説明

固体酸化物形燃料電池セルおよび燃料電池モジュールならびに燃料電池装置

【課題】 インターコネクタ層が還元雰囲気に晒された際における変形を抑制できる固体酸化物形燃料電池セルおよび燃料電池モジュールならびに燃料電池装置を提供する。
【解決手段】 導電性支持体1の外面に、燃料極層3、固体電解質層4および酸素極層6を備えた発電部が設けられているとともに、該発電部が設けられていない導電性支持体1にインターコネクタ層8が設けられており、該インターコネクタ層8は、気孔率が1%以上の多気孔層8bを有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、固体酸化物形燃料電池セルおよび燃料電池モジュールならびに燃料電池装置に関するものである。
【背景技術】
【0002】
近年、次世代エネルギーとして、固体酸化物形燃料電池セルを収納容器内に収容した燃料電池モジュールが種々提案されている。
【0003】
このような固体酸化物形燃料電池セルとして、互いに平行な一対の平坦面を有し、内部に燃料ガスを流通させるための燃料ガス流路を有するとともに、Niを含有してなる導電性支持体の一方側の平坦面上に、燃料極層、固体電解質層、酸素極層を順に積層し、他方側の平坦面上にインターコネクタ層を積層してなる固体酸化物形燃料電池セルが提案されている(例えば、特許文献1参照)。
【0004】
従来、固体酸化物形燃料電池セルは、導電性支持体の周囲を取り囲むように形成された緻密質なZrO系焼結体からなる固体電解質層と、この固体電解質層の両端部に、緻密質なLaCrO系焼結体からなるインターコネクタ層の両端部を接合し、また、導電性支持体とインターコネクタ層との間を中間層を介して接合し、固体電解質層とインターコネクタ層とにより導電性支持体の周囲を気密に取り囲み、導電性支持体の内部を通過する燃料ガスが、固体電解質層とインターコネクタ層とにより形成された空間から外部に漏出しないように構成されていた。このため、インターコネクタ層の相対密度は97%以上とされ、より気孔が少なく緻密質であることが要求されていた。
【0005】
なお、従来、酸素含有ガスと水素含有ガスとをインターコネクタ層で確実にセパレートするために、インターコネクタ層を、導電性支持体側に形成された熱膨張調整層と、この熱膨張調整層上に形成された水素非吸着層とから形成した固体酸化物形燃料電池セル(特許文献2参照)、固体電解質層とインターコネクタ層との熱膨張差による不都合を有効に防止するとともに、還元膨張に起因するインターコネクタ層の変形を有効に抑制するために、インターコネクタ層を、導電性支持体側に形成された熱膨張調整層と、この熱膨張調整層上に形成された還元膨張抑制層とから形成した固体酸化物形燃料電池セル(特許文献3参照)が知られており、これらの固体酸化物形燃料電池セルに用いられているインターコネクタ層も、より気孔が少なく緻密質であることが要求されていた。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2008−84716号公報
【特許文献2】特開2005−216619号公報
【特許文献3】特開2007−12423号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
従来のインターコネクタ層においては、燃料ガスの漏出を防止するため、インターコネクタ層の緻密質化が要求されているが、気孔を無くして緻密質化していくと、還元雰囲気に晒された際における変形が大きくなるという問題があった。
【0008】
本発明は、インターコネクタ層が還元雰囲気に晒された際における変形を抑制できる固
体酸化物形燃料電池セルおよび燃料電池モジュールならびに燃料電池装置を提供することを目的とする。
【課題を解決するための手段】
【0009】
本発明の固体酸化物形燃料電池セルは、導電性支持体の外面に、第1電極、固体電解質層および第2電極を備えた発電部が設けられているとともに、該発電部が設けられていない前記導電性支持体にインターコネクタ層が設けられており、該インターコネクタ層は、気孔率が1%以上の多気孔層を有することを特徴とする。
【0010】
また、本発明の固体酸化物形燃料電池セルは、第1電極を兼ねる導電性支持体の外面に、固体電解質層および第2電極が設けられているとともに、該固体電解質層および第2電極が設けられていない前記導電性支持体にインターコネクタ層が設けられており、該インターコネクタ層は、気孔率が1%以上の多気孔層を有することを特徴とする。
【0011】
さらに、本発明の燃料電池モジュールは、上記固体酸化物形燃料電池セルを収納容器内に収納してなることを特徴とする。
【0012】
また、本発明の燃料電池装置は、上記の燃料電池モジュールと、該燃料電池モジュールを動作させるための補機とを外装ケース内に収納してなることを特徴とする。
【発明の効果】
【0013】
本発明の固体酸化物形燃料電池セルは、インターコネクタ層が多気孔層を有することにより、インターコネクタ層が還元雰囲気に晒された際における変形を抑制できる。これにより、長期信頼性の高い燃料電池モジュールおよび燃料電池装置を得ることができる。
【図面の簡単な説明】
【0014】
【図1】固体酸化物形燃料電池セルを示すもので、(a)は横断面図、(b)はインターコネクタ層の記載を省略した状態を、インターコネクタ層側から見た側面図である。
【図2】インターコネクタ層の一部の厚さ方向における断面図である。
【図3】(a)はインターコネクタ層において、多気孔層の幅方向における一部に緻密質層を形成した状態を示す横断面図であり、(b)はインターコネクタ層全体が多気孔層で形成された状態を示す横断面図である。
【図4】セルスタック装置を示すもので、(a)は側面図、(b)は(a)の一部を抜き出して示す横断面図である。
【図5】燃料電池モジュールの一例を示す外観斜視図である。
【図6】燃料電池装置の一部を省略して示す斜視図である。
【発明を実施するための形態】
【0015】
図1は、固体酸化物形燃料電池セル(以下、燃料電池セルと略す)の一形態を示すものであり、(a)はその横断面図、(b)は(a)において、インターコネクタ層の記載を省略した側面図である。なお、両図面において、燃料電池セル10の各構成を一部拡大して示している。また、図1(b)は、長手方向Lに縮小して記載しており、実際は上下方向に細長い形状とされている。
【0016】
この燃料電池セル10は、中空平板型で、断面が扁平状で、全体的に見て楕円柱状をした、多孔質の導電性支持体1を備えている。導電性支持体1の内部には、適当な間隔で複数の燃料ガス流路2が長手方向Lに形成されており、燃料電池セル10は、この導電性支持体1上に各種の部材が設けられた構造を有している。
【0017】
導電性支持体1は、図1に示されている形状から理解されるように、互いに平行な一対
の平坦面nと、一対の平坦面nをそれぞれ接続する弧状面(側面)mとで構成されている。平坦面nの両面は互いにほぼ平行に形成されており、一方の平坦面n(下面)と両側の弧状面mを覆うように、第1電極として多孔質な燃料極層3が設けられており、さらに、この燃料極層3を覆うように、緻密質な固体電解質層4が積層されている。また、固体電解質層4の上には、反応防止層5を介して、燃料極層3と対面するように、第2電極として多孔質な酸素極層6が積層されている。
【0018】
燃料極層3、固体電解質層4および酸素極層6により発電部が構成されており、この発電部が導電性支持体1に設けられ、発電部が設けられていない導電性支持体1の外面にインターコネクタ層8が設けられている。発電部は、反応防止層5を含んでいる。導電性支持体1は、内部に燃料ガスを流通させるための燃料ガス流路2を有するとともに、導電性支持体1は、固体電解質層4とインターコネクタ層8とで気密に囲まれている。
【0019】
燃料極層3および固体電解質層4は、両端の弧状面mを経由して他方の平坦面n(上面)まで形成されており、固体電解質層4の両端部にインターコネクタ層8の両端部が接合され、固体電解質層4とインターコネクタ層8で導電性支持体1を取り囲み封止しており、内部を流通する燃料ガスが外部に漏出しないように構成されている。
【0020】
言い換えると、平面形状が矩形状のインターコネクタ層8が導電性支持体1の長手方向の上端から下端まで形成されており、その左右両側端部が、固体電解質層4の両端部の表面に接合している。
【0021】
そして、インターコネクタ層8は、導電性支持体1側に形成された緻密質層8aと、緻密質層8a上に形成され緻密質層8aよりも気孔率が高い多気孔層8bとから構成されている。インターコネクタ層8が多気孔層8bを有することにより、インターコネクタ層8が還元雰囲気に晒された際に変形しようとするものの、多気孔層8bにおいて変形が抑制され、インターコネクタ層8全体としても変形を抑制できる。これにより、従来のように使用材料が限定されることなく、インターコネクタ層8が還元雰囲気に晒された際における変形を抑制できる。
【0022】
すなわち、従来、ガスシール性を向上するため、インターコネクタ層8は緻密質であることが前提とされていたが、本発明者は、インターコネクタ層8はある程度気孔を有していても、インターコネクタ8としてのガスシール機能を有しており、しかも、存在する気孔によって、還元雰囲気に晒された際における変形を抑制できることを見出し、本発明に至ったものである。
【0023】
インターコネクタ層8の緻密質層8aの気孔率は、任意断面における気孔の面積比率で0.2%以下であり、インターコネクタ層8の多気孔層8bの気孔率は、任意断面における気孔の面積比率で1%以上とされている。緻密質層8aの気孔率は、任意断面における気孔の面積比率で0.1〜0.2%であることが望ましく、多気孔層8bの気孔率は1〜2%であることが望ましい。
【0024】
多気孔層8bの平均気孔径は、還元変形抑制という点から、1〜2μmとされていることが望ましい。
【0025】
また、インターコネクタ層8の緻密質層8aの厚みは、多気孔層8bの厚みよりも厚いことが望ましい。緻密質層8aが厚いため、インターコネクタ層8と固体電解質層4による封止信頼性を向上でき、燃料ガスの外部への漏出を抑制できる。緻密質層8aの厚さは、10μm以上、特には15〜30μmであることが望ましく、多気孔層8bの厚みは、3μm以上、特には3〜15μmであることが望ましい。
【0026】
インターコネクタ層8は、導電性支持体1および固体電解質層4の熱膨張係数に近づける目的から、LaCrO系酸化物を用いる場合には、BサイトにMgが存在するLaCrMgO系酸化物を用いることができる。緻密質層8aと多気孔層8bとが同一材料で形成されていても良く、また異なる材料から構成されていても良い。特に、緻密質層8aと多気孔層8bとをLaCrO系酸化物で構成する場合には、緻密質層8aにおけるMgおよびNiの量が多気孔層8bよりも多いことが望ましい。
【0027】
燃料電池セル10は、燃料極層3と酸素極層6とが固体電解質層4を介して対面している部分が電極として機能し発電する。即ち、酸素極層6の外側に空気等の酸素含有ガスを流し、且つ導電性支持体1内の燃料ガス流路2に燃料ガス(水素含有ガス)を流し、所定の作動温度まで加熱することにより発電する。そして、かかる発電によって生成した電流は、導電性支持体1に取り付けられているインターコネクタ層8を介して集電される。
【0028】
以下に、本形態の燃料電池セル10を構成する各部材について説明する。
【0029】
導電性支持体1は、燃料ガスを燃料極層3まで透過させるためにガス透過性であること、インターコネクタ層8を介して集電を行うために導電性であることが要求されることから、例えば、Niと、ZrOを除く無機酸化物、例えば、特定の希土類酸化物とにより形成されることが好ましい。
【0030】
ZrOを除く無機酸化物としては、ZrO以外であれば特に限定されるものではないが、下記のように熱膨張係数の観点、およびインターコネクタ層8の構成元素と殆ど反応しないものである。
【0031】
特定の希土類酸化物とは、導電性支持体1の熱膨張係数を固体電解質層4の熱膨張係数に近づけるために使用されるものであり、Y、Lu、Yb、Tm、Er、Ho、Dy、Gd、Sm、Prからなる群より選択される少なくとも1種の希土類元素の酸化物を、Niおよび/またはNiOとの組み合わせで使用することができる。このような希土類酸化物の具体例としては、Y、Lu、Yb、Tm、Er、Ho、Dy、Gd、Sm、Prを例示することができ、Niおよび/またはNiOとの固溶、反応が殆どなく、また、熱膨張係数が固体電解質層4と同程度であり、かつ安価であるという点から、Y、Ybが好ましい。
【0032】
また、本形態においては、導電性支持体1の良好な導電率を維持し、かつ熱膨張係数を固体電解質層4と近似させるという点で、Niおよび/またはNiO:希土類酸化物=35:65〜65:35の体積比で存在することが好ましい。なお、導電性支持体1中には、要求される特性が損なわれない限りの範囲で、他の金属成分や酸化物成分を含有していてもよい。
【0033】
また、導電性支持体1は、燃料ガス透過性を有していることが必要であるため、通常、開気孔率が30%以上、特に35〜50%の範囲にあることが好ましい。また、導電性支持体1の導電率は、300S/cm以上、特に440S/cm以上であることが好ましい。
【0034】
なお、導電性支持体1の平坦面nの長さ(導電性支持体1の幅方向の長さ)は、通常、15〜35mm、弧状面mの長さ(弧の長さ)は、2〜8mmであり、導電性支持体1の厚み(平坦面n間の厚み)は1.5〜5mmであることが好ましい。導電性支持体1の長さは、100〜150mmとされている。
【0035】
燃料極層3は、電極反応を生じさせるものであり、それ自体公知の多孔質の導電性セラミックスにより形成することが好ましい。例えば、希土類元素が固溶したZrOまたは希土類元素が固溶したCeOと、Niおよび/またはNiOとから形成することができる。なお、希土類元素としては、導電性支持体1において例示した希土類元素を用いることができ、例えばYが固溶したZrO(YSZ)とNiおよび/またはNiOとから形成することができる。
【0036】
燃料極層3中の希土類元素が固溶したZrOまたは希土類元素が固溶しているCeOの含有量は、35〜65体積%の範囲にあるのが好ましく、またNiあるいはNiOの含有量は、65〜35体積%であるのが好ましい。さらに、この燃料極層3の開気孔率は、15%以上、特に20〜40%の範囲にあるのが好ましく、その厚みは、1〜30μmであるのが好ましい。
【0037】
また、燃料極層3は、酸素極層6に対面する位置に形成されていればよいため、例えば酸素極層6が設けられている側の平坦面nにのみ燃料極層3が形成されていてもよい。すなわち、燃料極層3は平坦面nにのみ設けられ、固体電解質層4が燃料極層3上、導電性支持体1の両弧状面m上および燃料極層3が形成されていない他方の平坦面n上に形成された構造をしたものであってもよい。
【0038】
固体電解質層4は、3〜15モル%のY、Sc、Yb等の希土類元素を含有した部分安定化あるいは安定化ZrOからなる緻密質なセラミックスを用いるのが好ましい。また、希土類元素としては、安価であるという点からYが好ましい。さらに、固体電解質層4は、ガス透過を防止するという点から、相対密度(アルキメデス法による)が93%以上、特に95%以上の緻密質であることが望ましく、かつその厚みが5〜50μmであることが好ましい。
【0039】
なお、固体電解質層4と後述する酸素極層6との間に、固体電解質層4と酸素極層6との接合を強固とするとともに、固体電解質層4の成分と酸素極層6の成分とが反応して電気抵抗の高い反応層が形成されることを抑制する目的で反応防止層5を備えることもでき、図1に示した燃料電池セル10においては反応防止層5を備えた例を示している。
【0040】
ここで、反応防止層5としては、CeとCe以外の他の希土類元素とを含有する組成にて形成することができ、例えば、(CeO1−x(REO1.5(式中、REはSm、Y、Yb、Gdの少なくとも1種であり、xは0<x≦0.3を満足する数)で表される組成を有していることが好ましい。さらには、電気抵抗を低減するという点から、REとしてSmやGdを用いることが好ましく、例えば10〜20モル%のSmO1.5またはGdO1.5が固溶したCeOからなることが好ましい。
【0041】
酸素極層6としては、いわゆるABO型のペロブスカイト型酸化物からなる導電性セラミックスにより形成することが好ましい。かかるペロブスカイト型酸化物としては、遷移金属ペロブスカイト型酸化物、特にAサイトにSrとLaが共存するLaMnO系酸化物、LaFeO系酸化物、LaCoO系酸化物の少なくとも1種が好ましく、600〜1000℃程度の作動温度での電気伝導性が高いという点からLaCoO系酸化物が特に好ましい。なお、上記ペロブスカイト型酸化物においては、Bサイトに、CoとともにFeやMnが存在しても良い。
【0042】
また、酸素極層6は、ガス透過性を有する必要があり、従って、酸素極層6を形成する導電性セラミックス(ペロブスカイト型酸化物)は、開気孔率が20%以上、特に30〜50%の範囲にあることが好ましい。さらに、酸素極層6の厚みは、集電性という点から30〜100μmであることが好ましい。
【0043】
また、導電性支持体1の酸素極層6側と反対側の平坦面n上にはインターコネクタ層8が積層されている。
【0044】
インターコネクタ層8としては、Laを含有するペロブスカイト型酸化物からなる導電性セラミックスにより形成されている。燃料ガス(水素含有ガス)および酸素含有ガスと接触するため、耐還元性、耐酸化性を有していることが必要である。このため、耐還元性、耐酸化性を有する導電性セラミックスとしては、例えば、Laと、CrまたはTiとを含有するペロブスカイト型酸化物(LaCrO系酸化物、LaTiO系酸化物)を用いることができる。導電性支持体1および固体電解質層4の熱膨張係数に近づける目的から、BサイトにMgが存在するLaCrMgO系酸化物を用いることができる。
【0045】
以上説明した本形態の燃料電池セル10の作製方法の一例について説明する。
【0046】
先ず、例えば、Niおよび/またはNiO粉末と、Yなどの希土類酸化物の粉末と、有機バインダーと、溶媒とを混合して坏土を調製し、この坏土を用いて押出成形により導電性支持体成形体を作製し、これを乾燥する。なお、導電性支持体成形体として、導電性支持体成形体を900〜1000℃にて2〜6時間仮焼した仮焼体を用いてもよい。
【0047】
次に、例えば所定の調合組成に従いNiO、Yが固溶したZrO(YSZ)の素原料を秤量、混合する。この後、混合した粉体に、有機バインダーおよび溶媒を混合して燃料極層用スラリーを調製する。
【0048】
さらに、希土類元素が固溶したZrO粉末に、トルエン、バインダー、市販の分散剤等を加えてスラリー化したものをドクターブレード等の方法により、7〜75μmの厚さに成形してシート状の固体電解質層成形体を作製する。得られたシート状の固体電解質層成形体上に燃料極層用スラリーを塗布して燃料極層成形体を形成し、この燃料極層成形体側の面を導電性支持体成形体に積層する。なお、燃料極層用スラリーを導電性支持体成形体の所定位置に塗布し乾燥して、固体電解質層成形体を燃料極層成形体上に積層しても良い。
【0049】
続いて固体電解質層4と酸素極層6との間に配置する反応防止層5を形成する。
【0050】
例えば、GdO1.5が固溶したCeO粉末を800〜900℃にて2〜6時間、熱処理を行い、反応防止層成形体用の原料粉末を調整する。
【0051】
そして、反応防止層成形体の原料粉末に、溶媒としてトルエンを添加し、中間層用スラリーを作製し、このスラリーを固体電解質層成形体上に塗布して反応防止層の塗布膜を形成し、成形体を作製する。なお、シート状の成形体を作製し、これを固体電解質層成形体上に積層してもよい。
【0052】
この後、インターコネクタ層用材料(例えば、LaCrMgO系酸化物粉末)、NiO粉末、有機バインダー及び溶媒を混合してスラリーを調製する。
【0053】
この際、多気孔層を形成するためのスラリーとして、所望の気孔率を有するように、造孔材を添加した、多気孔層用スラリーを作製する。造孔材を添加しないスラリーは、緻密質層用スラリーとなる。造孔材は、焼成時に飛散する樹脂、例えばセルロース系樹脂から形成されている。
【0054】
造孔材の大きさによって気孔径を変更することができ、また造孔材量によって、気孔率
を変更することができる。
【0055】
そして、先ず、緻密質層用スラリーを、図1に示すように、導電性支持体成形体および固体電解質層成形体上に塗布し、乾燥させ、緻密質層成形体を作製した後、緻密質層成形体上に多気孔層用スラリーを塗布し、乾燥させ、多気孔層成形体を作製し、積層成形体を作製する。
【0056】
次いで、上記の積層成形体を脱バインダー処理し、酸素含有雰囲気中、1400〜1450℃にて2〜6時間、同時焼結(同時焼成)する。
【0057】
さらに、酸素極層用材料(例えば、LaCoO系酸化物粉末)、溶媒および増孔剤を含有するスラリーをディッピング等により反応防止層上に塗布し、1000〜1300℃で、2〜6時間焼き付けることにより、図1に示す構造の本形態の燃料電池セル10を製造できる。なお、燃料電池セル10は、その後、内部に水素ガスを流し、導電性支持体1および燃料極層3の還元処理を行なうのが好ましい。その際、たとえば750〜1000℃にて5〜20時間還元処理を行なうのが好ましい。
【0058】
なお、図3(a)で示すように、燃料電池セルの幅方向Bにおけるインターコネクタ層の一部に緻密質層8aを形成することができる。すなわち、この形態の燃料電池セルでは、固体電解質層4の両端部間に緻密質層8aを形成し、固体電解質層4の両端部上に、緻密質層8aを覆うように多気孔層8bが形成されている。
【0059】
また、図3(b)で示すように、インターコネクタ層8全体を、多気孔層8bで形成することができる。これにより、インターコネクタ層8に生じる応力をさらに抑制できる。この場合には、ガス透過を防止するため、気孔率を小さくするか、比較的気孔率が高い多気孔層8bとする場合には、平均気孔径を小さくしたり、インターコネクタ層8の厚みを26μm以上とすることが望ましい。
【0060】
図4は、上述した燃料電池セル10の複数個を、集電部材13を介して電気的に直列に接続して構成される燃料電池セル装置の一例を示したものであり、(a)は燃料電池セル装置11を概略的に示す側面図、(b)は(a)の燃料電池セル装置11の一部拡大断面図であり、(a)で示した破線で囲った部分を抜粋して示している。なお、(b)において(a)で示した破線で囲った部分に対応する部分を明確とするために矢印にて示しており、(b)で示す燃料電池セル10においては、上述した反応防止層5等の一部の部材を省略して示している。
【0061】
なお、燃料電池セル装置11においては、各燃料電池セル10を集電部材13を介して配列することで燃料電池セルスタック12を構成しており、各燃料電池セル10の下端部が、燃料電池セル10に燃料ガスを供給するためのガスタンク16に、ガラスシール材等の接着剤により固定され、これにより燃料電池セル装置11が構成されている。また、燃料電池セル装置11は、燃料電池セル10の配列方向の両端から燃料電池セルスタック12を挟持するように、ガスタンク16に下端部が固定された弾性変形可能な導電部材14を具備している。
【0062】
また、図4に示す導電部材14には、燃料電池セル10の配列方向に沿って外側に向けて延びた形状で、燃料電池セルスタック12(燃料電池セル10)の発電により生じる電流を出入するための電流引出し部15が設けられている。
【0063】
ここで、本形態の燃料電池セル装置11においては、上述した燃料電池セル10を用いて、燃料電池セルスタック12を構成することにより、長期信頼性が向上した燃料電池セ
ル装置11とすることができる。
【0064】
図5は、燃料電池セル装置11を収納容器内に収納してなる燃料電池モジュール18の一例を示す外観斜視図であり、直方体状の収納容器19の内部に、図4に示した燃料電池セル装置11を収納して構成されている。
【0065】
なお、燃料電池セル10にて使用する燃料ガスを得るために、天然ガスや灯油等の原燃料を改質して燃料ガスを生成するための改質器20を燃料電池セルスタック12の上方に配置している。そして、改質器20で生成された燃料ガスは、ガス流通管21を介してガスタンク16に供給され、ガスタンク16を介して燃料電池セル10の内部に設けられたガス流路2に供給される。
【0066】
なお、図5においては、収納容器19の一部(前後面)を取り外し、内部に収納されている燃料電池セル装置11および改質器20を後方に取り出した状態を示している。図5に示した燃料電池モジュール18においては、燃料電池セル装置11を、収納容器19内にスライドして収納することが可能である。なお、燃料電池セル装置11は、改質器20を含むものとしても良い。
【0067】
また収納容器19の内部に設けられた酸素含有ガス導入部材22は、図5においてはガスタンク16に並置された燃料電池セルスタック12の間に配置されるとともに、酸素含有ガスが燃料ガスの流れに合わせて、燃料電池セル10の側方を下端部から上端部に向けて流れるように、燃料電池セル10の下端部に酸素含有ガスを供給する。
【0068】
そして、燃料電池セル10のガス流路より排出される燃料ガスを酸素含有ガスと反応させて燃料電池セル10の上端部側で燃焼させることにより、燃料電池セル10の温度を上昇させることができ、燃料電池セル装置11の起動を早めることができる。また、燃料電池セル10の上端部側にて、燃料電池セル10のガス流路から排出される燃料ガスと酸素含有ガスとを燃焼させることにより、燃料電池セル10(燃料電池セルスタック12)の上方に配置された改質器20を温めることができる。それにより、改質器20で効率よく改質反応を行うことができる。
【0069】
さらに、本形態の燃料電池モジュール18においても、上述した燃料電池セル装置11を収納容器19内に収納してなることから、長期信頼性が向上した燃料電池モジュール18とすることができる。
【0070】
図6は、外装ケース内に図5で示した燃料電池モジュール18と、燃料電池セル装置11を動作させるための補機とを収納してなる燃料電池装置を示す斜視図である。なお、図6においては一部構成を省略して示している。
【0071】
図6に示す燃料電池装置23は、支柱24と外装板25とから構成される外装ケース内を仕切板26により上下に区画し、その上方側を上述した燃料電池モジュール18を収納するモジュール収納室27とし、下方側を燃料電池モジュール18を動作させるための補機類を収納する補機収納室28として構成されている。なお、補機収納室28に収納する補機類は省略している。
【0072】
また、仕切板26には、補機収納室28の空気をモジュール収納室27側に流すための空気流通口29が設けられており、モジュール収納室27を構成する外装板25の一部に、モジュール収納室27内の空気を排気するための排気口30が設けられている。
【0073】
このような燃料電池装置23においては、上述したように、信頼性を向上することがで
きる燃料電池モジュール18をモジュール収納室27に収納して構成されることにより、信頼性の向上した燃料電池装置23とすることができる。
【0074】
以上、本発明は上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々の変更、改良等が可能である。
【0075】
例えば、上記形態では、中空平板型の固体電解質形燃料電池セルについて説明したが、円筒型の固体酸化物形燃料電池セルであっても良いことは勿論である。また、各部材間に機能に合わせて各種中間層を形成しても良い。例えば、インターコネクタ層と導電性支持体との間に、例えばNiとYSZとからなる中間層を形成することもできる。
【0076】
また、上記形態では、第1電極として燃料極層3を、第2電極として酸素極層6を用いたが、第1電極として酸素極層を、第2電極として燃料極層を用いても良い。この場合には、導電性支持体1内を酸素含有ガスが流れることになる。
【0077】
さらに、上記形態では、導電性支持体1に燃料極層3、固体電解質層4、酸素極層6を形成したが、燃料極を兼ねる導電性支持体に、固体電解質層、酸素極層を形成した燃料電池セルであっても、酸素極を兼ねる導電性支持体に、固体電解質層、燃料極層を形成した燃料電池セルであっても、上記形態と同様の効果を得ることができる。
【実施例】
【0078】
先ず、平均粒径0.5μmのNiO粉末と、平均粒径0.9μmのY粉末を混合し、有機バインダーと溶媒にて作製した坏土を押出成形法にて成形し、乾燥、脱脂して導電性支持体成形体を作製した。なお、焼成−還元後における体積比率が、Niが48体積%、Yが52体積%になるように、NiO粉末とY粉末とを混合した。
【0079】
次に、8mol%のYが固溶したマイクロトラック法による粒径が0.8μmのZrO粉末(固体電解質層原料粉末)と有機バインダーと溶媒とを混合して得られたスラリーを用いて、ドクターブレード法にて厚み30μmの固体電解質層用シートを作製した。
【0080】
次に平均粒径0.5μmのNiO粉末とYが固溶したZrO粉末と有機バインダーと溶媒とを混合した燃料極層用スラリーを作製し、固体電解質層用シート上に塗布して燃料極層成形体を形成した。続いて、燃料極層成形体側の面を下にして導電性支持体成形体の所定位置に積層した。
【0081】
次に、CeOを85モル%、他の希土類元素の酸化物(GdO1.5)を15モル%含む複合酸化物を用いた反応防止層原料粉末に、アクリル系バインダーとトルエンとを添加し、混合して作製した反応防止層用のスラリーを、得られた積層仮焼体の固体電解質層4仮焼体上に、スクリーン印刷法にて塗布し、反応防止層成形体を作製した。
【0082】
続いて、La(Mg0.3Cr0.70.96と、NiO粉末と、有機バインダーと溶媒とを混合した緻密質層用スラリーを作製した。また、このスラリーに、平均粒径1.5μmのセルロース系造孔材を所定量添加し、多気孔層用スラリーを作製した。
【0083】
この後、固体電解質層成形体の両端部上、および導電性支持体上に、緻密質層用スラリーを塗布し、乾燥した後、この乾燥膜上に多気孔層用スラリーを塗布し、乾燥させ、積層成形体を作製した。
【0084】
次いで、上記の積層成形体を脱バインダー処理し、大気中で1450℃にて2時間同時焼成した。
【0085】
次に、平均粒径2μmのLa0.6Sr0.4Co0.2Fe0.8粉末と、イソプロピルアルコールとからなる混合液を作製し、積層焼結体の反応防止層の表面に噴霧塗布し、酸素極層成形体を形成し、1100℃にて4時間で焼き付け、酸素極層を形成し、図1に示す燃料電池セルを作製した。
【0086】
なお、作製した燃料電池セルの寸法は25mm×200mmで、導電性支持体の厚み(平坦面n間の厚み)は2mm、開気孔率35%、燃料極層の厚さは10μm、開気孔率24%、酸素極層の厚みは50μm、開気孔率40%、固体電解質層の相対密度は97%であった。
【0087】
次に、この燃料電池セルの内部に水素ガスを流し、850℃で10時間、導電性支持体および燃料極層の還元処理を施した。
【0088】
得られた燃料電池セルについて、緻密質層および多気孔層の気孔率、厚みを測定し、表1に記載した。緻密質層および多気孔層の厚みは、走査型電子顕微鏡(SEM)写真より求めた。また、緻密質層および多気孔層の気孔率は、緻密質層および多気孔層の任意断面における1000倍のSEM写真から画像解析装置を用いて求めた。5箇所の断面写真の平均気孔率を求め、これを平均して、任意断面における気孔率とした。同様にして、平均気孔径を求めた。
【0089】
また、作製された燃料電池セルの還元後の変形量を、インターコネクタ層についてセルの長手方向に、表面粗さ計によるうねり測定を還元前後で行い、還元前のインターコネクタ層のうねりから、還元後のうねりを差し引くことにより求めた。
【0090】
インターコネクタ層および固体電解質層によるガス遮断性を、リーク試験で確認した。リーク試験は、所定の部材により一方側の燃料ガス通路を封止した10本の燃料電池セルを水の中にいれ、燃料電池セルの他方側の燃料ガス通路から3kg/cmに加圧されたHeガスを60秒供給する試験であり、インターコネクタ層または固体電解質層から気泡が生じたものをガス遮断性なしとし、インターコネクタ層および固体電解質層から気泡が生じなかったものをガス遮断性ありとし、その結果を表1に記載した。なお、表1において、4/10とは、燃料電池セル10本中4本について、インターコネクタ層または固体電解質層からガスが漏出したことを意味する。
【0091】
【表1】

【0092】
この表1から、試料No.1では、多気孔層が存在しないため、還元後における変形量が大きいことがわかる。これに対して、多気孔層を有する場合には、還元後における変形量が200μm以下と小さく、ガス遮断性が良好なことがわかる。
【符号の説明】
【0093】
1:導電性支持体
2:燃料ガス流路
3:燃料極層
4:固体電解質層
5:反応防止層
6:酸素極層
8:インターコネクタ層
8a:緻密質層
8b:多気孔層
11:燃料電池セル装置
18:燃料電池モジュール

【特許請求の範囲】
【請求項1】
導電性支持体の外面に、第1電極、固体電解質層および第2電極を備えた発電部が設けられているとともに、該発電部が設けられていない前記導電性支持体にインターコネクタ層が設けられており、該インターコネクタ層は、気孔率が1%以上の多気孔層を有することを特徴とする固体酸化物形燃料電池セル。
【請求項2】
第1電極を兼ねる導電性支持体の外面に、固体電解質層および第2電極が設けられているとともに、該固体電解質層および第2電極が設けられていない前記導電性支持体にインターコネクタ層が設けられており、該インターコネクタ層は、気孔率が1%以上の多気孔層を有することを特徴とする固体酸化物形燃料電池セル。
【請求項3】
前記インターコネクタ層が、内側に形成された緻密質層と、該緻密質層上に形成され前記緻密質層よりも気孔率が大きい多気孔層とから構成されていることを特徴とする請求項1または2に記載の固体酸化物形燃料電池セル。
【請求項4】
前記インターコネクタ層の緻密質層の気孔率が0.2%以下であることを特徴とする請求項3に記載の固体酸化物形燃料電池セル。
【請求項5】
前記インターコネクタ層の前記緻密質層の厚みは、前記多気孔層の厚みよりも厚いことを特徴とする請求項3または4に記載の固体酸化物形燃料電池セル。
【請求項6】
請求項1乃至5のうちいずれかに記載された固体酸化物形燃料電池セルを収納容器内に複数収納してなることを特徴とする燃料電池モジュール。
【請求項7】
請求項6に記載の燃料電池モジュールと、該燃料電池モジュールを動作させるための補機とを外装ケース内に収納してなることを特徴とする燃料電池装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate