説明

回転翼輸送手段

【課題】回転翼輸送手段を提供する。
【解決手段】回転翼輸送手段は、細長い管状の背骨または芯を有する本体構造と、ローター群を有する逆回転同軸ローターシステムであって、共通のローター回転軸の周りに該ローター群を駆動するために各ローターがモーターを有するローターシステムとを備える。このローターシステムは、該回転翼輸送手段を有方向飛行させるのに使用される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、空中輸送手段に関し、特に無人空中輸送手段(UAV)に関する。さらにより具体的には本発明は無人回転翼輸送手段に関する。
【背景技術】
【0002】
回転翼輸送手段はさまざまな用途に用いられている。無人回転翼輸送手段はしばしば軍事用、法執行機関、ならびに商業的な航空調査活動によって使われている。
【0003】
《関連する出願への相互参照》
本出願は2004年4月14日に出願された米国仮特許出願第60/562,081号の利益を主張する通常の特許出願である。この出願を本明細書に援用する。
【発明の概要】
【発明が解決しようとする課題】
【0004】
本発明に係る回転翼輸送手段は、細長い筒状背骨または芯を有する胴体と、ローター群を有する逆回転同軸ローターシステムであって、共通のローター回転軸の周りに該ローター群を駆動するために各ローターがモーターを有するローターシステムとを備える。例えば、バッテリー、燃料電池、またはハイブリッドガス発電機を備えた電力源が装備され、モーターに電力を供給する。ローターシステムへの、およびローターシステム間の電力伝達は、機械的軸伝達ではなく、主に電気配線によって行われる。製造をやり易くするモジュール構造体が説明される。
【課題を解決するための手段】
【0005】
本発明による一実施形態は、飛行中の輸送手段から分離可能な補助電力パックを備え、例えば遠隔地に該輸送手段を届けることを容易にしている。別の実施形態では、電力パックは、例えば弾薬、潜水ソナー、水中聴音器、あるいは分離可能なソノブイモジュールなどの積載物を含んでいる。本発明は大型の人間輸送ヘリコプターを含む多くのヘリコプターに適用可能であると共に、本発明は特に、遠隔操縦輸送手段(RPV)または無人空中輸送手段(UAV)として知られている小型で自走式または無線制御の回転翼飛行体への適用に適する。
【0006】
現在考えられる本発明の最良の実施形態を示す例証的実施形態の以下の詳細な説明を考慮すれば、本発明の他の特徴が当業者にとって明らかとなろう。
【図面の簡単な説明】
【0007】
【図1】本発明に係る回転翼輸送手段の概略図であり、誘導システムと非回転構造脊柱または背骨を備えたフレームに結合された一対のローターシステムとを備え積載物を運搬する飛行体を示す。
【図2A】本発明に係わる回転翼輸送手段の斜視図であり、垂直飛行モードにおける逆回転同軸ローターシステムを示す。
【図2B】逆回転同軸ローターシステムならびに固定翼ブースターモジュールを有する図2Aの回転翼輸送手段の水平飛行モードにおける斜視図である。
【図3】図2Aの回転翼輸送手段の外側胴体パネル、電気配線およびブースターを除いた側立面図である。
【図4】図2Aの回転翼輸送手段の一部切り取った側立面図であり、逆回転同軸ローターシステムと電源を示す。
【図5】図2Aの回転翼輸送手段の一部切り取った拡大斜視図であり、該輸送手段の上方内部と逆回転同軸ローターシステムを示す。
【図6】図2Aの回転翼輸送手段の一部切り取った拡大斜視図であり、該輸送手段の下方内部と逆回転同軸ローターシステムを示す。
【図7A】該輸送手段の部位間の導管である中空内部チャネルを有する円形断面の芯管または背骨の斜視図であり、該中空内部を走り、様々な箇所で出入りする電気配線を示す。
【図7B】該輸送手段の部位間の導管であり、長さ方向に沿った外側チャネルを有する概ね十字形の断面を持つ背骨の斜視図である。
【図8】第一リングマウントの拡大斜視図である。
【図9】第二リングマウントの分解斜視図であり、取付けられたリンク機構および胴体サポートを示す。
【図10】図2Aの回転翼輸送手段の中央内部の一部切り取った拡大斜視図であり、逆対回転同軸ローターシステムを示す。
【図11A】可変サイクリックピッチ角および固定コレクティブピッチ角を有するローター翼を有するローターモジュールの分解斜視図である。
【図11B】可変サイクリックピッチ角および可変コレクティブピッチ角を有するローター翼を有するローターモジュールの分解斜視図である。
【図12】図12Aは、モーターマウントの第一の側の斜視図である。図12Bは、モーターマウントの第二の側の斜視図である。
【図13】図13Aは、ローターハブの第一の側の斜視図である。図13Bはローターハブの第二の側の斜視図である。
【図14】図2Bの線14−14に沿ったローターモジュールを示す断面図である。
【図15】図2Aの逆回転同軸ローターシステムおよびローターシステムから延びる芯管の側立面図である。
【図16】図16Aは、数個のバッテリーを備える1つの電源モジュールの分解斜視図である。図16Bは、数個のバッテリーを備える1つの電源モジュールの分解斜視図である。
【図17】図2Bのブースターモジュールの正射投影図であって、格納のため折畳まれた一つの翼と、飛行形態に伸ばされた一つの翼とを示す。
【図18】飛行中に回転翼輸送手段から分離するブースターモジュールを示す正射投影図である。
【図19】底部から水中に吊り下げられた潜水ソナーまたは水中聴音器を示す回転翼輸送手段の立面図である。
【図20】回転翼輸送手段が下の地面に墜落着陸する間の不均等長さ折畳み翼の動作の一連を示す図である。
【図21】図21Aは、収納のために折畳まれた回転翼輸送手段を示す収納缶の側立面図である。図21Bは、収納のために折畳まれた回転翼輸送手段を示す側立面図である。
【図22】例として外洋上の船舶である遠隔地までセンサーまたはマーカーを配達する本発明に係る回転翼輸送手段の斜視図である。
【図23】投下型爆弾の後部に収納するために折畳まれた回転翼輸送手段の側立面図である。
【図24】投下型爆弾の後部から目標地の近傍へ到達する回転翼輸送手段の斜視図であり、該回転翼輸送手段を発射する投下型爆弾と、投下型爆弾が該目標を叩いた後、リアルタイム戦闘損害評価を攻撃部隊に提供するために該目標地域に留まるように垂直飛行モードになる該輸送手段とを示す。
【図25A】別の回転翼輸送手段の模式図であり、非回転構造の脊柱または背骨フレームに結合された電力および信号の導管を備えた中央路構造と、誘導システムと、一対のローターシステムとを有し、積載物を運搬する飛行体を示す。
【図25B】図25Aの回転翼輸送手段の模式図であり、電力および信号導管を持つ中央データ/電力路を介して通信するローターシステム、制御システム、および電源を示す。
【発明を実施するための形態】
【0008】
図1に模式的に示したように、回転翼輸送手段1は、共通軸7に沿って延びるフレーム40に結合され、互いに間隔を空けて直列に並ぶ第一モジュール2、第一と第二ローターシステム3、5、電力モジュール13、14、および第二のモジュール15を備える。例で示すと、フレーム40は細長い中央背骨であり、中空の芯またはその断面が十字であってもよい。作動時においては、図2Aに示されるように、第一ローター3および第二ローター5は共通な軸7の周りに反対方向に回転し、回転翼輸送手段1が制御された飛行を行うように24の方向に推力を向け、24’の方向に揚力を発生する。第一モジュール2は、多様な誘導システム50’、電子システム55’もしくは積載物15’を含むことができる。第二モジュール15は、積載物15’、または他の実施形態では多様な誘導システム50’および電子システム55’を含むことができる。積載物15’は弾薬、放射能センサー、化学薬品検出センサー、生物体センサー、能動的および受動的聴取器、ビデオセンサー、補助電源、または他の任務に特有の装置、を含んでよいがこれらに限定されない。このように回転翼輸送手段1は、そこから情報を得ようとする対象領域に偵察、観測、または探索モニター装置を移動するための手段を提供する。
【0009】
図1、図25A、図25Bに示すように、第一ローターシステム3は、第一モーター54、第一ローター翼20および第一ピッチ角制御装置56を備える。幾つかの実施形態において、モーター54は、例えば図4〜図6に示されるように電気モーター、もしくは共通軸7の周りにローター翼20を回転させる動力を供給するために適した他の手段である。第一ローターシステム3および第二ローターシステム5は、構造ならびに機能が互いに類似している。第二ローターシステム5は、第二モーター61、第二ローター翼22および第二ピッチ角制御装置57を備える。幾つかの実施形態において、モーター61は、例えば図4〜図6に示されるように電気モーター、もしくは共通軸7の周りにローター翼22を回転させる動力を供給するために適した他の手段である。例示のように、電気ならびに電子部品は接続され、電力ならびに信号線をそれぞれ保持する電気導線管路173ならびに電子導線管路174を介して通じている。回転翼輸送手段1は二つのローターシステムを有するものとして例示されているが、回転翼輸送手段1は機能ならびに任務の要求に従って三つ以上のローターシステムを有しても良い。
【0010】
図1および図3に示されるようにフレーム40は非回転であり、第一モジュール2、第一および第二ローターシステム3、5、電力モジュール13、14、および第二モジュール15を収容するための中央の細長い中空背骨を形成する。例示されているように、電力モジュール13、14は第二ローターシステム5と第二モジュール15の間に互いに隣合せに配置される。フレーム40が中空なので、電力モジュール13、14は中空背骨を介してモーター54とモーター61に電気的に接続することができる。
【0011】
例示のように、ピッチ角制御装置56は前後方向サーボ58と左右方向サーボ59に結合されたスウォッシュプレート56’であり、制御装置55からの入力に応答して各ローター翼20の1回転を周期とするサイクリックピッチ角を変化させる。幾つかの実施形態では、スウォッシュプレート56’がさらにコレクティブサーボ98に結合され、全ローター翼20のピッチ角(全ピッチ角)を同量だけ変化させる。同様に、ピッチ角制御装置57は前後方向サーボ58と左右方向サーボ59に結合されたスウォッシュプレート57’であり、制御装置55からの入力に応答して各ローター翼20のサイクリックピッチ角を変化させる。幾つかの実施形態では、スウォッシュプレート57’はまたコレクティブサーボ98に結合され、全ローター翼20のピッチ角を変更する。例示の実施形態において、制御装置55は例えば図3に示したように指令信号コントローラであるか、またはサーボ58、59または98およびモーター54、61に所望の電気的または機械的命令信号を供給する他の適切な方法である。
【0012】
例示のように、回転翼輸送手段1は、飛行体のピッチ角制御(ヘリコプター型の前後サイクリック入力)または飛行体のロール角制御(ヘリコプター型の左右サイクリック入力)のための二つのサーボ58、59を有する固定ピッチ角ローターシステムを備える。図1の点線で示されたサーボ98を、コレクティブピッチ角制御が望まれる場合にはサーボ58、59に結合することができる。固定ピッチ角ローターシステムを有する実施形態では、ローターシステム3、5はピッチリンク119によってスウォッシュプレート56’、57’に結合される。サーボ58、59は、リンク125、126によってスウォッシュプレート56’、57’に結合される。本発明の特徴は、一つまたは二つの少数のサイクリックサーボアクチュエータ(サーボ58、59)によって回転翼輸送手段1が飛行可能であるということにある。「1サーボ」飛行モードにおいてモーター54、61の差トルクは偏揺れ角を制御し、さらにサーボ58は前後方向の飛行を制御する。サイクリックサーボが一つだけの場合、輸送手段1は方向舵および昇降舵制御だけを有する飛行機と非常に似た飛行が可能である。図示した「2サーボ」飛行モードでは、サーボ58、59は前後の飛行体ピッチ角制御と左右の飛行体ロール角制御を提供し、モーター54、61の差トルクはヨー制御を提供する。
【0013】
作動時においては、ローターハブ群101は反対方向に回転する。サーボ58、59は搭載された飛行制御電子装置によってスウォッシュプレート56’、57’が同時に傾くように制御され、それにより回転しているローター翼20の翼ピッチ角をサイクリックに変化させて、輸送手段1を飛行体ピッチ方向170または飛行体ロール方向171に傾ける。コレクティブピッチ角(図11B参照)を制御する別の実施形態では、コレクティブサーボ98と第三ピッチ角リンク(図示せず)を備え、共通軸7に沿ってスウォッシュプレート56’、57’の軸位置を変化させ、電子式コレクティブ・サイクリックピッチ角複合(CCPM)を用いてコレクティブローター翼20、22のピッチ角を変化させる。コレクティブ・サイクリックピッチ角複合サーボ58、59、98を用いて、スウォッシュプレート56’、57’を同時に傾けてサイクリックピッチ角を変化させ、共通軸7に沿ってスウォッシュプレート56’、57’を同時に軸方向に移動させてコレクティブピッチ角を変化させる。
【0014】
本実施形態は、垂直飛行形態時におけるヨー(飛行方向)制御のためにモーター速度の差を使用する。通常、同軸ヘリコプターは可変翼ピッチ角および翼角度差を用いて飛行中の偏揺れ角動きを制御している。本発明においては、輸送手段1の固定胴体に対して異なった速度でモーター54、61を動作させることによって生成された差トルクが、ヨー力を生成し、ヨー運動(すなわち共通軸7周りの回転)を安定させ制御する。この方法では、垂直な共通軸7の周りの回転翼輸送手段1のヨー運動に応答してモーター54のトルク(最終的には速度)を増減する。第二モーター61のトルク(速度)は制御装置55に格納された搭載型コンピュータシステムによって第一モーター54のトルク(速度)に対抗して一定揚力を維持するように自動的に調節され、その結果、回転翼輸送手段1の高度は増加も減少もしない。
【0015】
ローター翼20および22は、回転翼輸送手段1に結合され、ローターハブ101によって回転のために支持される。ローターハブ101はさらに、図11Aに最良に示されているように内部ヨーク108に回動自在に取付けられる。回動軸109はローターハブ101を貫通して延び、ヨーク108によって受容される。ヨーク108は、共通軸7の周りに回転するように一対のローター翼をハブ101に結合する。ヨーク108はさらに、一対のリンク119の第一端に結合される。各リンク119はさらに、その第二の端部がスウォッシュプレート56’、57’の周辺縁に結合される。このようにヨーク118は、スウォッシュプレートサーボ58、59、または98からの線形運動入力に応答するスウォッシュプレート56’、57’からの入力によって回動する。ヨーク118のこの回動運動は、各ローター翼20、22の回動を引起し、これによりローター翼20、22のローター翼ピッチ角を増加または減少させる。
【0016】
図2Aおよび図2Bに示すように、回転翼輸送手段1は、共通軸7に沿って互いに間隔をとって配列された、上方部2’、第一および第二ローター3、5、中央部4、下方部6、第一および第二電力モジュール13、14、および積載物15を備える。ここで図2A〜図4を参照すると、輸送手段1の上方部2’および中央部4内の内部機械部品と電気部品は、薄い壁の上方胴体シェル10と中央胴体シェル11とにそれぞれ収容されている。下方胴体シェル12は下方部6の一部を覆うが、下方部6の全部を覆うまで延びてもよい。本発明の特徴は、胴体シェル10、11が、ポリカーボネートまたはABSのようなプラスチック材料からブロー成形され、フレーム40と合わせて、堅牢強固かつ製造の容易な中央強度部品及び薄い外部カバー部品の両方を有する回転翼飛行体の構造を形成することである。
【0017】
図3に示すように、本発明の回転翼飛行体1は、歯車106、107(図11)のような駆動列を用いてローター翼20に作動可能に結合されたモーター54を備えたローターシステムを有する。スウォッシュプレート56’(図10)のようなピッチ角制御装置がローター翼20に作動可能に結合され、リンク125、126(図10)等のリンク機構を介するサーボ58、59(図3)等のサーボアクチュエータからの出力に応答して、ローター翼20のサイクリックおよび/またはコレクティブピッチ角を変化させる。電力源モジュール13にあるバッテリ(図示せず)からの電気または貯蔵タンク(図示せず)からの燃料のような動力は、動力導管を介してローターシステム間を流れ、制御装置55、モーター54およびサーボ58、59を作動させるための動力を供給する。制御装置55からの制御信号は、信号導管路に沿って流れモーター54の速度およびサーボ58、59の姿勢出力を制御する。電力導管路および信号導管路は、輸送手段1の構造上の脊柱であるフレーム40(図7A、図7B、および図15)内に形成されたチャネル96を通ってローター翼20の流入側と流出側の間に配設される。
【0018】
ホバリングにおいては、第一ローター3および第二ローター5は共通軸7の周りに互いに逆方向に回転をして、図2Aに示すように空気を下方24の方向に押しやり、輸送手段1を上方に引上げる。第一ローター3は、共通軸7を中心に方向21の向きに回転するように構成されたローター翼20を有し、第二ローター5は、共通軸7を中心に方向23の向きに回転するように構成されたローター翼22を有する。第一ローター翼20および第二ローター翼22はサイクリックピッチ角制御されるので、輸送手段1は、共通軸7はほぼ垂直になっている状態で25の方向へ飛行するように構成されている。
【0019】
次に図2Bを参照して、ブースタインタフェース9において下方部6に取付けられたブースターモジュール8を有する本発明に係る第二の実施形態を説明する。ブースターモジュール8は、例えば補助電力源(図示せず)を載せており、輸送手段1に積載された電力モジュール13、14に収容された内部電力源を補う。図示のように、補助電力源(図示せず)および電力モジュール13、14は電気バッテリー13、14である。ブースターモジュール8は、共通軸7はほぼ水平になっている状態で18の方向へ飛行する時に輸送手段1に付加的揚力を与える左翼16および右翼17を備える。
【0020】
フレーム40は、図4に示すように、回転翼輸送手段1の構造背骨を形成し、通常は上方部2’から下方部6まで回転翼輸送手段1の中央を通って垂直に延びている。例示のように、フレーム40は中空内部チャネル96(図7A)を有する非回転芯管、または外部チャネルを有する十字梁97(図7B)である。第一、第二ローターモジュール3、5、上方部2’、中間部4、および下方部6内の全ての部品はフレーム40に取付けられている。図7Aを参照すると、非回転中空芯管40はさらに、回転翼輸送手段1の上方部2’、中間部4および下方部6にある部品間を通る電気配線45、配管(図示せず)、機械的リンク機構(図示せず)のための管としても機能する。長手方向の溝46、47が配線45、配管、リンク機構に対する入口、出口点として設けられている。非回転中空芯管40および十字梁は、一体で胴体部2、4、6の間で連続しているため、輸送手段1の剛性および軽量構造特性は増大する。例示のように、非回転中空芯管40および十字梁97は、好ましくは外径(芯管40)または幅(十字ビーム)が約0.5インチ(13mm)および肉厚が約0.03インチ(0.76mm)から約0.05インチ(1.3mm)の間の巻かれたまたは引き抜き成形されたカーボングラファイト繊維、ガラス繊維または7075アルミニウム合金(または同等品)である。
【0021】
回転翼輸送手段1は、図3で最良に示されているように、三つの胴体部を持つよう構成されている。上方部2’は、水平センサー/安定装置50、電子式ジャイロ安定装置51、芯管40の上端に結合されたジャイロ装着台52、第一モーター速度制御装置53、第一モーター54、無線受信機、および制御装置55を有するよう構成されている。中間部4は第一スウォッシュプレート56’、第二スウォッシュプレート57’、前後サイクリックサーボ58、および左右サイクリックサーボ59スウォッシュプレートスウォッシュプレートを含む。下方部6は、第二モーター速度制御装置60、第二モーター61、無線バッテリー62、第一、第二バッテリモジュール13、14、および積載モジュール15を含む。
【0022】
例示した実施形態では、水平センサー/安定装置50はFMA社のモデル「FS8Copilot」、ジャイロ安定装置51はJR社のモデル「G500」シリコンリングジャイロ、モーター54、61はHacker社のモデル「B2041S」であり、モーター速度制御装置53、60はCastle Creations社のモデル「ペガサス35」であってコンピュータベースのデジタル式プログラマブル速度制御装置である。回転翼輸送手段1はまた、上方部2’に結合されるように構成された、GPS受信/制御装置ならびに遠隔測定システム(図示せず)を収容するように構成されている。
【0023】
回転翼輸送手段1の内部部品は図8に示されるようにリングマウント70によって芯管40に結合される。リングマウント70は、芯管40の円形外面と一致する円形内側部71を備える。リングマウント70は、機械的、電気的、および他の内部部品を保持するのに適合したフランジ75、76、77を有する、半径方向に延びたマウンティングアーム72、73、74を備える。リングマウント70は、フランジ75にモーター54を、フランジ76にモーター速度制御装置53を、フランジ77に無線受信装置55’’を支持するように構成されている。輸送手段1の内部部品は、例えば装着フランジに様々な締め具(例えば孔78を通したナイロン紐)または接着剤を使って結合される。円形部71は、リングマウント70を非回転中空芯管40に固定するための手段を提供し、リングマウント70が回転または非回転中空芯管40に沿って軸方向に滑動するのを防ぐ。リングマウント70を非回転中空芯管40に固定するための手段には、位置決めねじ受け部79によって受容される留め具(図示せず)、または様々な接着剤が含まれる。図9に示すように、第二のリングマウント80は、円形リング81と、アーム82、83と、胴体支持碍子86、87、88を支えるための軸支柱84、85と、スウォッシュプレート回転防止アーム90、91と、スウォッシュプレートリンク92、93とを含む。
【0024】
サーボモジュール81は、例えば図10に示すように、ピッチサーボ58と、ロールサーボ59と、中間胴体シェル11を支持する自在胴体碍子86、87(Arltonの米国仮特許出願第60/525,585号に記載されている。この仮出願を本明細書に援用する。)とを支持するリングマウント80を備える。リングマウント70、80は、回転翼輸送手段1の多くの構造上の特徴を組み込み、また支持するように構成されている。リングマウント70、80と関連する内部部品は、下位組立て体として事前に組立て、最終組立て工程で他のモジュールと一緒に非回転中空芯管40に組付けることができるので、リングマウント70、80は回転翼輸送手段1の組立てを助ける。
【0025】
図11A、図12A、図12B、図13A、図13Bおよび図14を参照すると、ローターモジュール3は、ローターマウント100、内歯車107を有するローターハブ101、第一および第二玉軸受け102、103、環状クリップ104、モーター54、遊星歯車箱105、ピニオン歯車106、ブレードヨーク108、回動軸109、軸端キャップ110、トーションばね111、およびローター翼20を含む。モーターマウント122は、歯車箱105を受け入れ、モーター54をローターマウント100に結合する。組立て時には、軸受け102、103は、ローターマウント100から延びているボス112上の溝108に係合する環状クリップ104によって保持される。翼20は、キャップ110を貫通して延びるピン113と、軸109内に形成された孔114によって所定位置に保持される。軸109は、ハブ101に形成された軸受け孔117を通りヨーク108の孔118に入り、別のピン(図示せず)により保持される。リンク119はヨーク108をスウォッシュプレート56’に結合する。
【0026】
図11Bに示すように、サイクリックピッチ角およびコレクティブピッチ角可変ローター翼を支持するのに適合したローターモジュールは、ハブ101に類似したコレクティブローターハブ201を含み、ハブ201は、ハブ201の内面に形成されたボス214に留め具212によって結合されたコレクティブヨークフレーム208を受容する。コレクティブヨークフレーム208は、ローター翼20によって生成されスラスト軸受け203を介して作用する径方向の飛行荷重を支える。リンク119はピッチアーム210をスウォッシュプレート56’に結合する。
【0027】
例示のように、遊星歯車箱105は、およそ4:1の減速比を有する。モーター54のピニオン歯車は、歯数が9枚でローターハブ101上の歯数60枚の内歯車107と噛合っており、従ってローターモジュール3の総計速度減速比はおよそ26.7:1である(すなわちローターハブ101の1回転に対してモーター54の出力軸は26.7回転する)。この減速比により、高電圧、高速度で作動する高効率電気モーターの使用が推奨される。
【0028】
例示のように、モーター54はブラシレスモーターである。いくつかの用途においては、特に飛行時間が短く経済性が一つのファクターである場合には(例えば近距離での使い捨て弾薬)、数個の低価格ブラシつきモーター(すなわちカーボンブラシと回転整流子を有するモーター)が、ローターハブ101を回転させるために一個の高価なブラシレスモーター54の代わりに使われる。このような場合には、図ではローターモジュール3はローターハブ101を駆動する一つのモーター54を有しているが、ローターハブ101を回転させるために、ローターマウント100の周囲にただ一つではなく数個のモーターを備えることも本発明の範囲内である。また、共通軸7の周りにローターハブ101を駆動するのに別個のモーターを必要としないように、ローターハブ101自身をコイルと磁石とで構成してモーターとして作動させてもよい。
【0029】
図示の実施形態におけるローター翼20は、ポリカーボネート樹脂材料を射出成形したものであり、Arltonの米国特許第5,879,131号に記載されているタイプである。この特許を本明細書に援用する。ローター翼20はフラップ軸120周りに上方および下方に約6度、トーションばね111にあるタブ121がピッチ軸109に当接しそれ以上のフラップが阻止されるまで、自由にフラップすることが出来る。このことは、ローター翼20は、飛行中約+/−6度まで上下に自由にフラップでき、かつ収納のためまたは不時着に際して90度上方へ、90度下方へ折畳むことが出来ることを意味する。
【0030】
図示された実施形態では、ローターマウント100は、ポリカーボネートまたはナイロンなどの熱可塑性材料から一体で射出成形される。ローターハブ101は、ナイロンまたはアセタールなどの熱可塑性材料から一体で射出成形される。ローター翼20は、共通軸7を軸とする従来の同軸シャフトの代りにローターハブ101(輸送手段1の外部胴体シェルの一部を形成する)によって飛行中支持される。これにより、ローター支持軸受け103、104はローターブレード20の直近に配置され、回転翼輸送手段1の中央胴体部分内のスペースを他の機械または電気部品のために空ける。図示した固定ピッチ角ローターシステムにおいては、翼20の回転によって生成される径方向の飛行力は、内部ヨーク108によって支持され、このヨーク108は二つのローター翼20を接続し、芯管40を通す内部の孔を備える。このため特別な推力軸受けは必要でない。
【0031】
図15を参照すると、本発明の同軸ローターシステムは、芯管40と、二つのローターシステム3、5と、二つのスウォッシュプレート56’、57’と、非回転中空芯管40に結合されたサーボモジュール81とを備え、それらはサーボモジュール81を中心として鏡面対称に配置されている。二つのローターを有する同軸ローターシステムが開示されているが、回転翼輸送手段1は、付加的な推力または動作能力のために非回転中空芯管40の長さ方向に沿って間隔をあけて配置された追加のローターシステム(不図示)を備えてもよい。
【0032】
例示した実施形態では、回転翼輸送手段1は、飛行体ピッチ角(前後サイクリック)と飛行体ロール角(左右サイクリック)制御のために二つのサーボ58、59のみを必要とする固定ピッチ角ローターシステムを有している。第三のサーボ98を、例えばコレクティブピッチ角制御が必要な場合に中間部4に、類似の方法で搭載することができる。
【0033】
ローターシステム3、5は、ピッチリンク119により、スウォッシュプレート56’、57’に接続される。サーボ58、59は、リンク125、126によってスウォッシュプレート56’、57’に接続される。動作時には、ローターハブ101は反対方向に回転する。サーボ58、59は搭載された飛行制御電子システム55’によって制御され、スウォッシュプレート56’およびスウォッシュプレート57’を同時に傾けて、次に回転している回転翼20の翼ピッチ角をサイクリックに変化させて、飛行体ピッチ方向または飛行体ロール方向に輸送手段1を傾ける。コレクティブピッチ角制御(図11B参照)を有する別の実施形態は、スウォッシュプレート56’、57’の共通軸7に沿った軸方向位置を変化させるために、また電子的コレクティブ・サイクリックピッチ角複合(CCPM)を用いてローター翼20、22のコレクティブピッチ角を変化させるために、第三サーボおよび第三ピッチ角リンク(図示せず)を備える。ローターシステム3、5の間に配置されたサーボ群を用い、上記のように同軸ローターシステムを制御するためにスウォッシュプレート56’、57’をリンク機構により直接結合することは、本実施形態の特徴である。
【0034】
本発明の例示された特徴は、モーター54、61がローター3、5の両側(上方および下方)に配置され、ローター間の動力伝達が機械的軸伝導の代わりに電気配線45によって達成され、このため機構的複雑さと重量が減少することである。別の実施形態(図示せず)では、モーター54、61がローター間に配置され、サーボアクチュエータ58、59は、それらの間にローター3、5が位置するように間隔を空けて配置される。ローターシステムの動力と制御は完全に電気的なので、回転翼輸送手段1の全体制御システムは、機械的リンク機構や油圧増幅を使うことなしにデジタルコンピュータと電子装置とによって電気的に動作させることができる。ローター3、5およびサーボモジュール81の両側にそれぞれ1組のモーター群を配置することは、ローター3、5間の同芯回転軸の必要性をなくし、スウォッシュプレート56’、57’の両者を直接駆動するようにサーボ58、59を配置する。
【0035】
本発明の特徴は、輸送手段1は一つまたは二つの少ないサーボアクチュエータ(サーボ58.59)によって飛行出来ることである。単独サーボ飛行モードでは、モーター54、61の差トルクがヨー方向の向きを制御し、サーボ58は前後方向の飛行を制御する。一つのサイクリックサーボだけの場合、輸送手段1はちょうど方向舵と昇降舵の制御のみを有する飛行機のように飛行可能である。図示のようにサーボ2個の飛行モードでは、サーボ58、59が前後の飛行体ピッチ角と左右の飛行体ロール角の制御を提供し、モーター54、61の差トルクがヨー制御を提供する。
【0036】
本発明の別の実施形態では、モーター54、61の飛行中における動力は、リチウム−ポリマーまたはリチウムイオンバッテリのような高性能電気バッテリー130、または燃料電池によって供給される。図16A、図16Bを参照すると、電源モジュール13は、非回転中空芯管40の周りに六角形状に配置され、直列に接続されて21.6ボルトの電圧を生成する6個の充電式リチウムイオンバッテリ130を有する。バッテリリング台131は、非回転中空芯管40を収容する中央孔(リング)132、およびバッテリー130を保持するフランジ133を備えるよう形成される。バッテリモジュール13からの電力配線45(図示せず)は、開口47(図7参照)から非回転中空芯管40に入り、非回転中空芯管40を通ってモーター速度制御装置53、60に至る。
【0037】
図25Aに最良に示されるように、複数の電源モジュール13、14は飛行中の追加的エネルギー容量用に備えられ、例示のように、モーター54、61に供給可能な電流を増加させるために並列に配線される。回転翼輸送手段1の飛行時間は、積載される電源モジュール13、14の個数を調節することで調整可能である。
【0038】
余分のロッキングリング(または径方向アームの無いリングマウント)135は、例えば図4に示すように、電源モジュール13、14の非回転中空芯管40への結合を補助するために、電源モジュール13、14の上方および下方に設けられる。電源モジュール13、14は、回転翼輸送手段1の他の部品と比較して相対的に重いので、ロッキングリング135は、回転翼輸送手段1の不時着時に非回転中空芯管40に沿って電源モジュール13、14が滑動することを防止する。本発明の特徴は、回転翼輸送手段1はモジュール単位での生産と組立てに良く適合していることである。ローター、翼、制御、電源、ブースター、電子機器、積載モジュールは、個別に生産され、芯管40にスライド装着される。芯管40内の開口46、47を通る接続のための接続端子群は、芯管40の表面と面一に装着され、保全ならびに修理のための回転翼輸送手段1の組立てと解体を助ける。
【0039】
エネルギー密度および電力密度はUAV設計において考慮され、飛行体全体に適用可能である。より大きなエネルギー密度および電力密度を持つ飛行体は、より小さな密度を持つ飛行体よりも全体の性能が優れている。一般的に、エネルギー密度および電力密度は、単位重量あたり利用可能なエネルギーと電力の量として定義される。例えば、燃料または電気バッテリーのエネルギー密度(「比エネルギー」としても知られている)は、燃料またはバッテリーの測定単位に含まれるエネルギー量に対応する(例えば、Nm/kg またはft−lbs/スラグ単位で測定される)。
【0040】
化学(液体)燃料は電気バッテリーよりもより高いエネルギー密度を持つ傾向がある。電気バッテリー電力に比較して液体燃料動力の付加的特徴は、液体燃料使用の飛行体の重量は燃料を燃焼するにつれて、飛行経過にわたって(60%も)減少することである。従って、液体燃料使用の飛行体のエネルギー密度(すなわち、飛行体の単位重量あたりの使用可能エネルギー)は、ゆっくりと減少し、動力密度(単位重量あたりの使用可能動力)は飛行するに連れて増大する。このことは液体燃料使用の飛行体の性能は、飛行の終わり近くで実際に向上する。
【0041】
これに対して、電気電力の飛行体の全体電力密度は、バッテリーの最大出力がほとんど一定で、バッテリーは放電するに連れて重量を失うことは無いので、飛行を通して一定である。使用可能な総エネルギーは減少するので、エネルギー密度もまた急速に減少する。本発明のエネルギー密度および電力密度を向上させるために、エネルギー供給を使い尽くした後飛行中に投棄することが可能な補助電気ブースターまたは電力モジュール8を備える。従ってブースターモジュール8は、ブースターモジュール8を回転翼輸送手段1に保持するための機構とともに、共通軸7の周りに組込まれた追加のバッテリモジュール(図示せず)を備える。
【0042】
別の実施形態では、ブースター8は、化学的燃料に含まれる化学的エネルギーを電気的エネルギーに変換するための発電機(図示せず)を駆動する内燃機関(例えば不図示のディーゼルエンジン)を含む。本発明の他の実施形態では、電気エネルギーを生成するために、ターボ発電機(図示せず)を使用しても良い。このようなガス発電機を備えるブースターモジュール8により、該モジュール、燃料システム、およびエンジンの総重量を第一飛行段階の終わりに投棄することが出来、比較的少ない重量の回転翼輸送手段1を残して第二飛行段階を完遂出来る。
【0043】
本実施形態では、ブースターモジュール8は、折畳み可能な翼16、17を備え、回転翼輸送手段1の水平飛行モードにおける揚力を増大する。図17に示すように、翼17は、収納のために折畳み軸140周りに折畳まれる。翼16、17は、そのおよそ四分の一弦の位置で回動シャフト(図示せず)に取付けられる。共通軸7に垂直に回動シャフトが固定保持され飛行準備できた時(図2も参照のこと)、翼16はピッチ軸143周りに回動が自在で、それ自身の最良迎え角を見出す。翼16、17は、飛行において自身のピッチ軸周りに回転自在なので翼16、17のような付加物は時に「自由翼」と呼ばれる。なお、自由翼16、17は、遭遇する空気流に適合するために自動的にピッチを変更する能力があるため、広範な速度範囲に亘って効率的に動作可能である。このような自由翼の回転翼UAVへの適用は本発明の特徴である。
【0044】
高速水平飛行においては、共通軸7はほぼ水平に方向付けられ、ローターモジュール3、5は共に回転翼輸送手段1を水平方向18に引っ張るための単一逆回転プロペラのように働く。翼16、17は、下方部6とブースターモジュール8とを揚げるのを助けてローターモジュール3、5がより多くの動力を前進推力に使用し、より少ない動力を垂直揚力に使用する。
【0045】
また、共通軸7がほぼ水平である場合、ローターモジュール3、5のサイクリック制御が飛行体ピッチ(仰角)方向144および飛行体ヨー(偏揺れ角)方向145に操作するための制御動力を供給するので、本発明は空気力学的制御表面(たとえば翼16、17上)を必要としない、ということに留意されたい。高速水平飛行時の飛行機のようなロール制御(共通軸7の周り)は、ローターモジュール3、5の差トルク/速度により実現される。この回転翼UAVの水平飛行の制御方法は、本実施形態の特徴である。
【0046】
図18Aと図18Bを参照すると、ブースターモジュール8のエネルギーを使い尽くした時は、回転翼輸送手段1に搭載された制御装置55からの指令が、回転翼輸送手段1からブースターモジュール8を分離するラッチ(図示せず)等の機構を作動させと、ブースターモジュール8が19の方向に落下する。次に回転翼輸送手段1は、一つの飛行モードにおいてはより垂直の方向をとり、ヘリコプターのように飛行する。
【0047】
別の実施形態では、ブースターモジュール8は、爆薬、潜水ソナー、水中聴音器、無線ID標識、またはソノブイなどの特定任務積載物147を含む。図19に例示したように回転輸送手段1から分離した後、ブースターモジュール8は、回転翼輸送手段1にワイヤまたは光ファイバケーブル146によって接続されたソナーまたは積載物147または他のセンサーを残して、落下する。この結果、回転翼輸送手段1が積載物147を運び、積載物147を所望の場所に正確に届け、積載物147と遠隔受取り場所(図示せず)の間を遠隔測定リンクとして機能することが出来る。このリンクは、例えば目標を監視する、または遠隔無線IDマーカーまたは他のマーキング装置により海上の船舶をマーキングする有効な方法となり得る。
【0048】
図22は、例えばセンサー、または消すことの出来ない塗料または無線送信機などのマーキング装置を備えるマーカーを離れた地点、この図の場合、外洋157上の船舶へ配達する方法を図示している。輸送手段1が、船舶Sに接近し(1コマ)、船舶Sに触わるように操作され、船舶S上に該マーカーを残し(1コマ)、そしてその領域(1コマ)から去ることが示されている。このマーキング方法は本発明の特徴であって、輸送手段1がその局所領域を離れた後、着目する地点を監視するのを可能にする。あるいは、またはこれと共に、輸送手段1は、その局所領域を去る時に、例えば船舶S近傍の大気の試料を採取したセンサーを保持し、該センサーと試料を遠隔処理地点まで持帰えることができ、これにより、質量分光計、生物または放射線測定器、または他の類似の機器(不図示)によって更なる解析を行うことが出来る。図には着目する地点は船舶Sとして示されているが、船舶Sは、トラック、飛行機、建物、塔、送電線、または開けた土地など、輸送手段1が接近可能な如何なる着目地点であってもよい。
【0049】
図20A、図20B、および図20Cに示す本発明の別の実施形態は、上方翼148が下方翼149より大きな翼長を有する、不等長さの折畳み式同軸ローター翼148、149を有する。この構成により、下方のより短い翼149より前に上方翼148が地面155に接触する輸送手段の不時着時に、上方翼148が、下方翼149から離れるように又はより速く、折畳まれることで、上方翼148と下方翼149が未だ高速回転中に互いに接触する可能性を減少させる。図に示すように、下方翼149の翼長は20〜22インチ(51cm〜56cm)である。
【0050】
コンパクトな収納のため、および着陸のために折畳みが可能であることは本発明のもう一つの特徴である。図21Aおよび図21Bに示すように、回転翼輸送手段1は、米国海軍によって使用されている標準Aサイズソノブイ管内に入るのに十分に小型である。本発明に独特の芯管構造は、回転翼輸送手段1がソノブイ管内に入るように小型化するのを可能にするだけでなく、海軍のP−3海上哨戒機等の飛行機から弾薬作動装置(CAD)による発射時の力を吸収する。
【0051】
図21Aに示す一つの実施形態では、使い捨て発射缶150を使用し、回転翼輸送手段1の空気力学的表面を保護している。これは輸送手段1が高度10,000〜20,000フィート(約3000〜6000m)、速度150〜250ノット(約280〜460km/h)で飛行中の飛行機から発射されるからである。缶150に取付けられたパラシュート(図示せず)は、回転翼輸送手段1からより低い高度で分離する缶150の下降を減速し、安定させる。例示のように、回転翼輸送手段1は縮尺して示されており、約24インチ(51cm)の胴体長さ30、約2.25インチ(5.7cm)の上部直径31、約28インチ(71cm)の上部ローター直径32、および約24インチ(61cm)以下の下部ローター直径33を有する。ブースターモジュール8は約12インチ(30cm)の長さ34を有する。第一ローター3と第二ローター5は、ホバリング時は約1,400回転/分で、垂直上昇および高速度飛行時は約2,000回転/分以上で回転する。
【0052】
本発明の別の実施形態は、弾薬による標的の損害を評価するため、該弾薬と共に用いられるのに適合している。図23に示すように、輸送手段1は、弾薬と共に用いるのに適合した投下型爆弾160である。爆弾160は、飛行機等の発射プラットホームから投下される。使用においては、投下型爆弾160が輸送手段1を標的場所の近傍へ運び、爆弾160が標的に到達する前に、輸送手段1は解放され爆弾160から落下して離れるか(補助ドラッグシュート162により減速される)又は弾薬作動装置により爆弾160から射出される。次に輸送手段1は、着弾地点近傍の標的領域において軌道飛行するかホバリングし、爆弾による損害を観察し、映像および他の情報を遠く離れた操作者(図示せず)に送る。この弾薬損害評価の方法は本発明の特徴であり、発射元が攻撃地域に留まる必要なく直ちに戦闘損害評価を行うことができ、同じ標的に対する引続く攻撃を減らし、乗員への危険を最小にする。
【0053】
本発明の一つの特徴は、非回転中空芯管40、または十字梁構造背骨がいくつかの実施形態では配線と配管の両方の導管として働くことである。様々なUAVを基本モジュールのキットから組立てることの容易さを示すために、機械部品と電気部品を該芯または背骨に組付ける方法またはシステムを説明した。
【0054】
別の特徴は、本発明の同軸システムの各ローター20、22は、一つ以上の個別の電気モーターによって駆動され、該モーター群は該ローターの両側に配置され、モーターへの、およびモーター間の動力伝達は機械的な軸伝達、クラッチ、および歯車の代わりに電気配線(中空芯内を通る)により実現されることである。コンパクトなローターシステムは、回転のためにローターを支えるが、従来の回転同軸シャフトを必要としない。
【0055】
さらに別の特徴は、スウォッシュプレート制御システムおよび一つ以上の電気モーターが各ローターに設けられ、各ローターの互いに反対側に配置されているので、ローターの駆動および制御に必要な機械的および電気的接続を簡略化出来ることである。ローターシステムを中空芯に迅速かつ容易に組付けるために、ローターモジュールが提供される。複数のローターモジュールとスウォッシュプレートが、1つのモジュール内に収容された1組のサーボによって制御される。
【0056】
付加的な特徴は、折畳みローター翼148、149は、等しくない長さであることである。逆方向回転のローター3、5を有する本発明では、不等長さの翼148、149を折畳むことは、不時着中に翼が高速に折畳まれるので、翼が互いに接触する機会を減少させる。
【0057】
本発明のもう一つの特徴は、UAVのエネルギーおよび電力密度を向上する方法であり、これは飛行中に輸送手段本体から分離可能なブースターモジュール8を備えることが出来るからである。ブースターモジュール8は、第一飛行フェーズの間、UAVを飛行させるために供給される。第一飛行フェーズの終わりに、該ブースターモジュールは脱落し、第二飛行フェーズでの引続く飛行のために、UAVの重量を軽減する。電気動力のUAVの電力モジュールは、バッテリー電力を使い尽くしたら飛行中に投棄される補助揚力面を有しているか、または有してないバッテリパック、または特定の任務に特有の積載物を備える。
【符号の説明】
【0058】
3 第一ローターシステム
5 第二ローターシステム
20 第一ローター翼
22 第二ローター翼
40 フレーム
54 第一モーター
56 第一ピッチ角制御装置
57 第二ピッチ角制御装置
61 第二モーター

【特許請求の範囲】
【請求項1】
フレームと、
前記フレーム上の第一ローターシステムであって、前記第一ローターシステムは、回転軸の周りを回転するために第一ローターシャフトによって支持された第一ローター翼と、第一ピッチ角制御装置と、第一モーターとを含む第一ローターシステムと、
前記フレーム上の第二ローターシステムであって、前記第二ローターシステムは、前記回転軸の周りを回転するために第二ローターシャフトによって支持された第二ローター翼と、第二ピッチ角制御装置と、第二モーターとを含む第二ローターシステムとを備える回転翼飛行体であり、
前記第一ローターシャフトおよび第二ローターシャフトは、前記回転軸に沿って軸方向に互いに間隔を空けて配置されている回転翼飛行体。
【請求項2】
前記第一ローター翼は前記第二ローター翼から間隔をあけて配置され、前記第一および第二モーターは、それらの間に前記第一および第二ローター翼が位置するように互いに間隔をあけて配置される請求項1に記載の回転翼飛行体。
【請求項3】
第一モジュールおよび第二モジュールをさらに備え、前記第一ローターシステムは前記第二ローターシステムから間隔を空けて配置され、前記第一モジュールと第二モジュールは、それらの間に前記第一および第二ローターシステムが位置するように互いに間隔をあけて配置される請求項2に記載の回転翼飛行体。
【請求項4】
前記第一ピッチ角制御装置と前記第二ピッチ角制御装置は、それぞれスウォッシュプレート手段とサーボ手段とを備え、前記第一ローター翼と第二ローター翼の間に間隔をあけて、互いに隣接して配置される請求項2に記載の回転翼飛行体。
【請求項5】
前記第一ローター翼は前記第二ローター翼から間隔をあけて配置され、前記第一ピッチ角制御装置と第二ピッチ角制御装置はそれらの間に前記第一および第二ローター翼が位置するように互いに間隔をあけて配置される請求項2に記載の回転翼飛行体。
【請求項6】
前記第一モーターは前記第二モーターから間隔をあけて配置され、前記第一および第二ローター翼は、それらの間に前記第一および第二モーターが位置するように互いに間隔をあけて配置される請求項1に記載の回転翼飛行体。
【請求項7】
サーボアクチュエータとリンク機構とをさらに備え、前記第一ピッチ角制御装置および第二ピッチ角制御装置は、共通のサーボとリンク機構のセットを共有し、前記第一ローター翼と前記第二ローター翼の間に互いに間隔を空けて配置される請求項6に記載の回転翼飛行体。
【請求項8】
第一モジュールと第二モジュールをさらに備え、前記第一ローターシステムは前記第二ローターシステムから間隔をあけて配置され、前記第一モジュールと前記第二モジュールは、それらの間に前記第一および第二ローターシステムが位置するように互いに間隔をあけて配置される請求項6に記載の回転翼飛行体。
【請求項9】
前記第一ローターシステムと前記第二ローターシステムとを接続する非回転構造背骨と、前記非回転構造背骨に結合されたエネルギーモジュールとをさらに備え、ローター回転平面の一方の側にある前記エネルギーモジュールからのエネルギーが、前記ローター回転平面の反対側にある前記モーターへ前記構造背骨を通って伝えられる請求項6に記載の回転翼飛行体。
【請求項10】
前記第一ローター翼は前記第二ローター翼から間隔をあけて配置され、前記第一ピッチ角制御装置および第二ピッチ角制御装置は、それらの間に前記第一および第二ローター翼が位置するように互いに間隔をあけて配置される請求項6に記載の回転翼飛行体。
【請求項11】
前記第一ローターシステムは前記第二ローターシステムから間隔をあけて配置され、前記各モーターは関連するローター翼から間隔をあけて配置され、前記モーターおよびローター翼に関連するピッチ角制御装置がそれらの間に位置する請求項1に記載の回転翼飛行体。
【請求項12】
共通のロ−ター軸の周りに回転可能で、それぞれ可変ピッチ角ローター翼を有する第一および第二逆回転ローターと、
飛行制御指令を処理するための、少なくとも一つの電子信号処理装置を有する飛行制御システムと、
前記両ローターに接続されたサーボアクチュエータを制御するための電子指令信号手段と、
前記サーボアクチュエータに連結された少なくとも二つのスウォッシュプレートと
を備え、
前記サーボアクチュエータは、前記電子指令信号手段によって供給された信号に応答して、前記両ローターのサイクリック翼ピッチ角を同時に制御するように構成されている回転翼飛行体。
【請求項13】
前記両ローターに接続されたサーボアクチュエータを制御するための前記手段は指令信号制御装置を備え、前記スウォッシュプレートは、前記第一および第二ローターシステムの間に軸方向に沿って配置されそれらと接続された第一および第二ピッチ角制御装置を含む請求項12に記載の回転翼飛行体。
【請求項14】
第二サーボアクチュエータをさらに備え、前記指令信号制御装置が、前記第一および第二サーボに接続され、前記第一および第二サーボアクチュエータへの電子信号を生成して前記両ローターシステムのサイクリックロール角およびピッチ角を変化させる請求項13に記載の回転翼飛行体。
【請求項15】
第三サーボアクチュエータをさらに備え、前記指令信号制御装置が、前記第一、第二および第三サーボに接続され、前記第一、第二および第三サーボアクチュエータへの電子信号を生成して前記両ローターシステムのサイクリックおよびコレクティブ翼ピッチ角を変化させる請求項13に記載の回転翼飛行体。
【請求項16】
前記第一および第二ローターにそれぞれ結合された第一および第二モーターをさらに備え、前記指令信号制御装置が前記第一および第二モーターに接続されて、前記第一および第二モーターのうち少なくとも一つへの電子トルク制御信号を生成し、前記第一および第二ローターのうち少なくとも一つの速度を変化させて、前記両ローターシステム全体の総推力および総トルクのうち少なくとも一つを制御する請求項13に記載の回転翼回転体。
【請求項17】
非回転構造背骨をさらに備え、該非回転構造背骨の断面は該飛行体の長さ方向に沿って延びる空領域を含み、ローター回転平面の一方の側にあるエネルギーモジュールからのエネルギーが該ローター回転平面の反対側にあるモーターへ前記構造背骨を通って伝えられる請求項12に記載の回転翼飛行体。
【請求項18】
第一および第二モジュールをさらに備え、前記第一エネルギーモジュールと前記第二ローターシステムは、それらの間に前記第一ローターシステムが位置するように互いに間隔をあけて配置され、前記第一モジュールと前記第二エネルギーモジュールは、それらの間に前記第一エネルギーモジュールと前記第二ローターシステムが位置するように互いに間隔をあけて配置されている請求項17に記載の回転翼飛行体。
【請求項19】
前記第一および第二スウォッシュプレートは、同時に動くようにスウォッシュプレートリンク機構によって動作可能に結合されている請求項12に記載の回転翼飛行体。
【請求項20】
前記第一および第二スウォッシュプレートは、該第一および第二スウォッシュプレートを同時に傾ける二つ以下のサーボアクチュエータによって作動される請求項19に記載の回転翼飛行体。
【請求項21】
前記第一および第二スウォッシュプレートは三つ以下のサーボアクチュエータによって作動され、該三つのサーボアクチュエータは前記第一および第二スウォッシュプレートを同時に傾けることによってサイクリック翼ピッチ角を制御し、前記第一および第二スウォッシュプレートを同時に前記ローター軸に平行に移動させることによってコレクティブ翼ピッチ角を制御する請求項19に記載の回転翼飛行体。
【請求項22】
前記第一および第二ローターの回転速度を変化させるための電子制御信号をさらに備え、該回転翼飛行体の高度制御が前記第一および第二ローターの速度をほぼ同時に変化させることによって実現される請求項12に記載の回転翼飛行体。
【請求項23】
前記第一および第二ローターの回転速度を変化させるための電子制御信号をさらに備え、前記平行なローター軸の周りの該回転翼飛行体の回転制御が、前記第一および第二ローターの速度を互いに反対方向に変化させることにより実現される請求項22に記載の回転翼飛行体。
【請求項24】
前記回転軸が飛行中ほぼ垂直である請求項22に記載の回転翼飛行体。
【請求項25】
前記回転軸が飛行中ほぼ水平である請求項22に記載の回転翼飛行体。
【請求項26】
水平飛行モードにおいて水平飛行を支える固定翼飛行構造体と、
垂直飛行モードにおいて垂直飛行を支える回転翼飛行構造体とを備える回転翼飛行体であって、
該飛行体は、飛行中、一方の飛行モードから他方の飛行モードへ、前者の飛行モードに関連する構造体を投棄することによって再構成可能である回転翼飛行体。
【請求項27】
前記飛行体は固定翼水平飛行モードで飛行を開始し、飛行中に前記固定翼飛行構造体を投棄することによって回転翼垂直飛行モードに切替わる請求項26に記載の回転翼飛行体。
【請求項28】
構造背骨と、
ローター翼を有するモーター・ローターシステムを備える少なくとも一つの推進モジュールと、
電子制御システムを備える制御モジュールと、
使用可能エネルギーを貯蔵するエネルギーモジュールと、
積載物を運ぶための積載物モジュールとを備える回転翼飛行体の組み立てキット。
【請求項29】
複数の逆回転ローター翼を有する固定翼飛行体の方向角度を制御する方法であって、該飛行体のピッチおよび偏揺れを制御するために該ローター翼群のサイクリック翼ピッチ角を変化させることと、該飛行体の横揺れを制御するために該ローター翼の回転速度を変化させて前記ローター間に差トルクを発生させることとを含む制御方法。
【請求項30】
離れた場所にセンサーを正確に配達する方法であって、
無人空中輸送手段を目的地に到達するように高速水平飛行構成で発射する第一ステップと、
前記無人空中輸送手段の水平飛行構造体を投棄し、ほぼ垂直なホバリング用に前記無人空中輸送手段を再構成する第二ステップと、
前記センサーを正確に配達するために垂直な姿勢で飛行させる第三ステップとを含む方法。
【請求項31】
飛行中のUAVにおける動力ならびにエネルギー密度を増加させる方法であって、
(1)該UAVに電気バッテリー等のエネルギーパックを備えるステップと、
(2)飛行中一つ以上のエネルギーパックから電力を引き出すステップと、
(3)前記パックに貯蔵されたエネルギーが消耗したときに、飛行中にエネルギーパックを投棄するステップと、
(4)必要に応じて飛行終了まで、前記ステップ2とステップ3を繰返すステップとを含む方法。
【請求項32】
飛行中、前記UAV構造体の一部を投棄するステップをさらに含む請求項31に記載の方法。
【請求項33】
フレームと、
第一ローター面内で回転軸の周りに回転するために支持された第一ローター翼と第一モーターとを備える前記フレーム上の第一ローターシステムと、
第二ローター面内で回転軸の周りに回転するために支持された第二ローター翼と第二モーターとを備える前記フレーム上の第二ローターシステムと
を備える回転翼飛行体であって、
前記第一モーターは前記第二ローターシステムの流入側に配置され、前記第二モーターは前記第一ローターシステムの流出側に配置されている回転翼飛行体。
【請求項34】
少なくとも一つのローターシステムは翼ピッチ角制御装置によって制御された可変ピッチ角ローター翼を備える請求項33に記載の回転翼飛行体。
【請求項35】
前記少なくとも一つのローターシステムがローター回転面内で回転し、前記翼ピッチ角制御装置およびモーターが、それらの間に前記ローター回転面が位置するように互いに間隔をあけて配置されている請求項34に記載の回転翼飛行体。
【請求項36】
前記第一ローターシステムが第一ピッチ角制御装置によって制御された可変ピッチ角ローター翼を備え、前記第二ローターシステムが第二ピッチ角制御装置によって制御された可変ピッチ角ローター翼を備え、前記第一モーターと第一ピッチ角制御装置は、それらの間に前記第一ローター回転面が位置するように互いに間隔をあけて配置され、前記第二モーターと第二ピッチ角制御装置は、それらの間に前記第二ローター回転面が位置するように互いに間隔をあけて配置されている請求項33に記載の回転翼飛行体。
【請求項37】
前記第一ピッチ角制御装置および第二ピッチ角制御装置は、前記第一および第二ローターシステムに接続されたスウォッシュプレート手段とサーボ手段とを備え、前記第一および第二ローターシステム間に軸方向に沿って配置されている請求項36に記載の回転翼飛行体。
【請求項38】
前記第一ピッチ角制御装置および第二ピッチ角制御装置は、共通のサーボアクチュエータおよびリンク機構のセットを共用する請求項37に記載の回転翼飛行体。
【請求項39】
前記第一モーターと第二モーターが、前記第一および第二ローター間に軸方向に沿って配置されている請求項36に記載の回転翼飛行体。
【請求項40】
前記第一ローターシステムおよび第二ローターシステムを接続する非回転構造背骨をさらに備え、電子制御信号がローター回転面の一方の側から該ローター回転面の反対側へ該非回転構造背骨を通って伝えられる請求項36に記載の回転翼飛行体。
【請求項41】
前記第一ローターシステムおよび第二ローターシステムを接続する非回転構造背骨をさらに備え、ローター回転面の一方の側にあるエネルギーモジュールからのエネルギーが前記ローター回転面の反対側にあるモーターへ該非回転構造背骨を通って伝えられる請求項36に記載の回転翼飛行体。
【請求項42】
縦方向の飛行体軸に沿って延びる非回転構造背骨を有するフレームと、
該フレームに接続され、該飛行体軸の周りに回転するために前記構造背骨によって支持された第一および第二ローターシステムと
を備える回転翼飛行体であって、
該構造背骨は、少なくとも一つのローターシステムを通過し、該ローターシステムのローター流入側とローター流出側を接続する回転翼飛行体。
【請求項43】
中央路をさらに備え、該中央路は、電力ならびに制御信号を、前記ローターの流入側から流出側へ前記構造背骨を通って伝えるように構成されている請求項42に記載の回転翼飛行体。
【請求項44】
前記構造背骨に追加される電気システム部品をさらに備え、電力ならびに制御信号は、該電気システム部品へ、および該電気システム部品間で該構造背骨を通る前記中央路を介して伝えられる請求項43に記載の回転翼飛行体。
【請求項45】
前記構造背骨が通る孔を有するモジュール式の飛行体部品をさらに備え、
電気部品を前記中央路へ接続するための電気コネクタが前記構造背骨の凹みに収容され、該飛行体の組立て又は分解中に電気コネクタを損傷することなく、該モジュール式の飛行体部品が該構造背骨の長さに沿って摺動可能である請求項44に記載の回転翼飛行体。
【請求項46】
前記構造背骨は、断面が概ね円形である請求項42に記載の回転翼飛行体。
【請求項47】
前記構造背骨は、断面が概ね十字形である請求項42に記載の回転翼飛行体。
【請求項48】
前記構造背骨は、エポキシ接着された炭素繊維等の繊維強化プラスチック材料から作られている請求項42に記載の回転翼飛行体。
【請求項49】
フレームと、推進システムと、制御システムと、積載物とを有するUAVにおいて、弾薬作動装置(CAD)を用いて該UAVを発射管から発射する時に生じる発射荷重に耐えることができる手段であって、該UAVの縦方向軸に沿って延び、前記フレーム、推進システム、制御システムおよび積載物を支持する構造背骨を備える手段。
【請求項50】
ビデオカメラおよび遠隔測定システム等のセンサーを有する電気動力の回転翼UAVを弾薬に装着するステップと、
目標地の近傍に該弾薬と該UAVとを送り届けるステップと、
該UAVに、該目標地の近傍でホバリングし、該弾薬によって引き起こされた損害を観測するように指示するステップと、
該UAVからの情報を、遠隔測定リンクを介して遠隔地に送信するステップと
を含む弾薬損害評価方法。
【請求項51】
前記UAVを前記弾薬に取付けるステップと、前記UAVを前記弾薬によって目標地の近傍に送り届けるステップと、前記弾薬が該目標地に到達する前に前記弾薬から前記UAVを解放し、前記UAVが該目標地近傍において周回し前記弾薬によって引き起こされた損害を観測することを可能にするステップとをさらに含む請求項50に記載の方法。

【図1】
image rotate

【図2A】
image rotate

【図2B】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7A】
image rotate

【図7B】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11A】
image rotate

【図11B】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25A】
image rotate

【図25B】
image rotate


【公開番号】特開2010−120641(P2010−120641A)
【公開日】平成22年6月3日(2010.6.3)
【国際特許分類】
【外国語出願】
【出願番号】特願2010−32677(P2010−32677)
【出願日】平成22年2月17日(2010.2.17)
【分割の表示】特願2007−508503(P2007−508503)の分割
【原出願日】平成17年4月14日(2005.4.14)
【出願人】(506344653)
【出願人】(506344642)