説明

原子炉容器

【課題】スロッシング(液面揺動)の振動による壁冷構造の自励振動を低減する原子炉容器を提供する。
【解決手段】原子炉容器は、原子炉容器の外筒と、外筒の内側に配置される構造体であり、構造体と外筒との間隙にある冷却材が原子炉容器の内側へオーバーフローして乗り越える外側壁冷ライナと、外側壁冷ライナとの間でオーバーフローした冷却材を間隙に戻すための戻り流路を形成する内側壁冷ライナと、 オーバーフローした冷却材の一部、又は外側壁冷ライナと内側壁冷ライナとの間隙の冷却材の一部に接し、かつ外筒の周方向に複数配列された自励振動防止部材と、を含み、自励振動防止部材の配列が外筒の周方向に不規則な配列を含む。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、原子炉容器に関する。
【背景技術】
【0002】
原子力プラントの原子炉では、原子炉容器の外筒と該外筒内の内筒との間に壁冷構造を設けて多重円筒構造を形成し、それらによって構成されるアニュラス内には冷却用の液体ナトリウムが流れている構造を採用することがある。例えば特許文献1には、壁冷構造の上部に前縁が液体ナトリウムの下流自由表面の上部に位置する突起を設けた自励振動防止の壁冷構造が記載されている。また、この突起により下流プレナムの液体ナトリウムのスロッシング(液面揺動)に対して越流が効果的にエネルギーを与えることができなくなり、また、壁冷構造の剛性が増加し固有値が大きくなるため、自励振動を抑制する効果を有することが記載されている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】実用新案登録第2590279号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
スロッシング(液面揺動)の振動は、周期的な振動を含むことから、さらなるスロッシングの振動による壁冷構造の自励振動を防止する必要があった。
【0005】
本発明は、上述した課題を解決するものであり、スロッシングの振動による壁冷構造の自励振動を低減する原子炉容器を提供することを目的とする。
【課題を解決するための手段】
【0006】
上述の目的を達成するために原子炉容器は、原子炉容器の外筒と、前記外筒の内側に配置される構造体であり、前記構造体と前記外筒との間隙にある冷却材が前記原子炉容器の内側へオーバーフローして乗り越える外側壁冷ライナと、前記外側壁冷ライナとの間でオーバーフローした前記冷却材を前記間隙に戻すための戻り流路を形成する内側壁冷ライナと、 オーバーフローした前記冷却材の一部、又は前記外側壁冷ライナと前記内側壁冷ライナとの間隙の前記冷却材の一部に接し、かつ前記外筒の周方向に複数配列された自励振動防止部材と、を含み、前記自励振動防止部材の配列が前記外筒の周方向に不規則な配列を含むことを特徴とする。
【0007】
これにより、外側壁冷ライナと内側壁冷ライナとの間の間隙における冷却材の液面へ降り注ぐ冷却材の滴下分布量が周方向で不均等となり、スロッシングの振動が発生しても周期的な変動となるおそれが低減される。あるいは、冷却材の落下エネルギーは減衰され、スロッシングが抑制される。このため壁冷構造である外側壁冷ライナ又は内側壁冷ライナの周期的な自励振動が低減される。
【0008】
本発明の望ましい態様として、前記自励振動防止部材に、オーバーフローした前記冷却材の一部が衝突することが好ましい。これにより、オーバーフローした冷却材の流れを変更できる。このため、流れが変更された冷却材は、衝突せずに落下する冷却材との間に落下量の時間差を生み出すことになる。また、自励振動防止部材が傘となり、外側壁冷ライナと内側壁冷ライナとの間の間隙に降り注ぐ冷却材の滴下分布量が周方向で不均等となる。その結果、スロッシングは、周期的な変動となりにくく、外側壁冷ライナ又は内側壁冷ライナが周期的な自励振動を起こすおそれを低減できる。
【0009】
本発明の望ましい態様として、前記自励振動防止部材は、前記冷却材がオーバーフローする側における前記外側壁冷ライナの端部の一部に形成された複数の凸部であり、前記凸部間からオーバーフローした前記冷却材が前記原子炉容器の内側へ落下することが好ましい。これにより、外側壁冷ライナと内側壁冷ライナとの間の間隙に降り注ぐ冷却材の滴下分布量が周方向で不均等となる。その結果、スロッシングは、周期的な変動となりにくく、外側壁冷ライナ又は内側壁冷ライナが周期的な自励振動を起こすおそれを低減できる。
【0010】
本発明の望ましい態様として、前記自励振動防止部材は、前記外側壁冷ライナと前記内側壁冷ライナとの間隙における前記冷却材の液面近傍に配置された貫通孔を有する部材であることが好ましい。これにより、外側壁冷ライナと内側壁冷ライナとの間の間隙の上下変動の一部は、貫通孔を有する部材の貫通孔を冷却材が通過することで減衰する。その結果、スロッシングは、周期的な変動となりにくく、外側壁冷ライナ又は内側壁冷ライナが周期的な自励振動を起こすおそれを低減できる。
【0011】
本発明の望ましい態様として、前記自励振動防止部材は、前記外側壁冷ライナと前記内側壁冷ライナとの間隙における前記冷却材の液面を覆う貫通孔を有する部材であることが好ましい。これにより、オーバーフローした冷却材の一部が一度、貫通孔を有する部材に衝突し、冷却材を一部貫通孔に通過させる。これにより、冷却材の落下エネルギーは減衰され、スロッシングが抑制される。また、冷却材の液面の上下変動の一部は、貫通孔を冷却材が通過することで減衰する。このため、よりスロッシングが抑制される。
【0012】
本発明の望ましい態様として、前記自励振動防止部材は、前記外側壁冷ライナと前記内側壁冷ライナの間で径方向へ延び、かつ前記外側壁冷ライナと前記内側壁冷ライナとの間隙における前記冷却材の液面の一部を遮る板部材であることが好ましい。これにより、外側壁冷ライナと内側壁冷ライナとの間の間隙で発生するスロッシングの遮蔽具合を周方向又は径方向で不均等とすることができる。その結果、スロッシングは、周期的な変動となりにくく、外側壁冷ライナ又は内側壁冷ライナが周期的な自励振動を起こすおそれを低減できる。
【0013】
上述の目的を達成するために原子炉容器は、原子炉容器の外筒と、前記外筒の内側に配置される構造体であり、前記構造体と前記外筒との間隙にある冷却材の液面が前記原子炉容器の内側へオーバーフローして乗り越える外側壁冷ライナと、前記外側壁冷ライナとの間でオーバーフローした前記冷却材を前記間隙に戻すための戻り流路を形成する内側壁冷ライナと、を含み、前記外側壁冷ライナと前記内側壁冷ライナとの間隙における前記冷却材の液面の少なくとも一部を遮る自励振動防止部材を有することを特徴とする。
【0014】
これにより、外側壁冷ライナと内側壁冷ライナとの間の間隙における冷却材の液面で発生するスロッシングの遮蔽をし、スロッシングのエネルギーを減衰できる。その結果、外側壁冷ライナ又は内側壁冷ライナが周期的な自励振動を起こすおそれを低減できる。
【発明の効果】
【0015】
本発明によれば、スロッシングの振動による壁冷構造の自励振動を低減する原子炉容器を提供することができる。
【図面の簡単な説明】
【0016】
【図1】図1は、原子力プラントの原子炉容器を模式的に示す説明図である。
【図2】図2は、実施形態1の自励振動防止部材の構成を示す斜視図である。
【図3】図3は、図2の平面図である。
【図4】図4は、実施形態2の自励振動防止部材の構成を示す斜視図である。
【図5】図5は、図4の平面図である。
【図6】図6は、実施形態3の自励振動防止部材の構成を示す斜視図である。
【図7】図7は、図6の平面図である。
【図8】図8は、実施形態3の自励振動防止部材の構成を示す斜視図である。
【図9】図9は、図8の平面図である。
【発明を実施するための形態】
【0017】
本発明を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。以下の実施形態に記載した内容により本発明が限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能である。
【0018】
(実施形態1)
図1は、原子力プラントの原子炉容器を模式的に示す説明図である。原子力プラントには、例えば、液体ナトリウム等の液体金属で原子炉炉心を冷却する高速炉型原子炉がある。高速炉型原子炉は、液体ナトリウム−水反応による影響を回避するために、1次ナトリウム系と2次ナトリウム系とを設けており、この2系統間の熱交換を行なう中間熱交換器を有する。2次ナトリウムの熱は蒸気発生器において水に伝えられて蒸気を発生させる。そして、この蒸気が蒸気タービンに供給されることにより、蒸気タービンが駆動されて発電機に動力が供給される。
【0019】
図1に示す原子力プラントの原子炉容器は、高速炉型原子炉の原子炉容器である。原子炉容器1は、中心軸Oを中心に円筒形である。図1では、原子炉容器1は、中心軸Oを対称軸としているので、一部を省略した部分断面図で示してある。図1に示す原子炉容器1は、炉心構造物11と、外筒13と、内側壁冷ライナ19と、外側壁冷ライナ17と、下部プレナム21と、下部中間プレナム23と、外側アニュラス25と、内側アニュラス27と、上部中間プレナム31と、上部プレナム33と、入口フローホール41、出口フローホール42、冷却材流路F1、F2、F3、F4、F5、F6、F7とを含んでいる。
【0020】
炉心構造物11は、燃料棒を含み、燃料棒にはPu−U混合酸化物等のペレットが含まれる。原子炉を運転することで、炉心構造物11内のPuを増殖することができる。外筒13は、略円筒形状をしており、内部に炉心構造物11を保持できる。
【0021】
外側壁冷ライナ17は、外筒13の内周に所定間隔を有して形成される円筒形状である。これにより、外側壁冷ライナ17は、液体ナトリウム等の液体金属である冷却材を外筒13との環状の間隙である外側アニュラス25で保持できる。内側壁冷ライナ19は、外側壁冷ライナ17の内周に所定間隔を有して形成される円筒形状である。内側壁冷ライナ19は、冷却材を外側壁冷ライナ17との環状の間隙である内側アニュラス27で保持できる。これにより、内側アニュラス27は、冷却材の戻り流路となる。なお、内側壁冷ライナ19と、外側壁冷ライナ17との間の内側アニュラス27には、冷却材の流れを整流する整流板が挿入されてもよい。また、外側壁冷ライナ17又は内側壁冷ライナ19は、壁冷構造となる。
【0022】
下部プレナム21と、下部中間プレナム23と、上部中間プレナム31と、上部プレナム33とは、原子炉容器1内で冷却材を炉心構造物11周囲へ流通させる空間である。炉心構造物11は、下部プレナム21と上部プレナム33とに上下に挟み込むように配置されている。中間熱交換器から供給された冷却材は、下部プレナム21に供給されている。また、上部プレナム33の冷却材は、中間熱交換器へ供給されている。下部中間プレナム23と、上部中間プレナム31とは、下部プレナム21から上部プレナム33への冷却材の流路の中間に設けられた空間であり、冷却材の流路に応じて省略可能である。入口フローホール41は、下部中間プレナム23と、外側アニュラス25とを繋ぐ孔である。出口フローホール42は、内側アニュラス27と、上部中間プレナム31とを繋ぐ孔である。
【0023】
次に、図1に示す原子炉容器1の冷却材の流路について説明する。冷却材流路F1、F2、F3、F4、F5、F6、F7は、原子炉容器1内の冷却材を循環させる流路系である。冷却材流路F1は、下部プレナム21から下部中間プレナム23へ冷却材を搬送する流路である。冷却材流路F2は、下部中間プレナム23から入口フローホール41を介して外側アニュラス25へ冷却材を搬送する流路である。冷却材流路F3は、外側アニュラス25内の冷却材を液面方向へ搬送する流路である。冷却材流路F4は、外側アニュラス25内の冷却材の液面が原子炉容器1の内側へオーバーフローして、冷却材が外側壁冷ライナ17を乗り越える冷却材のオーバーフロー流路(越流)である。冷却材流路F5は、内側アニュラス27内の冷却材が内側アニュラス27内の液面から遠ざかる方向へ冷却材を搬送する流路である。冷却材流路F6は内側アニュラス27から出口フローホール42を介して上部中間プレナム31へ冷却材を搬送する流路である。冷却材流路F7は、上部中間プレナム31から上部プレナム33へ冷却材を搬送する流路である。原子炉容器1は、冷却材を循環させる流路系を有することにより、炉心構造物11により加熱された冷却材を原子炉容器1内で循環させることができる。これにより、原子炉容器1内での熱分布が調整され、原子炉容器1に生じる熱応力が緩和される。
【0024】
図2は、実施形態1の自励振動防止部材の構成を示す斜視図である。図3は、図2の平面図である。図2に示すように、外側壁冷ライナ17は、内側アニュラス27側の壁面に自励振動防止部材51、52、53を有している。
【0025】
自励振動防止部材51、52、53は、平板状である。自励振動防止部材51、52、53は、図3に示す原子炉容器1の外筒13の周方向と平行な周方向Cに、間隔をあけて配置されている。自励振動防止部材51、52、53の周方向Cの幅は、それぞれ幅w1、w2、w3である。自励振動防止部材51と自励振動防止部材52の間隔は、間隔t1である。自励振動防止部材52と自励振動防止部材53の間隔は、間隔t2である。
【0026】
図2に示す冷却材流路F4は、上述したように、外側アニュラス25内の冷却材の液面が原子炉容器1の内側へオーバーフローして、冷却材が外側壁冷ライナ17を乗り越える冷却材のオーバーフロー流路(越流)である。本実施形態の自励振動防止部材51、52、53には、外側壁冷ライナ17を乗り越え、落下する冷却材の一部が衝突する。これにより、冷却材の流れは、図2に示す冷却材流路F11のように、自励振動防止部材51、52、53に沿って変更され、自励振動防止部材51、52、53に衝突せずに落下する冷却材との間に落下量の時間差を生み出すことになる。また、自励振動防止部材51、52、53が傘となり、内側アニュラス27へ降り注ぐ冷却材の滴下分布量が内側アニュラス27の周方向Cで不均等となる。
【0027】
内側アニュラス27へ降り注ぐ冷却材の滴下分布量を周方向Cに沿って不均等とするために、自励振動防止部材51、52、53の配列は、原子炉容器1の外筒13の周方向Cに不規則な配列を含むことが好ましい。図3に示すように、自励振動防止部材51、52、53は、幅w1、w2、w3が同じ場合、間隔t1、t2が異なるように配置される。自励振動防止部材51、52、53は、原子炉容器1の外筒13の周方向Cに不等間隔で配置される。又は、自励振動防止部材51、52、53は、間隔t1、t2が同じ場合、幅w1、w2、w3が異なるように配置される。自励振動防止部材51、52、53は、原子炉容器1の外筒13の周方向Cに不等幅で配置される。あるいは、自励振動防止部材51、52、53は、幅w1、w2、w3及び、間隔t1、t2がそれぞれ異なるように配置されていてもよい。なお、図2及び図3に例示した自励振動防止部材の配列は、原子炉容器1の外筒13の周方向Cの全周のいずれかに不規則な配列を含んでいればよい。
【0028】
以上説明したように、本実施形態の原子炉容器は、原子炉容器1の外筒13と、外筒13の内側に配置される構造体であり、前記構造体と外筒13との間隙にある外側アニュラス25内の冷却材の液面が原子炉容器1の内側へオーバーフローして乗り越える外側壁冷ライナ17と、外側壁冷ライナ17との間でオーバーフローした前記冷却材を前記間隙である内側アニュラス27に戻すための戻り流路を形成する内側壁冷ライナ19と、オーバーフローした冷却材の一部に接し、かつ外筒13の周方向Cに複数配列された外側壁冷ライナ17の自励振動防止部材51、52、53と、を含み、自励振動防止部材51、52、53の配列が原子炉容器1の外筒13の周方向Cに不規則な配列を含んでいる。
【0029】
液体ナトリウム等の冷却材の液面のスロッシング(液面揺動)は、冷却材流路F4及び冷却材流路F11により発生する。ここで、内側アニュラス27へ降り注ぐ冷却材の滴下分布量が内側アニュラス27の周方向Cで不均等なため、スロッシングは、周期的な変動となりにくく、外側壁冷ライナ17又は内側壁冷ライナ19が周期的な自励振動を起こすおそれを低減できる。
【0030】
自励振動防止部材51、52、53には、落下するオーバーフローした冷却材の一部が衝突する。これにより、自励振動防止部材51、52、53が傘となり、内側アニュラス27へ降り注ぐ冷却材の滴下分布量が内側アニュラス27の周方向Cで不均等となる。例えば、自励振動防止部材51、52、53を複数の貫通孔を有する多孔質板で形成すると、自励振動防止部材51、52、53へ衝突した冷却材の一部が自励振動防止部材51、52、53を通過し、内側アニュラス27へ滴下できる。これにより、内側アニュラス27へ降り注ぐ冷却材の滴下分布量が内側アニュラス27の周方向Cで不均等となる。なお、貫通孔は、冷却材の自由落下方向に平行に形成されていることが好ましい。
【0031】
(実施形態2)
図4は、実施形態2の自励振動防止部材の構成を示す斜視図である。図5は、図4の平面図である。本実施形態に係る原子炉容器2は、自励振動防止部材が外側壁冷ライナの冷却材液面側の端部の一部に形成された複数の凸部であり、この凸部間からオーバーフローした冷却材が原子炉容器の内側へ落下することに特徴がある。次の説明においては、実施形態1で説明したものと同じ構成要素には同一の符号を付して、重複する説明は省略する。
【0032】
図4に示すように、外側壁冷ライナ17は、冷却材がオーバーフローする端部を凹凸形状とし、外側壁冷ライナ17のオーバーフローする端部に形成された切り欠き61、62、63、64を有している。切り欠き61は、凸部65と、凸部66とに挟まれた空間である。切り欠き62は、凸部66と、凸部67とに挟まれた空間である。切り欠き63は、凸部67と、凸部68とに挟まれた空間である。切り欠き64は、凸部68と、凸部69とに挟まれた空間である。
【0033】
切り欠き61、62、63、64は、凸部65、66、67、68、69の頂部に対して低いため、外側アニュラス25内の冷却材の液面に近くなる。このため、外側アニュラス25内の冷却材が切り欠き61、62、63、64を凸部65、66、67、68、69より優先して越え、内側アニュラス27へ冷却材が落下する。切り欠き61、62、63、64は、図5に示す原子炉容器2の外筒13の周方向と平行な周方向Cに、間隔をあけて配置されている。切り欠き61の周方向Cの幅は、幅w11である。切り欠き62の周方向Cの幅は、幅w12である。切り欠き63の周方向Cの幅は、幅w13である。切り欠き64の周方向Cの幅は、幅w14である。切り欠き61と切り欠き62の間隔である凸部66の幅は、幅t11である。切り欠き62と切り欠き63の間隔である凸部67の幅は、幅t12である。切り欠き63と切り欠き64の間隔である凸部68の幅は、幅t13である。
【0034】
図4に示す冷却材流路F4は、上述したように、外側アニュラス25内の冷却材の液面が原子炉容器2の内側へ自励振動防止部材である凸部65、66、67、68、69の間である切り欠き61、62、63、64をオーバーフローして、冷却材が外側壁冷ライナ17を乗り越える冷却材のオーバーフロー流路(越流)である。これにより、冷却材の流れは、自励振動防止部材である凸部65、66、67、68、69の配置に沿って変更され、落下する冷却材との間に落下量の時間差を生み出すことになる。また、自励振動防止部材である凸部間の切り欠き61、62、63、64に優先してオーバーフローすることとなり、内側アニュラス27へ降り注ぐ冷却材の滴下分布量が内側アニュラス27の周方向Cで不均等となる。
【0035】
内側アニュラス27へ降り注ぐ冷却材の滴下分布量を周方向Cに沿って不均等とするために、自励振動防止部材である凸部65、66、67、68、69の配列は、原子炉容器2の外筒13の周方向Cに不規則な配列を含んでいることが好ましい。凸部66、67、68は、切り欠きの幅w11、w12、w13、w14がそれぞれ同じ場合、凸部の幅t11、t12、t13がそれぞれ異なるように配置される。又は、凸部66、67、68は、凸部の幅t11、t12、t13がそれぞれ同じ場合、切り欠きの幅w11、w12、w13、w14がそれぞれ異なるように配置される。あるいは、凸部66、67、68は、切り欠きの幅w11、w12、w13、w14及び、凸部の幅t11、t12、t13がそれぞれ異なるように配置されていてもよい。凸部65、69についても同様である。なお、図4及び図5に例示した自励振動防止部材の配列は、原子炉容器2の外筒13の周方向Cの全周のいずれかに不規則な配列を含んでいればよい。
【0036】
以上説明したように、本実施形態の原子炉容器は、原子炉容器2の外筒13と、外筒13の内側に配置される構造体であり、前記構造体と外筒13との間隙にある外側アニュラス25内の冷却材の液面が原子炉容器2の内側へオーバーフローして乗り越える外側壁冷ライナ17と、外側壁冷ライナ17との間でオーバーフローした前記冷却材を前記間隙である内側アニュラス27に戻すための戻り流路を形成する内側壁冷ライナ19と、オーバーフローした冷却材の一部に切り欠き61、62、63、64で接し、かつ外筒13の周方向Cに複数配列された自励振動防止部材である凸部65、66、67、68、69と、を含み、自励振動防止部材である凸部65、66、67、68、69の配列が原子炉容器2の外筒13の周方向Cに不規則な配列を含んでいる。
【0037】
液体ナトリウム等の冷却材の液面のスロッシングは、冷却材流路F4により発生する。内側アニュラス27へ降り注ぐ冷却材の滴下分布量が内側アニュラス27の周方向Cで不均等なため、スロッシングは、周期的な変動となりにくく、外側壁冷ライナ17又は内側壁冷ライナ19が周期的な自励振動を起こすおそれを低減できる。
【0038】
自励振動防止部材は、外側壁冷ライナ17の冷却材液面側の端部の一部に形成された複数の凸部65、66、67、68、69であり、凸部間である切り欠き61、62、63、64からオーバーフローした冷却材が原子炉容器2の内側へ落下する。これにより、内側アニュラス27へ降り注ぐ冷却材の滴下分布量が内側アニュラス27の周方向Cで不均等となる。
【0039】
(実施形態3)
図6は、実施形態3の自励振動防止部材の構成を示す斜視図である。図7は、図6の平面図である。本実施形態に係る原子炉容器3は、自励振動防止部材が外側壁冷ライナと内側壁冷ライナとの間隙における冷却材の液面近傍に配置した複数の貫通孔を有する部材であることに特徴がある。次の説明においては、上述した実施形態で説明したものと同じ構成要素には同一の符号を付して、重複する説明は省略する。
【0040】
図6及び図7に示すように、自励振動防止部材である多孔板71、72、73は、外側壁冷ライナ17からオーバーフローする冷却材の一部を通過可能としている。多孔板71、72、73は、複数の貫通孔を有する部材である。励振動防止部材である多孔板71、72、73は、外側壁冷ライナ17と内側壁冷ライナと19の間隙における冷却材の液面よりも下に埋没されている。冷却材の液面の上下変動の一部は、多孔板71、72、73の貫通孔を冷却材が通過することで減衰する。このためスロッシングが抑制される。多孔板71、72、73は、本実施形態では板状部材であるが、球状でも円筒状でも良い。貫通孔は、スロッシングがない場合の冷却材の液面に垂直(冷却材の自由落下方向と平行)に形成されることがこのましい。これにより、冷却材が通過しやすくなる。
【0041】
本実施形態の原子炉容器は、原子炉容器3の外筒13と、外筒13の内側に配置される構造体であり、前記構造体と外筒13との間隙にある冷却材の液面が原子炉容器3の内側へオーバーフローして乗り越える外側壁冷ライナ17と、外側壁冷ライナ17との間でオーバーフローした前記冷却材を前記間隙に戻すための戻り流路を形成する内側壁冷ライナ19とを含み、自励振動防止部材である貫通孔を有する部材であって、多孔板71、72、73の貫通孔内部へ冷却材を含むように配置することが好ましい。これにより、冷却材を貫通孔内で上下させる。これにより、液面の上下振動のエネルギーは減衰され、スロッシングが抑制される。
【0042】
自励振動防止部材である多孔板71、72、73は、図7に示す原子炉容器3の外筒13の周方向と平行な周方向Cに、間隔をあけて配置されている。多孔板71の周方向Cの幅は、幅w21である。多孔板72の周方向Cの幅は、幅w22である。多孔板71と多孔板72の間隔は、間隔t21である。多孔板72と多孔板73の間隔は、間隔t22である。間隔t21と間隔t22はそれぞれ異ならせることが好ましい。原子炉容器3の径方向を径方向Dとすると、多孔板71の径方向Dの長さは、幅d1である。多孔板72の径方向Dの長さは、幅d2である。幅d2は、径方向Dの外側壁冷ライナ17から内側壁冷ライナ19迄の長さ(距離)と等しい。これにより、多孔板72は、径方向Dのスロッシングを抑制することができる。多孔板71の径方向Dの長さと多孔板72の径方向Dの長さとが異なることにより、スロッシングを不規則とすることができる。なお、多孔板71、72、73は、分割せず、内側アニュラス27と同じ又は相似形の円環状の板部材であってもよい。
【0043】
図6に示す冷却材流路F4は、上述したように、外側アニュラス25内の冷却材の液面が原子炉容器3の内側へオーバーフローして冷却材が外側壁冷ライナ17を乗り越える冷却材のオーバーフロー流路(越流)である。これにより、冷却材の流れは、自励振動防止部材である多孔板71、72、73へ滴下することになる。多孔板71、72、73は、貫通孔を有する部材で形成されているので、冷却材を貫通孔に一部通過させる。これにより、液面の上下振動のエネルギーは減衰され、スロッシングが抑制される。
【0044】
また、多孔板71、72、73は、周方向C又は径方向Dに不規則に配列されることにより、内側アニュラス27へ降り注ぐ冷却材の滴下分布量が内側アニュラス27の周方向C又は径方向Dで不均等となる。多孔板71、72は、幅w21、w22がそれぞれ同じ場合、間隔t21、t22がそれぞれ異なるように配置される。また、多孔板71、72は、間隔t21、t22がそれぞれ同じ場合、幅w21、w22がそれぞれ異なるように配置される。あるいは、多孔板71、72は、幅w21、w22及び、間隔t21、t22がそれぞれ異なるように配置されていてもよい。これは、多孔板73についても同様である。なお、図6及び図7に例示した自励振動防止部材の配列は、原子炉容器3の外筒13の周方向Cの全周のいずれかに不規則な配列を含んでいればよい。
【0045】
以上説明したように、本実施形態の原子炉容器は、原子炉容器3の外筒13と、外筒13の内側に配置される構造体であり、前記構造体と外筒13との間隙にある外側アニュラス25内の冷却材の液面が原子炉容器3の内側へオーバーフローして乗り越える外側壁冷ライナ17と、外側壁冷ライナ17との間でオーバーフローした前記冷却材を前記間隙である内側アニュラス27に戻すための戻り流路を形成する内側壁冷ライナ19と、外側壁冷ライナ17と内側壁冷ライナ19との間隙で戻り流路を形成する冷却材の一部に接し、かつかつ前記外筒の周方向Cに複数配列された自励振動防止部材である貫通孔を有する部材(多孔板71、72、73)と、を含み、通孔部材(多孔板71、72、73)の配列が外筒13の周方向Cに不規則な配列を含んでいる。
【0046】
液体ナトリウム等の冷却材の液面のスロッシングは、冷却材流路F4により発生する。ここで、内側アニュラス27へ降り注ぐ冷却材の滴下分布量が内側アニュラス27の周方向Cで不均等なため、スロッシングは、周期的な変動となりにくく、外側壁冷ライナ17又は内側壁冷ライナ19が周期的な自励振動を起こすおそれを低減できる。
【0047】
自励振動防止部材である多孔板71、72、73は、外側壁冷ライナ17との間で戻り流路を形成する内側アニュラス27の冷却材の液面近傍に配置した貫通孔を有する部材である。また、内側アニュラス27へ降り注ぐ冷却材の滴下分布量が内側アニュラス27の周方向Cで不均等となる。
【0048】
自励振動防止部材である多孔板72は、外側壁冷ライナ17と内側壁冷ライナと19の間隙の内側アニュラス27の冷却材の液面近傍に配置した貫通孔を有する部材であり、径方向Dの長さが内側アニュラス27の長さと等しいことが好ましい。これにより、径方向Dのスロッシングは、周期的な変動となりにくく、外側壁冷ライナ17又は内側壁冷ライナ19が周期的な自励振動を起こすおそれを低減できる。
【0049】
自励振動防止部材である多孔板71、72、73は、外側壁冷ライナ17と内側壁冷ライナと19の間隙における冷却材の液面を覆うようにしてもよい。これにより、オーバーフローした冷却材の一部が一度、多孔板71、72、73に衝突し、冷却材を一部通過させる。これにより、冷却材の落下エネルギーは減衰され、スロッシングが抑制される。また、冷却材の液面の上下変動の一部は、多孔板71、72、73の貫通孔を冷却材が通過することで減衰する。このため、よりスロッシングが抑制される。
【0050】
本実施形態の原子炉容器は、原子炉容器3の外筒13と、外筒13の内側に配置される構造体であり、前記構造体と外筒13との間隙にある冷却材の液面が原子炉容器3の内側へオーバーフローして乗り越える外側壁冷ライナ17と、外側壁冷ライナ17との間でオーバーフローした前記冷却材を前記間隙に戻すための戻り流路を形成する内側壁冷ライナ19とを含み、外側壁冷ライナ17と内側壁冷ライナ19との間隙における冷却材の液面の少なくとも一部を遮る自励振動防止部材である多孔板71、72、73としてもよい。
【0051】
径方向Dに発生するスロッシングは、旋回モードと呼ばれる。この旋回モードの発生は、自励振動防止部材である多孔板71、72、73のいずれかにより、低減できる。その結果、旋回モードに起因する外側壁冷ライナ17又は内側壁冷ライナ19の振動が低減される。貫通孔を有する部材で冷却材の液面が遮られることで、内側アニュラス27の径方向Dに発生するスロッシングのエネルギーを減衰できる。その結果、外側壁冷ライナ17又は内側壁冷ライナ19が周期的な自励振動を起こすおそれを低減できる。また、冷却材の液面の上下変動の一部は、多孔板71、72、73の貫通孔を冷却材が通過することで減衰する。このため、よりスロッシングが抑制される。
【0052】
(実施形態4)
図8は、実施形態3の自励振動防止部材の構成を示す斜視図である。図9は、図8の平面図である。本実施形態に係る原子炉容器4は、自励振動防止部材が外側壁冷ライナと内側壁冷ライナの間で径方向へ延び、前記外側壁冷ライナと前記内側壁冷ライナとの間隙における冷却材の液面の一部を遮る板部材であることに特徴がある。次の説明においては、上述した実施形態で説明したものと同じ構成要素には同一の符号を付して、重複する説明は省略する。
【0053】
図8及び図9に示すように、自励振動防止部材であるスロッシング遮蔽板81、82、83、84、85、86は、外側壁冷ライナ17と内側壁冷ライナ19の間で径方向Dへ延び、外側壁冷ライナ17と内側壁冷ライナ19との間隙である内側アニュラス27における冷却材の液面の一部を遮る板部材である。
【0054】
スロッシング遮蔽板81、82、83、84、85、86は、図9に示す原子炉容器4の外筒13の周方向と平行な周方向Cに、間隔をあけて配置されている。スロッシング遮蔽板81、82、83、84、85、86の径方向Dの長さは、それぞれ長さd31、d32、d33、d34、d35、d36である。スロッシング遮蔽板81とスロッシング遮蔽板82の間隔は、間隔t31である。スロッシング遮蔽板82とスロッシング遮蔽板83の間隔は、間隔t32である。スロッシング遮蔽板83とスロッシング遮蔽板84の間隔は、間隔t33である。スロッシング遮蔽板84とスロッシング遮蔽板85の間隔は、間隔t34である。スロッシング遮蔽板85とスロッシング遮蔽板86の間隔は、間隔t35である。間隔t31、t32、t33、t34、t35はそれぞれ異ならせることが好ましい。長さd36は、径方向Dの外側壁冷ライナ17から内側壁冷ライナ19迄の距離と等しい。これにより、スロッシング遮蔽板86は、径方向Dのスロッシングを抑制することができる。また、スロッシング遮蔽板81、82、83、84、85、86の径方向Dの長さが異なることにより、スロッシングを不規則とすることができる。スロッシング遮蔽板81、83、84、86は、外側壁冷ライナ17と固定されている。スロッシング遮蔽板82、85、86は、内側壁冷ライナ19と固定されている。これにより、外側壁冷ライナ17と内側壁冷ライナ19との間隙である内側アニュラス27における冷却材の液面の一部を遮る位置を異ならせることができる。なお、図8及び図9に例示した自励振動防止部材は原子炉容器4の外筒13の周方向Cの全周のいずれかに不規則な配列を含んでいればよい。
【0055】
図8に示す冷却材流路F4は、上述したように、外側アニュラス25内の冷却材の液面が原子炉容器4の内側へオーバーフローして、冷却材が外側壁冷ライナ17を乗り越える冷却材のオーバーフロー流路(越流)である。これにより、スロッシングが側アニュラス27における冷却材の液面で発生しても、自励振動防止部材であるスロッシング遮蔽板81、82、83、84、85、86のいずれかにより、液面の一部が遮られる。このため、スロッシング遮蔽板81、82、83、84、85、86により、スロッシングが遮蔽される。これにより、スロッシングは抑制される。径方向Dに発生するスロッシングは、旋回モードと呼ばれる。この旋回モードの発生は、自励振動防止部材であるスロッシング遮蔽板81、82、83、84、85、86のいずれかにより、低減できる。その結果、旋回モードに起因する外側壁冷ライナ17又は内側壁冷ライナ19の振動が低減される。
【0056】
また、スロッシング遮蔽板81、82、83、84、85、86は、周方向C又は径方向Dに不規則に配列されることにより、内側アニュラス27で発生するスロッシングの遮蔽具合が内側アニュラス27の周方向C又は径方向Dで不均等となる。スロッシング遮蔽板81、82、83、84、85、86は、長さd31、d32、d33、d34、d35、d36がそれぞれ同じ場合、間隔t31、t32、t33、t34、t35がそれぞれ異なるように配置される。又は、スロッシング遮蔽板81、82、83、84、85、86は、間隔t31、t32、t33、t34、t35がそれぞれ同じ場合、長さd31、d32、d33、d34、d35、d36がそれぞれ異なるように配置される。あるいは、スロッシング遮蔽板81、82、83、84、85、86は、長さd31、d32、d33、d34、d35、d36及び、間隔t31、t32、t33、t34、t35がそれぞれ異なるように配置されていてもよい。
【0057】
以上説明したように、本実施形態の原子炉容器は、原子炉容器4の外筒13と、外筒13の内側に配置される構造体であり、前記構造体と外筒13との間隙にある外側アニュラス25内の冷却材の液面が原子炉容器4の内側へオーバーフローして乗り越える外側壁冷ライナ17と、外側壁冷ライナ17との間でオーバーフローした前記冷却材を間隙である内側アニュラス27に戻すための戻り流路を形成する内側壁冷ライナ19と、外側壁冷ライナ17と内側壁冷ライナ19との間隙で戻り流路を形成する冷却材の一部に接し、かつ外筒13の周方向Cに複数配列された自励振動防止部材であるスロッシング遮蔽板81、82、83、84、85、86と、を含み、スロッシング遮蔽板81、82、83、84、85、86の配列が原子炉容器4の外筒13の周方向Cに不規則な配列を含んでいる。
【0058】
液体ナトリウム等の冷却材の液面のスロッシングは、冷却材流路F4により発生する。ここで、内側アニュラス27で発生するスロッシングの遮蔽具合が内側アニュラス27の周方向C又は径方向Dで不均等となる。このため、スロッシングは、周期的な変動となりにくく、外側壁冷ライナ17又は内側壁冷ライナ19が周期的な自励振動を起こすおそれを低減できる。
【0059】
自励振動防止部材であるスロッシング遮蔽板81、82、83、84、85、86は、外側壁冷ライナ17と内側壁冷ライナ19の間で径方向Dへ延び、外側壁冷ライナ17と内側壁冷ライナ19との間隙における冷却材の液面の一部を遮る板部材である。これにより、内側アニュラス27で発生するスロッシングの遮蔽具合が内側アニュラス27の周方向C又は径方向Dで不均等とすることができる。
【0060】
自励振動防止部材は、スロッシング遮蔽板86であり、径方向Dの長さが内側アニュラス27の長さと等しいことが好ましい。これにより、径方向Dのスロッシングは、周期的な変動となりにくく、外側壁冷ライナ17又は内側壁冷ライナ19が周期的な自励振動を起こすおそれを低減できる。
【0061】
本実施形態の原子炉容器4は、原子炉容器の外筒13と、外筒13との間隙にある冷却材の液面が原子炉容器4の内側へオーバーフローして乗り越える外側壁冷ライナ17と、オーバーフローした冷却材が外側壁冷ライナ17との間で戻り流路を形成する内側壁冷ライナ19とを含み、外側壁冷ライナ17と内側壁冷ライナ19との間隙における冷却材の液面の少なくとも一部を遮る自励振動防止部材であるスロッシング遮蔽板81、82、83、84、85、86のいずれかを有する。
【0062】
内側アニュラス27で発生するスロッシングの遮蔽をし、スロッシングのエネルギーを減衰できる。その結果、外側壁冷ライナ17又は内側壁冷ライナ19が周期的な自励振動を起こすおそれを低減できる。
【0063】
上述した実施形態1、2、3、4における自励振動防止部材は、いずれかを組み合わせて実施することができる。
【符号の説明】
【0064】
1、2、3、4 原子炉容器
11 炉心構造物
13 外筒
17 外側壁冷ライナ
19 内側壁冷ライナ
21 下部プレナム
23 下部中間プレナム
25 外側アニュラス
27 内側アニュラス
31 上部中間プレナム
33 上部プレナム
41 入口フローホール
42 出口フローホール
51、52、53 自励振動防止部材
65、66、67、68、69 凸部(自励振動防止部材)
71、72、73 多孔板(自励振動防止部材)
81、82、83、84、85、86 スロッシング遮蔽板(自励振動防止部材)
F1、F2、F3、F4、F5、F6、F7、F11 冷却材流路

【特許請求の範囲】
【請求項1】
原子炉容器の外筒と、
前記外筒の内側に配置される構造体であり、前記構造体と前記外筒との間隙にある冷却材が前記原子炉容器の内側へオーバーフローして乗り越える外側壁冷ライナと、
前記外側壁冷ライナとの間でオーバーフローした前記冷却材を前記間隙に戻すための戻り流路を形成する内側壁冷ライナと、
オーバーフローした前記冷却材の一部、又は前記外側壁冷ライナと前記内側壁冷ライナとの間隙の前記冷却材の一部に接し、かつ前記外筒の周方向に複数配列された自励振動防止部材と、を含み、
前記自励振動防止部材の配列が前記外筒の周方向に不規則な配列を含むことを特徴とする原子炉容器。
【請求項2】
前記自励振動防止部材に、オーバーフローした前記冷却材の一部が衝突する請求項1に記載の原子炉容器。
【請求項3】
前記自励振動防止部材は、前記冷却材がオーバーフローする側における前記外側壁冷ライナの端部の一部に形成された複数の凸部であり、前記凸部間からオーバーフローした前記冷却材が前記原子炉容器の内側へ落下する請求項1に記載の原子炉容器。
【請求項4】
前記自励振動防止部材は、前記外側壁冷ライナと前記内側壁冷ライナとの間隙における前記冷却材の液面近傍に配置された貫通孔を有する部材である請求項1に記載の原子炉容器。
【請求項5】
前記自励振動防止部材は、前記外側壁冷ライナと前記内側壁冷ライナとの間隙における前記冷却材の液面を覆う貫通孔を有する部材である請求項1に記載の原子炉容器。
【請求項6】
前記自励振動防止部材は、前記外側壁冷ライナと前記内側壁冷ライナの間で径方向へ延び、かつ前記外側壁冷ライナと前記内側壁冷ライナとの間隙における前記冷却材の液面の一部を遮る板部材である請求項1に記載の原子炉容器。
【請求項7】
原子炉容器の外筒と、
前記外筒の内側に配置される構造体であり、前記構造体と前記外筒との間隙にある冷却材の液面が前記原子炉容器の内側へオーバーフローして乗り越える外側壁冷ライナと、
前記外側壁冷ライナとの間でオーバーフローした前記冷却材を前記間隙に戻すための戻り流路を形成する内側壁冷ライナと、を含み、
前記外側壁冷ライナと前記内側壁冷ライナとの間隙における前記冷却材の液面の少なくとも一部を遮る自励振動防止部材を有することを特徴とする原子炉容器。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2012−163414(P2012−163414A)
【公開日】平成24年8月30日(2012.8.30)
【国際特許分類】
【出願番号】特願2011−23194(P2011−23194)
【出願日】平成23年2月4日(2011.2.4)
【出願人】(000006208)三菱重工業株式会社 (10,378)