説明

動的粘弾性測定装置および動的粘弾性測定方法

【課題】 簡易かつ安価に粘弾性を測定できる装置および方法を提供する。
【解決手段】 所定の振幅長および振幅周波数で接触子を進退駆動する加振部13と、加振部の振幅条件を制御するサーボアンプ22と、加振部の振幅状態を測定するエンコーダ14と、エンコーダから出力される出力値を目標とする振幅条件と比較したときの偏差を補正するために上記サーボアンプに対する入力信号を制御する入力制御部PCと、この入力制御部が上記サーボアンプに入力する値により負荷の大きさを演算する演算部PCとを備える。測定方法は、加振部が振動するときの現実の振幅状態を測定し、加振部の入力値を無負荷状態における入力値と比較し、入力値の増加分を負荷として演算する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、動的粘弾性を測定する装置および方法に関するものである。
【背景技術】
【0002】
近年、食品産業等において、品質管理のために力学的性質の評価を行う装置が望まれており、信頼性が高くかつ簡便に評価を行うことのできる装置の開発が切望されている。しかし、多くの液体や固形物は、単純な構造ではなく、複合的な組成または構造を有し、粘性および弾性を持った粘弾性を示すものであった。そのため、力学的性質の評価は容易でなく、粘弾性を評価する手法として、動的粘弾性測定があった。この測定方法は、専らプラスチックや塗料等の工業分野の材料物性評価に用いられていた(特許文献1参照)。
【0003】
しかしながら、現在使用されている装置は、高精度なひずみや応力の測定を必要とするため、装置が非常に高価になることから、用途が研究目的に限定されているものであった。また、液体を対象とするもの、プラスチック等の硬い物を対象とするものは存在するが、食品等の軟らかい物を対象とする装置は少なかった。そして、この種の装置としては、加振部に超磁歪素子を使用したもの(特許文献2参照)や圧電素子を使用したもの(特許文献3参照)があったが、これもまた、高価にならざるを得ず、さらに、加振部の振幅が小さく、微細な変位しか得ることができないという問題点があった。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2009−53107号公報
【特許文献2】特開2005−134295号公報
【特許文献3】特開2008−29111号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
上記の従来技術は、超磁歪素子や圧電素子を使用することから、高精度の粘弾性を計測することが可能であるが、力学的性質の評価として精度の高度化を要せず、これに代わって簡易かつ安価に評価できる測定装置を望む場合もあった。特に、食品産業等にあっては、例えば、所定の粘性以上であることを評価できればよいという場合である。
【0006】
本発明は、上記諸点にかんがみてなされたものであって、その目的とするところは、簡易かつ安価に粘弾性を測定できる装置および方法を提供することである。
【課題を解決するための手段】
【0007】
そこで、動的粘弾性測定装置にかかる発明は、所定の振幅長および振幅周波数で接触子を進退駆動する加振部と、この加振部の振幅条件を制御するサーボアンプと、上記加振部の振幅状態を測定する変位検出器またはエンコーダと、上記変位検出器またはエンコーダから出力される出力値を目標とする振幅条件と比較したときの偏差を補正するために上記サーボアンプに対する入力信号を制御する入力制御部と、この入力制御部が上記サーボアンプに入力する値により負荷の大きさを演算する演算部とを備えたことを特徴とする動的粘弾性測定装置を要旨としている。
【0008】
上記構成の測定装置によれば、加振部が目標の振幅条件で駆動することとなり、接触子が測定対象物に接触して外乱を発生させる場合においても、目標の振幅条件で駆動させることができる。そして、上記外乱が発生している状況下における入力の負荷を演算することによって、動的粘弾性の特徴を数値化することができる。
【0009】
上記発明における入力制御部は、前記加振部が振幅する所定周期ごとの出力値を目標値と比較して、逐次的に補正値をフィードバックする繰り返し制御を実行する入力制御部とすることができる。
【0010】
上記のような構成であれば、補正値のフィードバックにより、加振部の振幅条件を目標値に早期に接近させることができ、また、サンプリングする周期の数を増減させることにより、加振器に対する入力制御信号を平準化することができる。つまり、1周期ごとの出力値について補正値をフィードバックする場合は、何らかの要因で出力値が乱れた場合に、それを入力に反映させることとなるが、複数周期を単位として出力値とする場合には、これを平準化することができるのである。
【0011】
また、上記各発明における演算部は、加振部に供給される電流値を計測するとともに、この電流値を無負荷状態の電流値と比較して変化した電流値から負荷による推力の変化を演算する演算部とすることができる。
【0012】
上記のような構成にすれば、例えば、各部の摩擦抵抗等については、無負荷状態においても発生するものであるから、この種の負荷を除いた純粋な外乱に相当する負荷のみを測定することができる。
【0013】
前記加振部は、ボイスコイルモータを使用することができる。このような構成であれば、目標とする周波数の振動により、接触子を駆動することができ、また、接触子に対する負荷を電流値として換算することが可能となる。
【0014】
他方、動的粘弾性測定方法にかかる本発明は、所定の振幅長および振幅周波数で接触子を進退駆動する加振部を振動させ、上記加振部が振動するときの現実の振幅状態を測定し、上記加振部の現実の振幅状態を目標の振幅条件に接近させるとともに、該加振部の入力値を無負荷状態における入力値と比較し、入力値の増加分を負荷として演算することを特徴とする動的粘弾性測定方法を要旨としている。
【0015】
上記構成の測定方法によれば、接触子が測定対象物に接触する場合においても目標の振幅条件で、当該接触子を振動させることによって、当該接触子の振動を実現するために必要となる負荷を計測することができる。このとき計測される負荷によって粘弾性の特徴を数値化することが可能となる。
【0016】
上記発明における目標の振幅条件に接近させる工程は、前記加振部が振幅する所定周期ごとの出力値を目標値と比較して、逐次的に補正値をフィードバックする繰り返し制御による工程とすることができる。
【0017】
上記のような構成によれば、加振部に出力される出力値は、適宜補正されることとなり、繰り返し制御が進むに連れて目標とする振幅条件に接近した状態で加振部を駆動させることができる。その結果、無負荷の際の振幅状態と、負荷を有する際の振幅および位相との間を一致させた状態とすることができる。そして、無負荷の際の設定する振動の駆動に要する推力と、負荷を有する際の設定する振動の駆動に要する推力の差を演算し、測定対象物の粘弾性を測定することができる。
【発明の効果】
【0018】
本発明の動的粘弾性測定装置によれば、測定対象物を接触子に接触させたときの負荷の大きさを測定することによって、これを換算することで数値化することができるものである。従って、動的粘弾性の特徴を簡易に測定することができるのである。また、上記測定装置は、駆動装置が小型のボイスコイルモータ(以下、VCMと表記する場合がある)等によって実現可能であるから安価に製造することができる。
【0019】
また、本発明の動的粘弾性測定方法によれば、加振部の振幅状態を目標の振幅状態に制御することによって、測定対象物に基づく外乱が発生する場合における加振部の負荷量をもって粘弾性を測定することができることとなり、簡易かつ安価に実現することができる。
【図面の簡単な説明】
【0020】
【図1】動的粘弾性測定装置にかかる本発明の実施形態を構成する加振装置の説明図である。
【図2】動的粘弾性測定装置にかかる本発明の実施形態を構成する制御装置の説明図である。
【図3】繰り返し制御系の構造を示すブロック図である。
【図4】外乱が作用した場合の繰り返し制御系の構造を示すブロック図である。
【図5】ローパスフィルタを使用した繰り返し制御系の構造を示すブロック図である。
【図6】ゲルチップの動的粘弾性特性を測定した結果を示すグラフである。
【図7】ゲルチップを圧縮変形させたときの変位と検出された推力の関係を示すグラフである。
【発明を実施するための形態】
【0021】
以下、本発明の実施の形態を図面に基づいて説明する。動的粘弾性測定装置にかかる本発明の実施形態は、概略すると加振装置と制御装置とで構成されている。
【0022】
加振装置は、図1に示すように、基台1に設置されたフレーム11と、このフレーム11に突設される加振基部12と、この加振基部12の上に設置された加振部13で構成されている。加振部13は、所定の周波数で振幅する駆動装置によって構成され、その一例としてVCMが使用されている。以下、加振部13の駆動にVCMが用いられたものを例として説明する。VCMによる加振部13は、VCMのヨーク(以下、固定子と表記する場合がある)が加振基部12に固定され、コイル(以下、可動子と表記する場合がある)が進退(振動)することにより加振できるものであり、可動子の振動は、固定子内を貫通する進退部材15を介して下端の接触子16に伝達される。進退部材は、加振基部12に装着されたボールスプライン軸受17によって進退方向に摺動自在に支持されている。
【0023】
加振部13のコイル側にはリニアエンコーダ14が設けられ、コイルの進退(振動)の状態が所定時間ごとに検出できるようになっている。このリニアエンコーダ14で検出される変位量が後述の制御装置に出力されるのである。
【0024】
このような構成により、VCMに電流が供給されるとコイルが振動し、この振動に伴って接触子が振動することとなる。なお、VCMに供給される電流は、所定の周波数に応じて電流の向きが正逆方向に変化するものである。
【0025】
制御装置は、図2に示すように、入力制御部21としてのパーソナルコンピュータ(以下、PCと略称する)と、サーボアンプを内蔵するサーボドライバ22で構成されている。PCには、エンコーダ14で検出した信号を受け取るためのインターフェース(例えば、カウンタボード)23が接続(または内蔵)されるとともに、アナログ電圧の入出力を行うためのインターフェース(例えば、アナログ入出力(AIO)ボード)24が接続(または内蔵)されている。
【0026】
サーボドライバ22は、PCから出力されるアナログ電圧の基づきVCMを制御する。その一例として、Pulse Width Modulation(以下、PWM)制御があり、以下において、PWM制御を用いた場合を例に説明することとする。具体的には、パルス幅を変調することによって、オン・オフの周期をコントロールするとともに、電流の方向を正逆反転させるように制御している。これにより、VCMのコイルを進退可能に制御し、4mm程度の振幅長で5Hz〜15Hz程度の周波数で加振することができるのである。また、同時に、VCMに装着したエンコーダ14の検出値をパルス信号で受け取り、これをPCに入力することができるものである。なお、検出されたパルス信号は、PCに接続されるインターフェース(カウンタボード)23によって数値化され、出力データとしてPC内における制御に利用される。
【0027】
入力制御部(PC)21は、予め設定された目標値に対して、出力値のデータを参照して入力値を演算している。具体的には、目標値(一定の値)に対し、所定の周期分(例えば3周期分)の検出値から出力データとして格納し、この出力データと目標値とを比較し、偏差分について補正値として、当初入力値を補正したうえ、サーボドライバへの出力値としている。なお、PC21には、演算部を備えており、後述の出力値から推力を演算することができるものである。
【0028】
上記の入力制御部21には、図3に示す繰り返し制御が利用されている。繰り返し制御とは、この図に示すように、出力値を目標値の偏差をフィードバックし、当初または直前回の入力値を補正して、次回の入力値とする制御方法である。直前の入力値によって駆動するVCMの現実の駆動状態を検出した出力値が、目標値との間で偏差する量を検出し、これを直前の入力値に対する補正値として当該入力値を修正し、次回の入力値とすることを繰り返すのである。この入力値の補正を繰り返しながら目標値に接近させる制御方法であることから、これを繰り返し制御と呼んでいる。
【0029】
ここで、図3に示すような制御系において、偏差を零に収束させるための条件を説明する。まず、各要素間の関係は、次式(3.1)〜(3.3)であらわすことができる。
【0030】
【数1】

【0031】
上記式(3.1)〜(3.3)を整理すると次式を得る。
【0032】
【数2】

【0033】
上式より、制御系の入力に含まれるすべての角周波数ωにおいて次式(3.1)が成り立つ条件により偏差は零に収束する。
【0034】
【数3】

【0035】
次に、周期的外乱(測定対象物による抵抗)がある場合の制御系の構成を図4に示す。この図に示すように、制御系に外乱D(s)が加え続けられた場合、外乱D(s)による出力Z(s)は、結果的に出力Y(s)に含まれることとなるから、この場合においても上式(3.1)の条件が成り立てば、偏差は零に収束されることとなる。
【0036】
また、上記制御系にローパスフィルタ処理を加える構成とすることができる。これは、繰り返し制御を複数回繰り返すことにより、何らかの原因によって高次の周波数成分が発生する場合に対応するものである。このような高周波成分は、サーボドライバのゲインなどの外乱によって発生し得ることから、入力信号に含まれない高周波成分を除去した出力を行うために、出力または偏差(補正値)のいずれかについてローパスフィルタ処理を行うのである。このような制御系の構成例を図5に示す。この図に示す制御系は、偏差E(s)についてローパスフィルタ処理を行っているが、出力Y(s)について処理することも可能である。
【0037】
上記のように、周期的外乱が存在する場合であっても外乱による偏差を収束させることができることから、この収束に至る繰り返し制御における電流値の変化を測定することにより、VCMに対する負荷(測定対象物の粘弾性)を算出することができる。すなわち、VCMの推力は電流に比例することから、無負荷の状態における電流値から変化した(増加した)電流値によって、その負荷を容易に算出できるのである。
【0038】
次に位相差と検出値の関係について説明する。上述のとおり、VCMの推力は、電流の変化によって算出でき、VCMの可動子の振動状態はエンコーダ14によって測定されることから、VCMに対する推力の付与と、現実の振動状態とが、時間の変化に対してどのように変化しているかを検出することができる。無負荷状態では、電流の変化はないことから推力も変化しないことになるが、これに負荷が作用すると、目的とする状態にVCMの可動子を変化させるために、電流を変化させて推力を付与する。つまり、VCMの可動子を下降させることによって接触子を下降させ、当該接触子が対象物を圧縮することとなる。このとき、圧縮に必要な推力は上述の電流値の変化によって達成されるが、対象物の粘弾性特徴に応じて、現実の接触子(すなわちVCMの可動子)の移動は推力付与のタイミングとの間で異なることがある。
【0039】
具体的には、対象物が弾性体(特に、純弾性体)である場合には、推力を増加させることに従って弾性体が変形し、推力を低減させることによって弾性体が復元することとなるから、推力の付与と同じタイミングで可動子が振動することとなる。これに対し、粘性体の場合には、推力が付与された直後は粘性が作用して、可動子の振動が遅延することとなる。これは、推力を増加させる場合も低減させる場合も同様である。従って、このときの時間の経過に対する推力の変化と、時間の経過に対する現実の可動子の振動との間に位相差が生じることとなるのである。これは、粘性体の特徴であるダンパ特性によるものである。位相差が90°の場合は純粘性体であり、粘弾性体の場合は0〜90°の間に収まるものである。
【0040】
次に、粘弾性特性について説明する。粘弾性の評価は、通常、貯蔵弾性率、損失弾性率および損失正接によって行われる。そこで、これらの関係式を次に示す。
【0041】
【数4】

【0042】
上式を使用して、粘弾性体の粘弾性特性を測定する場合、応力(σ)は推力によって測定され、位相角(δ)は入力値と出力値の位相差により算出できる。ひずみ(ε)については、加振部による振動の振幅によって算出可能である。つまり、加振部による振動方向(接触子の進退方向)に対する対象物の厚み(L)と振幅(b)により算出可能である。なお、ひずみ(ε)の算出は次式で計算される。そして、これらの数値が算出されることにより粘弾性特性を得ることができるのである。
【0043】
【数5】

【0044】
以上のとおり、本実施形態の動的粘弾性測定装置によれば、出力信号によってPWM制御された振幅長および振幅幅で接触子が振動され、そのときの加振部13の振動状態をエンコーダ14で計測し、目標とする振幅条件との比較をおこなうことができ、入力制御部21において、補正された次回の入力値を繰り返し制御することにより、複数回繰り返した後の加振部13は目標とする振幅条件に接近することとなる。そして、加振部13に推力を付与するときの電流の変化を演算部(図示をしないが、PC内に設けられている)で演算することにより、加振部13による推力(応力)が算出される。そして、加振部13の振幅長から歪を計算し、また、加振部13への入力値とエンコーダ14による測定値から位相差(応力と歪の位相角)を算出することができることから、動的粘性、動的弾性および動的粘弾性の各特性を測定することが可能となる。このような処理の方法は、本発明の動的粘弾性測定方法の実施形態を示すものである。
【0045】
なお、加振部13の推力は、電流の変化から算出するものであることから、VCMのコイルを移動するための負荷量および各部の摩擦係数等によって、僅かながらノイズを含む場合がある。そこで、予め計測された弾性体または粘性体を測定したときの差異を補正値とし、これを演算部21において補正することにより、より正確な測定値を得ることができる。また、加振部13に流れる電流値にノイズが含まれる場合に、電流値を一次のフーリエ級数展開することによりノイズカットを行って位相差を算出することもできる。
【0046】
さらに、上記加振部13に推力を付与するための電流の変化は、補償電流値と称する場合があり、この補償電流値は、無負荷状態から負荷(外乱)を受けた際に増加するための電流値である。このように、無負荷状態から増加した状態の電流値の差分が補償電流であり、本実施形態は、当該補償電流の値によって推力を算出するのであるが、これを電流以外の値(例えば、アナログ電圧値)によって推力を算出する手段を採用してもよい。
【0047】
また、特に説明していないが、制御装置(図2参照)には、外部表示装置とのインターフェースが接続され、これにモニタまたはプリンタを接続することにより、モニタに表示し、または演算結果を数値化して印字することが可能である。また、加振部13による周波数は可変であるが、測定に適する周波数に調整することとなる。3〜20Hzの間の周波数で動作させれば、相当の測定結果を得ることができるが、弾性体について動的弾性測定を行う場合、およびニュートン流体について動的粘性測定を行う場合には、周波数に依存しないため、いずれかの周波数を任意に選択して測定することが可能である。他方、粘弾性体について動的粘弾性測定を行う場合には周波数に依存するため、それぞれの物質によって異なる周波数による粘弾性を評価することができる。
【実施例】
【0048】
〔実験例〕
次に、具体的な粘弾性体について動的粘弾性特性を測定する実験例について説明する。この実験に使用した各種装置は次のとおりである。
<加振部(VMC)>
NEOMAX社製X−1741(ストローク4mm、定格推力6N)
<リニアエンコーダ>
マイクロEシステムズ社製Mercury2000(分解能0.833μm)
<サーボドライバ>
サーボランド社製サーボドライバMovo SVFM−DSP(サーボサイクル16kHz)
<カウンタボード>
CONTEC社製CNT32−8M(PCI)(分解能32bit)
<アナログ入出力(AIO)ボード>
CONTEC社製AIO−163202F−PE(分解能16bit)
実験に使用した対象物は、シリコンゲル(タイカ社製GC−8)を用い、ゲルチップは、縦横の長さを14mmで高さを10mmとした直方体とした。接触子には、先端形状が直径20mmの円形状のものを使用した。
【0049】
実験に際し目標値として、振幅を0.2mmとし、周波数は3〜20Hzの中から任意に8種類を選択し、それぞれの周波数について動作させた。その結果を図6に示す。この実験結果から、周波数に応じた動的粘弾性特徴が測定されていることが判明した。また、上記ゲルチップを圧縮変形させた時の変位と検出した推力の関係を図6に示す。この図から明らかなとおり、推力と変位の関係に位相差が生じている。従って、粘性の測定が可能であることが判明した。以上より、上記装置において粘弾性の測定が可能である。
【符号の説明】
【0050】
1 基台
11 フレーム
12 加振基部
13 加振部(VCM)
14 リニアエンコーダ
15 進退部材
16 接触子
17 ボールスプライン軸受
21 制御部(PC)
22 サーボドライバ
23 カウンタボード
24 アナログ入出力(AIO)ボード

【特許請求の範囲】
【請求項1】
所定の振幅長および振幅周波数で接触子を進退駆動する加振部と、この加振部の振幅条件を制御するサーボアンプと、上記加振部の振幅状態を測定するエンコーダと、上記エンコーダから出力される出力値を目標とする振幅条件と比較したときの偏差を補正するために上記サーボアンプに対する入力信号を制御する入力制御部と、この入力制御部が上記サーボアンプに入力する値により負荷の大きさを演算する演算部とを備えたことを特徴とする動的粘弾性測定装置。
【請求項2】
前記入力制御部は、前記加振部が振幅する所定周期ごとの出力値を目標値と比較して、逐次的に補正値をフィードバックする繰り返し制御を実行する入力制御部であることを特徴とする請求項1に記載の動的粘弾性測定装置。
【請求項3】
前記演算部は、加振部に供給される電流値を計測するとともに、この電流値を無負荷状態の電流値と比較して変化した電流値から負荷による推力の変化を演算する演算部であることを特徴とする請求項1または2に記載の動的粘弾性測定装置。
【請求項4】
前記加振部は、ボイスコイルモータであることを特徴とする請求項1ないし3のいずれかに記載の動的粘弾性測定装置。
【請求項5】
所定の振幅長および振幅周波数で接触子を進退駆動する加振部を振動させ、上記加振部が振動するときの現実の振幅状態を測定し、上記加振部の現実の振幅状態を目標の振幅条件に接近させるとともに、該加振部の入力値を無負荷状態における入力値と比較し、入力値の増加分を負荷として演算することを特徴とする動的粘弾性測定方法。
【請求項6】
前記目標の振幅条件に接近させる工程は、前記加振部が振幅する所定周期ごとの出力値を目標値と比較して、逐次的に補正値をフィードバックする繰り返し制御による工程であることを特徴とする請求項5に記載の動的粘弾性測定方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2011−202959(P2011−202959A)
【公開日】平成23年10月13日(2011.10.13)
【国際特許分類】
【出願番号】特願2010−67568(P2010−67568)
【出願日】平成22年3月24日(2010.3.24)
【出願人】(507134220)株式会社イマダ (2)
【Fターム(参考)】