を選定し、縮合反応を適切に行うようにする。
【0047】
(A)のケイ素化合物および(B)のエチレン性不飽和基を有する化合物のエチレン性不飽和基の重合方法としては、熱処理、電磁波照射、電子線照射、プラズマ照射により行うことができる。ここで電磁波とは赤外線、紫外線、X線、γ線などを含む。重合方法は適宜最適な選択をすればよいが、ランニングコスト、生産性などの点から電磁波照射による重合が好ましい。電磁波の中でも赤外線照射や紫外線照射が簡便性の点からより好ましい。実際に赤外線または紫外線を用いて重合を行う際、これらの光源は選択的にこの波長域の光のみを発生する必要はなく、これらの波長域の電磁波を含むものであればよい。しかし、重合時間の短縮、重合条件の制御などのしやすさの点から、これらの電磁波の強度がその他の波長域の電磁波に比べ高いことが好ましい。
【0048】
電磁波は、ハロゲンランプ、キセノンランプ、UVランプ、エキシマランプ、メタルハライドランプ、希ガス蛍光ランプ、水銀灯などから発生させることができる。電磁波のエネルギーは重合できれば特に制限しないが、中でも高効率で低波長の紫外線が薄膜形成性が高い。かような紫外線は低圧水銀灯、エキシマレーザーランプにより発生させることができる。本発明に係る分離機能層の厚み、形態はそれぞれの重合条件によっても大きく変化することがあり、電磁波による重合であれば電磁波の波長、強度、被照射物との距離、処理時間により大きく変化することがある。そのためこれらの条件は適宜最適化を行う必要がある。
【0049】
重合速度を速める目的で分離機能層形成の際に重合開始剤、重合促進剤等を添加することが好ましい。ここで、重合開始剤、重合促進剤とは特に限定されるものではなく、用いる化合物の構造、重合手法などに合わせて適宜選択されるものである。
【0050】
重合開始剤を以下例示する。電磁波による重合の開始剤としては、ベンゾインエーテル、ジアルキルベンジルケタール、ジアルコキシアセトフェノン、アシルホスフィンオキシドもしくはビスアシルホスフィンオキシド、α−ジケトン(例えば、9,10−フェナントレンキノン)、ジアセチルキノン、フリルキノン、アニシルキノン、4,4’−ジクロロベンジルキノンおよび4,4’−ジアルコキシベンジルキノン、およびショウノウキノンが、例示される。熱による重合の開始剤としては、アゾ化合物(例えば、2,2’−アゾビス(イソブチロニトリル)(AIBN)もしくはアゾビス−(4−シアノバレリアン酸))、または過酸化物(例えば、過酸化ジベンゾイル、過酸化ジラウロイル、過オクタン酸tert−ブチル、過安息香酸tert−ブチルもしくはジ−(tert−ブチル)ペルオキシド)、さらに芳香族ジアゾニウム塩、ビススルホニウム塩、芳香族ヨードニウム塩、芳香族スルホニウム塩、過硫酸カリウム、過硫酸アンモニウム、アルキルリチウム、クミルカリウム、ナトリウムナフタレン、ジスチリルジアニオンが例示される。なかでもベンゾピナコールおよび2,2’−ジアルキルベンゾピナコールは、ラジカル重合のための開始剤として特に好ましい。
【0051】
過酸化物およびα−ジケトンは、開始を加速するために、好ましくは、芳香族アミンと組み合わせて使用される。この組み合わせはレドックス系とも呼ばれる。このような系の例としては、過酸化ベンゾイルまたはショウノウキノンと、アミン(例えば、N,N−ジメチル−p−トルイジン、N,N−ジヒドロキシエチル−p−トルイジン、p−ジメチル−アミノ安息香酸エチルエステルまたはその誘導体)との組み合わせである。さらに、過酸化物を、還元剤としてのアスコルビン酸、バルビツレートまたはスルフィン酸と組み合わせて含有する系もまた好ましい。
【0052】
次いで、これを約100〜200℃で加熱処理すると重縮合反応が起こり、多孔性支持膜表面にシランカップリング剤由来の分離機能層が形成された本発明の分離膜を得ることができる。加熱温度は多孔性支持膜の素材にもよるが、高すぎると溶解が起こり多孔性支持膜の細孔が閉塞するため、複合半透膜の造水量が低下する。一方低すぎた場合には、重縮合反応が不十分となり機能層の溶出により除去率が低下するようになる。
【0053】
なお上記の製造方法において、シランカップリング剤とエチレン性不飽和基を1個以上有する化合物とを高分子量化する工程は、シランカップリング剤の重縮合工程の前に行っても良いし、後に行っても良い。また、同時に行っても良い。
【0054】
このようにして得られた複合半透膜はこのままでも使用できるが、使用する前に例えばアルコール含有水溶液、アルカリ水溶液によって膜の表面を親水化させることが好ましい。
【0055】
また、有機無機ハイブリッド膜としては、多孔性支持膜上に分離機能層を有する複合半透膜であって、該分離機能層が、一般式(1)で表されるイオン群のうちから選ばれる少なくとも1種が縮合してなる縮合生成物、および、酸性基を少なくとも1種有する高分子の共役塩基からなることを特徴とする複合半透膜も用いることができる。
【0056】
【化1】

【0057】
(一般式(1)中、nは1〜4のいずれかの整数を、R1、R2は水素原子あるいは炭素数1〜4のいずれかのアルキル基を表す。)
さらに、酸性基がカルボキシル基、スルホン酸基、およびホスホン酸基のうちから選ばれる、少なくとも1種であるものが膜性能を向上させる上で好ましく用いることができる。
【0058】
また、高分子の共役塩基が少なくとも1つの重合可能な二重結合を有する化合物の共役塩基を少なくとも1種含む単量体または単量体混合物を重合してなる有機無機ハイブリッド膜も好ましく用いることができる。
【0059】
これらの複合半透膜の製造法は特に限定されないが、一般式(2)で表される化合物と、酸性基および少なくとも1つの重合可能な二重結合を有する化合物を少なくとも1種含む単量体または単量体混合物とを含む塗液を、多孔性支持膜上に塗布し、エネルギー線を照射し、次に加熱乾燥させることにより、分離機能層を形成する工程を含む方法で複合半透膜を形成することが可能である。
【0060】
【化2】

【0061】
(一般式(1)中、nは1〜4のいずれかの整数を、R1、R2は水素原子あるいは炭素数1〜4のいずれかのアルキル基を、Yは任意の共役塩基を表す。)
分離機能層は、実質的に分離性能を有する層であって、上記一般式(1)で表されるイオン群のうちから選ばれる、少なくとも1種が縮合してなる縮合生成物、および、酸性基を少なくとも1種有する高分子の共役塩基からなることを特徴とするものである。この分離機能層においては、該酸性基の共役塩基が該縮合生成物のイミダゾリウム基とイオン結合していることにより、本発明によって所望の効果が得られるものと考えられる。
【0062】
この分離機能層の製造方法は特に限定されないが、例えば、酸性基および少なくとも1つの重合可能な二重結合を有する化合物を少なくとも1種含む単量体または単量体混合物と、上記一般式(2)で表される化合物とを含む塗液を、多孔性支持膜上に塗布し、エネルギー線を照射し、次に加熱乾燥させることにより、分離機能層を形成する工程を含む製造方法などが、好ましく採用される。
【0063】
上記製造方法において、塗液を得る方法としては、例えば、酸性基および少なくとも1つの重合可能な二重結合を有する化合物を少なくとも1種含む単量体または単量体混合物と、上記一般式(2)で表される化合物とを溶媒中に溶解または分散させる方法が挙げられるが、上記塗液が2種の化合物を含有していればその方法は限定されない。なお、酸性基および少なくとも1つの重合可能な二重結合を有する化合物や上記一般式(2)で表される化合物は、その解離平衡定数に応じて一部が水中で電離される。
【0064】
また、塗液を多孔性支持膜上に塗布する方法は特に限定されず、公知の種々の方法、例えば、ディップコート、スピンコート、スプレーコート、刷毛塗りなどの方法により塗布することができるが、本発明では、適量の塗液を多孔性支持膜上に載せた後、溶媒と接触することによって重合度が変化しないポリエステル製フィルムなどのフィルムを被せて静置する方法を採用することが好ましい。なぜならば、必要な塗液量が少なくすむほか、操作が簡便なためである。この場合、静置する時間は30秒から2分が好ましい。さらにフィルムを剥がした後、膜上に液滴が残らないように十分に液切りすることが望ましい。十分に液切りすることで、膜形成後に液滴残存部分が膜欠点となって膜性能が低下することを防ぐことができる。液切りの方法としては、エアーノズルから窒素などの風を吹き付け、強制的に液切りする方法などを用いることができる。
【0065】
上記製造方法では、塗液を多孔性支持膜上に塗布後、エネルギー線を照射し、次に加熱乾燥を行うことで本発明の複合半透膜が得られる。ここで、エネルギー線の照射により、酸性基および少なくとも1つの重合可能な二重結合を有する化合物を少なくとも1種含む単量体または単量体混合物の共役塩基が重合すると考えられる。作業性の観点から、エネルギー線の照射時間は5秒から15分であることが好ましい。また、加熱乾燥することにより上記一般式(1)で表されるイオン群のうちから選ばれる少なくとも1種以上が縮合して縮合生成物が得られるが、加熱乾燥温度は40℃以上であることが好ましく、80〜150℃であることが更に好ましい。また、加熱乾燥時間は10分以上であることが好ましい。加熱乾燥温度が40℃未満もしくは加熱時間が10分未満であると、上記一般式(1)で表されるケイ素化合物のイオンの縮合反応が十分に進まず、欠点が生まれ、膜性能が低下する。
【0066】
上記製造方法によって得られた複合半透膜は、アルコールの水溶液に1〜20分浸漬することによって親水化することが好ましい。なぜならば、アルコールは水に可溶であり、かつ疎水的な膜表面ともなじみやすいため、膜表面を親水化することができ、膜造水量を高めることが可能なためである。親水化に用いられるアルコールとしては、10wt%イソプロピルアルコール水溶液を用いることが一般的である。
【0067】
本発明における酸性基としては、スルホン酸基、スルフィン酸基、カルボキシル基、ホスホン酸基、ホスフィン酸基、水酸基、チオール基、などが挙げられるがこれらに限定されるものではない。本発明においては、これらの酸性基の中でも酸性度および試薬の入手のしやすさの観点から、カルボシキル基、スルホン酸基、およびホスホン酸基のうちから選ばれる少なくとも1種であることが好ましい。
【0068】
本発明における酸性基を少なくとも1種有する高分子の共役塩基としては、繰り返し単位の一部に酸性基を有するポリアミド、ポリエステル、ポリカーボネート、ポリアクリレート、ポリウレタン、ポリエーテル、ポリイミドなどの共役塩基が挙げられ、それらは単独重合体であっても共重合体であってもよく、上記一般式(1)で表されるイオンの縮合生成物におけるイミダゾリウム基とイオン結合するものであれば特に限定されない。本発明では、酸性基を少なくとも1種有する高分子の共役塩基を合成する際の簡便性や、上記一般式(1)で表されるイオンの縮合生成物との間で形成されるイオン結合の調整を容易にする観点から、高分子の共役塩基は、少なくとも1つの重合可能な二重結合を有する化合物の共役塩基を少なくとも1種含む単量体または単量体混合物を重合してなるものであることが好ましい。
【0069】
ここで、本発明における重合可能な二重結合としては、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、(メタ)アクリルアミド基、アリル基、ビニル基、スチリル基などが挙げられるがこれらに限定されるものではない。
【0070】
また、本発明において、酸性基と1つ以上の重合可能な二重結合とを有する化合物としては、例えば、ビニルスルホン酸およびその塩、アリルスルホン酸、o−スチレンスルホン酸およびその塩、p−スチレンスルホン酸およびその塩、m−スチレンスルホン酸およびその塩、2−ビニル安息香酸およびその塩、3−ビニル安息香酸およびその塩、4−ビニル安息香酸およびその塩、アクリル酸およびその塩、メタクリル酸およびその塩、2−アクリロイロキシエチルコハク酸、2−メタクリロイロキシエチルコハク酸、3,5−ジアクリルアミド安息香酸、ビニルホスホン酸、アリルホスホン酸、o−スチレンホスホン酸およびその塩、p−スチレンホスホン酸およびその塩、m−スチレンホスホン酸およびその塩、などが挙げられる。
【0071】
ここで、得られる複合半透膜の選択分離性が高いという観点から、一般式(1)で表されるイオンとして、nが3、R1とR2がメチル基である化合物が好ましく、さらには、該薄膜中に存在する高分子が有する酸性基は、カルボン酸基、スルホン酸基、ホスホン酸基のうちから選ばれる、少なくとも1種であることが好ましい。
【0072】
上記と同様の観点から、上記製造方法において、一般式(1)で表されるイオンの塗液中での含有率は、反応性組織物中10〜90重量%程度が好ましく、10〜50重量%程度が更に好ましい。
【0073】
そして本発明では、複合半透膜の分離機能層として、一般式(1)で表されるイオンのうち少なくとも一種が縮合してなる縮合生成物が有するイミダゾリウム基と、該縮合生成物中に存在する酸性基を有する高分子における該酸性基の共役塩基とがイオン結合してなる組成物であることを特徴とする。
【0074】
本発明の複合半透膜を、1mol/L塩酸中に浸漬し、2時間攪拌することにより、分離機能層中に存在していた酸性基を有する高分子が溶出する。このような変化は反射型赤外吸収スペクトル測定装置によって測定される赤外吸収スペクトルにおいて、酸性基に由来する吸収帯の強度の、Si-O-Si伸縮振動に由来する吸収帯(1010cm-1)の強度に対する比が減少することから確認できる。上記操作において、1mol/L塩酸の代わりに、純水を用いること以外は上記と同様の操作を行った場合には、強度比に変化は起きない。これは、酸性条件においては、酸性基が共役塩基の状態からプロトン化され、イオン結合が切断されるために、分離機能層中に保持されていた、酸性基を有する高分子が溶液中に溶出するのである。このような実験により、分離機能層中において、一般式(1)で表されるイオンのうち少なくとも一種が縮合してなる縮合生成物が有するイミダゾリウム基と、該縮合生成物中に存在する酸性基を有する高分子における該酸性基の共役塩基とがイオン結合していることが確認できる。
【0075】
塗液に用いる溶媒としては、多孔性支持膜を溶解しないものであり、かつ水と混和する溶媒であれば、特に制限無く用いることができ、例えば、メタノール、エタノール、1-プロパノール、2-プロパノールなどのアルコール類などが挙げられる。加熱乾燥工程における縮合を促進するために、塗布液には、イミダゾリウム基を有する一般式(1)で表されるイオン群が有する縮合可能な官能基数に対して等モル以上の水が含まれていることが好ましい。
【0076】
また、本発明における単量体または単量体混合物とは、少なくとも1つの重合可能な二重結合を含む化合物を少なくとも1種類含んでいれば特に限定されるものではない。分離機能層の所望の特性に応じて、1つ以上の重合可能な二重結合を含む化合物を2種類以上含んでもよく、また、本発明の効果を阻害しない範囲で重合開始剤、重合助剤、その他の添加剤を含んでいてもよい。本発明の製造方法においては、重合反応性を高めるために重合開始剤、重合促進剤等を添加する事が好ましい。ここで、重合開始剤、重合促進剤とは特に限定されるものではなく、1つ以上の重合可能な二重結合を含む化合物の構造、重合手法などに合わせて適宜選択されるものである。
【0077】
重合開始剤としては、使用する溶媒に溶解するものであれば、公知のものを特に制限無く用いることができるが、例えば、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒロドキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1-オン、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム、1.2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(0-アセチルオキシム)、4−フェノキシジクロロアセトフェノン、4−t−ブチル−ジクロロアセトフェノン、4−t−ブチル−トリクロロアセトフェノン、ジエトキシアセトフェノン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、1−(4−ドデシルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン、4−(2−ヒドロキシエトキシ)−フェニル(2−ヒドロキシ−2−プロピル)ケトン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−1−[4−(メチルチオ)フェニル]−2−モルホリノプロパン−1−オンのようなアセトフェノン類、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテルのようなベンゾイン類、ベンゾフェノン、ベンゾイル安息香酸、4−フェニルベンゾフェノン、ヒドロキシベンゾフェノン、アリル化ベンゾフェノンのようなベンゾフェノン類、チオキサンソン、2−クロルチオキサンソン、2−メチルチオキサンソン、2,4−ジメチルチオキサンソンのようなチオキサンソン類、その他、4,4 -アゾビス(4-シアノ吉草酸)、7,7 -アゾビス(7-シアノカプリル酸)、6,6 -アゾビス(6-シアノ-6-シクロヘキシルカプロン酸)、2,2 -アゾビス(2-メチルプロピオン酸)、2,2 -アゾビス(2-エチル-4-メトキシ吉草酸)、2,2 -アゾビス(2-ベンジルプロピオン酸)などが挙げられ、過酸化物系化合物としてたとえば日油(株)製コハク酸パーオキサイド(商品名:パーロイル(登録商標)SA)などを用いることができる。
【0078】
エネルギー線としては、紫外線、プラズマ、ガンマ線、及び電子線などを用いることができるが、中でも装置及び取り扱いの簡便さから紫外線を用いることが好ましく、172nmの波長を用いることがさらに好ましい。
【0079】
高分子の重合度が低下しすぎると、製膜後、RO水で洗浄した際に分離機能層から流れ出し、欠点となるため、添加する重合開始剤の濃度は、反応性組成物中5重量%以下であることが好ましい。
【0080】
ポリアミド膜、有機無機ハイブリッド膜などの分離機能層の厚みとしては限定されないが、分離性能と透過性能の点で5〜3000nmであることが好ましい。特に逆浸透、正浸透、ナノろ過膜では5〜300nmであることが好ましい。
【0081】
分離機能層の厚みは、これまでの分離膜の膜厚測定法に準ずることができ、例えば分離膜を樹脂による包埋後に、超薄切片を作製し、染色などの処理を行った後に、透過型電子顕微鏡により観察することで測定することができる。主な測定法としては、分離機能層がひだ構造を有する場合、多孔性支持膜上に位置するひだ構造の断面長さ方向に50nm間隔で測定し、ひだの数を20個測定し、その平均から求めることができる。ひだ構造を有さない場合、多孔性支持膜上に位置する分離膜の厚みを20点測定し、平均値とした。
【0082】
本発明において多孔性支持膜を用いる場合、分離膜としての性能を保持しつつ分離機能層を支持する膜として用いることができる。
【0083】
多孔性支持膜に使用する材料やその形状は特に限定されないが、例えば基材に多孔性支持体を形成した膜を例示することができる。多孔性支持体の素材としては、ポリスルホン、酢酸セルロース、ポリ塩化ビニル、エポキシ樹脂あるいはそれらを混合、積層したものが使用され、化学的、機械的、熱的に安定性が高く、孔径が制御しやすいポリスルホンを使用することが好ましい。
【0084】
例えば、上記ポリスルホンのN,N−ジメチルホルムアミド(以降、DMFと記載)溶液を、後述する基材、例えば密に織ったポリエステル布あるいは不織布の上に一定の厚さに注型し、それを水中で湿式凝固させることによって、製造することができる。
【0085】
本発明に使用する多孔性支持膜は、”オフィス・オブ・セイリーン・ウォーター・リサーチ・アンド・ディベロップメント・プログレス・レポート”No.359(1968)に記載された方法に従って、上述した形態を得るためにポリマー濃度、溶媒の温度、貧溶媒を調整し、製造することができる。例えば、所定量のポリスルホンをジメチルホルムアミド(以降、DMFと記載)に溶解し、所定濃度のポリスルホン樹脂溶液を調製する。次いで、このポリスルホン樹脂溶液をポリエステル布あるいは不織布からなる基材上に略一定の厚さに塗布した後、一定時間空気中で表面の溶媒を除去した後、凝固液中でポリスルホンを凝固させることによって得ることが出来る。この時、凝固液と接触する表面部分などは溶媒のDMFが迅速に揮散するとともにポリスルホンの凝固が急速に進行し、DMFの存在した部分を核とする微細な連通孔が生成される。
【0086】
本発明は、この形成工程において用いるポリスルホン樹脂溶液ポリスルホン樹脂溶液の温度やポリスルホンの濃度、塗布を行う雰囲気の相対湿度、塗布してから凝固液に浸漬するまでの時間、凝固液の温度や組成等を調節することにより平均空隙率と平均孔径を制御したポリスルホン膜を得ることができる。
【0087】
多孔性支持膜としては、分離膜に機械的強度を与え、イオン等の分子サイズの小さな成分に対して分離膜のような分離性能を有さないものであれば、孔のサイズや分布は特に限定されないが、例えば、均一で微細な孔、あるいは分離機能層が形成される側の表面からもう一方の面まで徐々に大きな微細孔をもち、かつ、分離機能層が形成される側の表面で原子間力顕微鏡、電子顕微鏡などを用いて表面から測定された細孔の投影面積円相当径が1nm以上100nm以下であるような多孔性支持膜が好ましく使用される。特に界面重合反応性、分離機能膜の保持性の点で3〜50nmの投影面積円相当径を有することが好ましい。
【0088】
多孔性支持膜の厚みは特に限定されないが、分離膜の強度、分離膜の高低差を形成させる点、供給側流路の形態安定性の点で、20〜500μmの範囲にあることが好ましく、より好ましくは30〜300μmである。
【0089】
多孔性支持膜の形態は、走査型電子顕微鏡や透過型電子顕微鏡、原子間顕微鏡により観察できる。例えば走査型電子顕微鏡で観察するのであれば、基材から多孔質支持体を剥がした後、これを凍結割断法で切断して断面観察のサンプルとする。このサンプルに白金または白金−パラジウムまたは四塩化ルテニウム、好ましくは四塩化ルテニウムを薄くコーティングして3〜6kVの加速電圧で、高分解能電界放射型走査電子顕微鏡(UHR−FE−SEM)で観察する。高分解能電界放射型走査電子顕微鏡は、日立製S−900型電子顕微鏡などが使用できる。得られた電子顕微鏡写真から多孔性支持膜の膜厚や表面の投影面積円相当径を決定する。支持膜の厚み、孔径は、平均値であり、支持膜の厚みは、断面観察で厚み方向に直交する方向に20μm間隔で測定し、20点測定の平均値である。また、孔径は、孔を200個カウントし、各投影面積円相当径の平均値である。
【0090】
さらに分離膜の強度、寸法安定性の点で、基材を用いてもよい。基材としては、強度、流体透過性の点で繊維状基材を用いることが好ましい。
【0091】
基材としては、特に限定されないが、分離膜の分離、透過性能を保持しつつ、適度な機械強度を与え、分離膜表面の高低差を制御する点で、繊維状基材が好ましく用いられる。
【0092】
繊維状基材としては、ポリオレフィン、ポリエステル、セルロースなどが用いられるが、分離膜の高低差を形成させる点、形態保持性の点でポリオレフィン、ポリエステルが好ましい。また、基材としては、複数の素材を混合させたものも使用することができる。
【0093】
本発明では、分離性能、透過性能、供給側流路形成の点で、分離膜表面(供給流体側)に投影面積比が0.03〜0.6の不連続異素材からなる供給側流路材を配置することが必須である。ここで、不連続異素材における異素材とは、分離膜で使用される材料とは異なる組成、大きさを有する材料を意味する。従って、分離機能層、多孔性支持体、基材を構成成分とする分離膜中のいずれの素材とも異なる組成物、径、形状のいずれかを満足するものであれば特に限定されない。さらに、不連続異素材における不連続とは、エレメントを形成するリーフ表面において、少なくとも不連続となる部分を有することを意味し、ネット、フィルムなどのように投影した際に構成素材が連続的に形成されるものではなく、例えば、粒状、線状などのように素材同士が不連続に配置されるものを意味する。
【0094】
本願発明は、分離膜表面に供給側流路形成能に優れる不連続異素材を配置させることを特徴としており、上記投影面積比を設けるものであれば特に限定されない。
【0095】
不連続異素材としては、分離膜表面とは異なる化学構造を有し、かつフィルムやネットのように連続的な形ではない素材であり、好ましくは、ポリオレフィン、変性ポリオレフィン、ポリエステル、ポリアミド、ウレタン、エポキシ樹脂などからなるドット、線状物が使用される。
【0096】
ここで、供給側流路材の投影面積比とは、分離膜と不連続異素材からなる供給側流路材を5cm×5cmで切り出し、市販の顕微鏡画像解析装置を用い、供給側流路材を分離膜表面上部から投影した時に得られる投影面積を切り出し面積で割った値とした。
【0097】
特定の投影面積比を有する不連続異素材からなる供給側流路材を用いることにより、エレメントとして圧力を付与した際の透過側流路を安定に形成させるだけでなく、従来のネットよりも流動抵抗が少なく、高効率な流路を形成することを可能とする。また、不連続異素材と膜が接着していることが好ましく、その場合、急速な圧力変動、流動変動などを生じた際に、従来のネットのような連続体を用い、膜と接着していない場合に比べて、機能膜表面を傷つけにくく、耐久性に優れる。
【0098】
不連続異素材からなる供給側流路材の形成方法としては特に限定されないが、ホットメルトドット加工、印刷、噴霧などの不連続状物を配置させる方法が用いられる。
【0099】
さらに、本発明では、分離膜裏面(透過流体側)に投影面積比が0を超えて1未満の異素材からなる透過側流路材を配置するものである。特に透過側の流動抵抗を減らし、流路を安定に形成させる点では、投影面積比が0.1〜0.8であることが好ましく、さらに好ましくは0.1〜0.7、特に好ましくは、0.1〜0.6である。
【0100】
ここで、透過側流路材の投影面積比とは、分離膜と異素材からなる透過側流路材を5cm×5cmで切り出し、市販の顕微鏡画像解析装置を用い、透過側流路材を分離膜裏面上部から投影した時に得られる投影面積を切り出し面積で割った値とした。
【0101】
異素材とは、分離膜で使用される材料とは異なる組成、大きさを有する材料を意味する。従って、分離機能層、多孔性支持体、基材を成形し、高低差を付与した際の分離膜中のいずれの素材とも異なる組成物、径、形状のいずれかを満足するものであれば特に限定されない。本願発明は、透過側流路形成に優れる異素材を配置させることを特徴としており、上記投影面積比を設けるものであれば特に限定されない。
【0102】
異素材を用いた透過側流路材とすることにより、透過側流路を安定に形成させるだけでなく、従来の編み状物であるトリコットとは異なる形態、素材を使用することを可能とする。
【0103】
例えば、目の粗いネット状物、棒状、円柱状、ドット状物、発泡物、粉末状物、それらの組み合わせなどが使用することができる。組成としては特に限定されないが、耐薬品性の点で、ポリエチレン、ポリポリプロピレンなどのポリオレフィンや共重合ポリオレフィンなどが好ましく、ウレタン、エポキシなどのポリマーを使用することもできる。
【0104】
形成方法としては特に限定されないが、連続形状の場合、あらかじめ加工しておいた流路材を分離膜の裏側に積層する方法が好ましく、不連続形状の場合、分離膜の裏側に直接異素材を、ホットメルトドット加工、印刷、噴霧などの不連続状物を配置させる方法が用いられる。
【0105】
本発明では、分離膜表面(供給流体側)に投影面積比が0.03〜0.6の不連続異素材からなる供給側流路材を配置し、分離膜裏面(透過流体側)に投影面積比が0を超えて1未満の異素材からなる透過側流路材を配置することで、耐圧性、流動安定性に優れる膜エレメントが設計可能となるだけでなく、供給流体側の安定した不連続異素材と異素材透過側流路材の組み合わせにより、高温流体を扱う際にも、従来のネット、トリコットなどの流路材の組み合わせに比べて、流路材の膜面における移動が少なく、膜の傷つきを防止でき、除去率が飛躍的に安定化することを見出したものである。
【0106】
次に、本発明の分離膜エレメントの製造方法について説明する。
【0107】
本発明の分離膜エレメントの製造方法は限定されないが、ポリアミド分離機能層を多孔性支持膜、基材に積層し、分離膜を得た後に供給側流路材、透過流路材を配置してエレメントを製造する代表的な方法について述べる。
【0108】
多孔性支持膜と基材を複合した後、多孔性支持膜に多官能アミン水溶液を塗布し、余分なアミン水溶液をエアーナイフなどで除去した後、多官能酸ハロゲン化物含有溶液を塗布し、ポリアミド分離機能層を形成させる。有機溶媒は、水と非混和性であり、かつ多官能酸ハロゲン化物を溶解し、多孔性支持膜を破壊しないものが望ましく、多官能アミン化合物および多官能酸ハロゲン化物に対して不活性であるものであればよい。好ましい例として、n−ヘキサン、n−オクタン、n−デカンなどの炭化水素化合物が挙げられる。さらに、必要に応じて分離性能、透過性能を高めるべく、塩素、酸、アルカリ、亜硝酸などの化学処理、洗浄処理、分離膜の水分を低減すべく乾燥処理等を施し分離膜を得る。該シートにホットメルトドット加工によりエチレンビニルアセテート樹脂をドット状にメルトさせ、1cm間隔で直径1mmφ、高さ200μmのドットを千鳥状に形成させ、従来のエレメント製作装置を用いて、トリコットの代わりにネット(高さ450μm、間隔2.8mm)を配置させ、リーフ数28枚、リーフ有効面積37mの8インチエレメントを作製する。エレメント作製方法をしては、参考文献(特公昭44−14216、特公平4−11928、特開平11−226366)に記載される方法を用いることができる。
【0109】
このように製造される本発明の分離膜エレメントは、さらに、直列または並列に接続して圧力容器に収納した分離膜モジュールとすることもできる。
【0110】
また、上記の分離膜エレメント、モジュールは、それらに流体を供給するポンプや、その流体を前処理する装置などと組み合わせて、流体分離装置を構成することができる。この分離装置を用いることにより、例えば原水を飲料水などの透過水と膜を透過しなかった濃縮水とに分離して、目的にあった水を得ることができる。
【0111】
流体分離装置の操作圧力は高い方が除去率は向上するが、運転に必要なエネルギーも増加すること、また、膜エレメントの供給流路、透過流路の保持性を考慮すると、膜モジュールに被処理水を透過する際の操作圧力は、0.2MPa以上、5MPa以下が好ましい。供給水温度は、高くなると塩除去率が低下するが、低くなるにしたがい膜透過流束も減少するので、3℃以上、60℃以下が好ましい。
【0112】
本発明に係る膜エレメントによって処理される流体は特に限定されないが、水処理に使用する場合、原水としては、海水、かん水、排水等の500mg/L〜100g/LのTDS(Total Dissolved Solids:総溶解固形分)を含有する液状混合物が挙げられる。一般に、TDSは総溶解固形分量を指し、「質量÷体積」あるいは「重量比」で表される。定義によれば、0.45ミクロンのフィルターで濾過した溶液を39.5〜40.5℃の温度で蒸発させ残留物の重さから算出できるが、より簡便には実用塩分(S)から換算する。
【実施例】
【0113】
以下に実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例によってなんら限定されるものではない。
【0114】
(分離膜表面、裏面の異素材の投影面積比)
分離膜と不連続異素材からなる供給側流路材、または異素材からなる透過側流路材を5cm×5cmで切り出し、レーザー顕微鏡(倍率10〜500倍程度の中から選択)を用い、ステージを移動させて、供給側流路材または透過側流路材の全投影面積を測定した。供給側流路材または透過側流路材を膜表面または裏面上部から投影した時に得られる投影面積を切り出し面積で割った値を投影面積比とした。
【0115】
(脱塩率(TDS除去率))
原水500mg/L食塩、運転圧力0.7MPa、運転温度20℃、pH8で運転(回収率15%)した際の性能を測定した。
TDS除去率(%)=100×{1−(透過水中のTDS濃度/供給水中のTDS濃度)}。
【0116】
なお、1時間後の測定値と8時間後の測定値で0.1%以上の変化をした場合に、その結果を付記した。
【0117】
ただし、有機無機ハイブリッド膜については、1500ppmMgSO水溶液を供給液とし、0.7MPa、20℃、pH8の条件下で運転(回収率15%)を行った結果のみを測定した。
【0118】
(造水量)
原水500mg/L食塩、運転圧力0.7MPa、運転温度20℃、pH8で運転(回収率15%)した際の性能を測定した。
【0119】
供給水(かん水)の膜エレメント透過水量を、膜エレメントあたり、1日あたりの透水量(立方メートル)を造水量(m/日)として表した。なお、1時間後の測定値と8時間後の測定値が1m/日以上あった場合に付記した。
【0120】
(耐久性)
膜エレメントにpH2、温度50℃の原水を圧力0.3MPaで1時間×6回通水し、その後、脱塩率、造水量を測定した。その後、原水500mg/L食塩、運転圧力0.7MPa、運転温度20℃、pH8で運転(回収率15%)した際の性能を測定した。
【0121】
(実施例1)
ポリエステル繊維からなる不織布(糸径:1デシテックス、厚み:約98μm、通気度:0.9cc/cm/sec)上にポリスルホンの16.0重量%、ジメチルホルムアミド(DMF)溶液を180μmの厚みで室温(25℃)でキャストし、ただちに純水中に浸漬して5分間放置することによって繊維補強ポリスルホン支持膜からなる多孔性支持膜(厚さ135μm)ロールを作製した。
【0122】
その後に、多孔性支持膜ロールを巻きだし、ポリスルホン表面に、m−PDAの4.5重量%水溶液中を塗布し、エアーノズルから窒素を吹き付け支持膜表面から余分な水溶液を取り除いた後、トリメシン酸クロリド0.06重量%を含む25℃のn−ヘキサン溶液を表面が完全に濡れるように塗布した。その後、膜から余分な溶液をエアーブローで除去し、50℃の熱水で洗浄して、2%のグリセリン水溶液に1分浸漬した後、100℃の熱風オーブンで3分間処理し、半乾燥状態の分離膜ロールを得た。
【0123】
分離膜ロールを表1に記載した形状でドット加工した。EVA(701A)をホットメルトし、3mm間隔で直径1.5mmφ、高さ400μmのドットを千鳥状に形成させ、分離膜表面(供給流体側)に不連続異素材からなる供給側流路材を付与し、90℃で1分熱処理した。その後に、表1に記載する透過側流路材を連続的に分離膜裏側に積層し、折り畳み断裁加工により分離膜と透過側流路材を配置させたリーフ状物を分離膜エレメントでの有効面積が37mになるように、幅930mmで28枚のリーフ状物を作製した。
【0124】
ここで、表中のピッチとは、高低差のある表面における高い箇所の最も高いところから近接する高い箇所の最も高い箇所までの水平距離を示しており、200個についてカウントし、その平均値とした。異素材のピッチは、エレメントのリーフの中心軸方向と直交する方向のそれぞれに対して異素材の構成部分の中心間の距離を測定して求め、それぞれ200点(200点に満たない場合は、スライドしてさらに横のラインの測定を加えた)を測定し、平均値とした。なお、投影面積比は小数点3桁目を四捨五入した。
【0125】
その後、透過側流路材の端部を集水管に巻き付けながら28枚のリーフ状物をスパイラル状に巻き付けた分離膜エレメントを作製し、外周にフィルムを巻き付け、テープで固定した後に、エッジカット、端板取りつけ、フィラメントワインディングを行い、8インチエレメントを作製した。該エレメントを圧力容器に入れて、原水500mg/L食塩、運転圧力0.7MPa、運転温度25℃、pH8で運転(回収率14.8%)した際の性能を表2にまとめた。連続体であるネットを供給側流路材、連続体であるトリコットを透過側流路材として用いた比較例1に比べて、大幅に造水量が増え、かつ同等の除去率を保持できるだけでなく、耐久性に優れることがわかった。
【0126】
【表1】

【0127】
【表2】

【0128】
(実施例2〜6)
実施例2では、EVA(701D)を用い、表1に示す条件としたところ、供給側流路材の投影面積比が低下し、表2に示すように実施例1に比べて耐久性が低下する結果となった。
【0129】
実施例3では、p−スチレンスルホン酸ナトリウム3.0重量部、3−メチル−1−(3−トリメトキシシリルプロピル)イミダゾリウムクロリド1.5重量部、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン0.24重量部、65%イソプロピルアルコール水溶液95.26重量部からなる塗液Aを、表面の水滴を窒素ブローにより除去した実施例1に記載の微多孔性支持膜上に薄膜コートし、172nmの紫外線が照射出来るウシオ電機社製エキシマランプUER20−172を用い、ランプと微多孔性支持膜の距離を1cmに設定し紫外線を10分間照射し巻き取った後、熱風乾燥器で100℃、6時間乾燥し、複合半透膜を得た。表1に示す構成に対し、表2に示すように実施例1に比べて耐久性に特に優れるものであった。
【0130】
実施例4では、表1に示すように供給側、透過側の投影面積比を変更したところ、表2に示すように実施例1に比べて耐久性が低下した。
【0131】
実施例5では、表1に示すように供給側、透過側の投影面積比を変更したところ、表2に示すように実施例1に比べて耐久性が特に低下した。
【0132】
実施例6では、表1に示すように供給側、透過側の投影面積比を変更したところ、表2に示すように、耐久性が実施例1と同様に良好であった。
【0133】
(比較例1〜3)
比較例1では、供給側流路材にネット、透過側流路材にトリコットを使用したが、実施例に比べて耐久性が大きく低下するものであった。
【0134】
比較例2では、透過側流路材を使用しなかったところ、エレメント内で分離膜のずれが起こり、流路断面を一部狭くし、膜が傷ついたため、実施例に比べて大きく除去率、造水量が悪化した。
【0135】
比較例3では、表1に示すように実施例3の流路材を変更した結果、表2に示すように脱塩率(MgSO除去率)および造水量が実施例3に比べて大きく悪化した。
【0136】
以上のように、本発明により得られる膜エレメントは、高造水性能、安定運転、優れた除去性能を有している。
【産業上の利用可能性】
【0137】
本発明の膜エレメントは、特に、かん水や海水の脱塩に好適に用いることができる。
【符号の説明】
【0138】
1:分離膜表面(供給流体側)
2:分離膜裏面(透過流体側)
3:供給側流路材
4.透過側流路材

【特許請求の範囲】
【請求項1】
分離膜表面(供給流体側)に投影面積比が0.03〜0.6の不連続異素材からなる供給側流路材を配置し、分離膜裏面(透過流体側)に投影面積比が0を超えて1未満の異素材からなる透過側流路材が配置されることを特徴とする分離膜エレメント。
【請求項2】
透過側流路材の投影面積比が0.1〜0.8であることを特徴とする請求項1に記載の分離膜エレメント。

【図1】
image rotate


【公開番号】特開2012−40487(P2012−40487A)
【公開日】平成24年3月1日(2012.3.1)
【国際特許分類】
【出願番号】特願2010−182842(P2010−182842)
【出願日】平成22年8月18日(2010.8.18)
【出願人】(000003159)東レ株式会社 (7,677)
【Fターム(参考)】