説明

固体音響メタマテリアル、及び、音の焦点を合わせるためにこれを使用する方法

フォノニック結晶は、第1の密度を有する第1の固形媒質と、第1の媒質中に配置された略周期的な配列の構造とから作られる。また、この構造は、第1の密度と異なる第2の密度を有する第2の固形媒質から作られる。第1の媒質は、縦方向の音波の伝播速度、及び、横方向の音波の伝播速度を有する。また、縦方向の音波の伝播速度は、流体のそれとほぼ等しく、かつ、横方向の音波の伝播速度は、縦方向の音波の伝播速度より小さいことを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本出願は、2009年3月2日出願の米国仮特許出願第61/208,928号、及び、2009年5月4日出願の米国仮特許出願第61/175,149号の利益を主張する。これらの開示は、本明細書によって参照により全体として本開示に盛り込まれる。
【0002】
本発明は、音響メタマテリアル、より詳しくは、固体−固体フォノニック結晶を有する音響メタマテリアルを対象とする。本発明は、このようなメタマテリアルを使用して音の焦点を合わせるための方法をさらに対象とする。
【背景技術】
【0003】
スホービックら(Sukhovich et al)の、「フォノニック結晶中のサブ波長イメージングのための実験的及び理論的証拠」(“Experimental and theoretical evidence for subwavelength imaging in phononic crystals”、Physical Review Letters 102,154301(2009))(これは、本明細書によって参照により全体として本開示に盛り込まれる)は、超解像を達成するために平面レンズで用いる負の屈折を示すフォノニック結晶を開示する。このフォノニック結晶は、メタノールで充填されたスペース中にステンレス鋼ロッドの三角格子を含む。水に囲まれた場合、フォノニック結晶は、550kHzの周波数で−1の実効屈折率を示す。
【0004】
しかしながら、流体を使用すると、製造及び使用の点から、このフォノニック結晶の実用性が減少する。
【0005】
別々の研究分野における努力により、消音のための固体フォノニック結晶は、2009年7月9日にWO2009/085693A1として公開されたPCT国際特許出願番号PCT/US2008/086823において開示される。この開示は、本明細書によって参照により全体として本開示に盛り込まれる。しかしながら、そのフォノニック結晶は、1つの機能(すなわち消音)を行なうのに適しており、本発明が関係するものとは全く異なる。その出願で開示されたフォノニック結晶は、その機能を達成するために、第1の密度を有する第1の媒質(ゴム)と、第1の媒質中に配置された略周期的な配列の構造とを備えており、さらに、この構造は、第1の密度と異なる第2の密度を有する、第2の媒質(空気)から作られている。
【発明の概要】
【0006】
従って、本発明の目的は、スホービックらの論文により提供されるものよりも、より実用的な解決法を提供することである。
【0007】
上記及び他の目的を達成するため、本発明は、上記の引用したスホービックらが言及した流体を、縦方向の音速(C)が、流体(例えば、水なら1500m/秒)にほぼ等しく、かつ、横方向の音速(C)が、縦方向の音速より小さい(例えば、100m/秒未満)固体材料に置き換えるフォノニック結晶を対象とする。このような固体材料は、横方向の音速が縦方向の音速よりはるかに低いため、流体のように振る舞う。このような固体材料の一例は、有機ゴム、又は、無機ゴムである。この種の固体メタマテリアルは、固体の成分のみから作られているため、多数の応用例においてより実用的な解決法である。この包有物は、いわゆる二次元フォノニック構造を形成するために円柱形(断面形状は任意)でもよく、又は、三次元の固体/固体メタマテリアルを製造するための球体(立方体又は他の形)でもよい。メタマテリアルが所望のように振る舞う周波数同調性は、フォノニック結晶の大きさ及び形状だけでなく、構成する材料の性質の制御により実現される。
【0008】
以下では、我々は、二次元のゴム−鋼メタマテリアルが負の屈折及びサブ波長分解能(スーパーレンズ効果)を示すことができることを示す。
【図面の簡単な説明】
【0009】
本発明の好ましい実施形態を、以下の図面を参照して詳細に述べる。
【0010】
【図1】図1は、1周期にわたって平均した圧力の絶対値を示すプロットである。
【0011】
【図2】図2は、瞬間の圧力場を示すプロットである。
【0012】
【図3】図3はエネルギー束の垂直成分を示すプロットである。
【0013】
【図4】図4は、この画像の縦断面を示すプロットである。
【0014】
【図5A】図5Aは、結合モードを示すプロットである。
【図5B】図5Bは、結合モードを示すプロットである。
【図5C】図5Cは、結合モードを示すプロットである。
【0015】
【図6】図6は、フォノニック結晶の構造を示す写真である。
【0016】
【図7】図7はホログラフィック音響イメージングシステムを示す概略図である。
【発明を実施するための形態】
【0017】
本発明の好ましい実施形態を、図面を参照して詳細に述べる。
【0018】
我々は、520kHzでの鋼ゴムレンズの振舞いをシミュレートする。すべての幾何学パラメータは、スホービックらの論文中のものと同じである。唯一の違いは、メタノール(流体)をC=1200m/秒、及び、C=20m/秒を有するゴム(固体)に置き換えるということである。粘弾性は差し当たりない。音源は、スホービックらのものと同じで、レンズの左側に設置される。
【0019】
図1では、我々は、1周期にわたって平均した圧力の絶対値を報告する。像点はレンズの右側にある。図1は、ゴム/鋼レンズが、この音源の像に至る負の屈折の現象を示すことを示す。
【0020】
図2では、瞬間の圧力場を報告する。この圧力場は、この音源により、また、この像により同様に放射されるほぼ球面の波を示す。エネルギー束の垂直成分をプロットする図3と同じ焦点合わせが見られる。エネルギー束の水平成分は、常に、左から右を指すことに注目されたい(ここでは図示せず)。結晶の内部で、この波の方向に変化が1回あることが分かる。出口で、再び方向に変化がある。これらの両方とも負の屈折に相当する。結晶を出る側に、これらのビームの交差があって、像の形成に至る。この新しい固体/固体のメタマテリアルを用いることで、我々は、従来は流体/固体のシステムでのみ見られた特徴を得る。
【0021】
この像での縦断面(レンズの表面と平行)は、像の半分の幅を明らかにする。これは、水中での信号の波長、λより小さい(図4で示す)。我々は、この像点の幅の半分が、(レンズの分解限度に到達した場合の、0.5λと比較して)0.347λになると計算した。垂直軸の尺度は、圧力度である。水平軸の尺度は、長さ(m)である。より低い曲線は、Sinc関数に対するfitである。水平軸に沿った第1のピークの幅は、2mmであると計算される。
【0022】
我々は、サブ波長イメージングを導くゴム/鋼システム中のスラブ型(レンズ)結合モードの存在を確認する(図5A〜図5Cを参照)。図5A及び図5Bでは、水中のメタノール/鋼フォノニック結晶のバンド構造を示す(スホービックらによる論文を参照)。図5Cは、図5Aと同じだが、水中に浸漬したゴム/鋼結晶におけるものである。矢印は、励起された場合に、サブ波長イメージングが生じることができるスラブ型結合モードを指す。
【0023】
従って、我々は、C<<Cを有するゴムが流体のように振る舞うことを示す。このゴムの横方向のバンドはすべて、負の屈折及びサブ波長イメージングに導く特徴的な縦方向のバンドを下回る。
【0024】
我々は、600として図6中に示される試験用のゴム/鋼フォノニック結晶レンズを製造中である。鋼箱602は、鋼棒606(エンドプレート608により適所に保持される)が周期的な配列の中にゴム604を成形するために使用される。
【0025】
可能な応用例は、下記を含む。
【0026】
(a)フォノニックメタマテリアルのフィルムを用いた組織のホログラフィックイメージング
【0027】
医療業界は、多数の症状の診断及び治療の両方のために、超音波のような非侵襲性のイメージング技術に依存する。従って、非侵襲性のイメージング技術の改良は、患者に対してより良い健康管理をもたらす。可能な応用例の1つとしては、器官及び組織中の機構の差異を画像化するために音響メタマテリアルのフィルムを使用することがある。これは、組織及び器官の測定を任意の次元で提供することができる超音波の取組みの1つである。この技術は、ドップラー超音波(これは血圧及び流量の数値を求める)、及び、磁気共鳴画像(MRI)のような現在のイメージング技術を補完するであろう。フォノニックメタマテリアルを用いたホログラフィックイメージングには、血塊又は損傷による血管直径の変化の検出、動脈狭窄の測定、並びに、器官拡張(肥大、又は、過形成)、又は、器官収縮(発育不全、萎縮、減形成、又は、ジストロフィー)の決定を含む様々な応用がある。本出願の基本的な考え方は、組織と接触し、かつ、水中に浸漬して、水中で検出可能なホログラフィー像を生み出す音響メタマテリアルで構成される膜を設計することである。組織中の機構の差異は、水中の圧電プローブ又は光音響プローブを経由して音響グリッドラスタイメージを生み出すことにより再構築することができる。いくつかの音響メタマテリアルのフィルムを使用すれば、様々な波長(すなわち、長さスケール)で組織を画像化することができ、多重スケール信号の合成法を通じて組織の多重解像度合成画像を構築するために使用することができる。
【0028】
この概念は、図7において説明される。組織中の第1又は第2の音源Sは、メタマテリアル702を通じて画像化され、容易に探査される媒質706(例えば、水)中で画像Iを形成する。細い矢印は、負に屈折した音波の経路を示す。太い矢印は、このフィルムにより画像化された興味のある対象物を特徴づけて、この対象物及び像の反転体を示す。
【0029】
(b)潜水艦、及び、他の海軍での応用のために透明マントを製造するための音響メタマテリアル。
【0030】
(c)マイクロエレクトロニクス産業におけるメガソニック洗浄のような工業プロセスへの応用。音響メタマテリアルは、音の焦点を合わせて、洗浄を局所的に最大限に高めることができる。
【0031】
(d)非破壊試験などへの応用
【0032】
(e)他の応用例:音絶縁など
【0033】
好ましい実施形態が、上記に詳細に述べられているが、本開示を検討した当業者であれば、本発明の範囲内で他の実施形態が実現可能であることを容易に認識するだろう。例えば、具体的な数値及び材料の列挙は、限定的というよりもむしろ例示的であり、具体的な用法の列挙も同様である。従って、本発明は、添付されたクレームによってのみ制限されるように解釈されるべきである。

【特許請求の範囲】
【請求項1】
第1の密度を有する第1の固形媒質と、
該第1の媒質中に配置された略周期的な配列の構造と、
を備えるフォノニック結晶であり、該構造は、該第1の密度と異なる第2の密度を有する第2の固形媒質から作られるフォノニック結晶であって、
該第1の媒質は、縦方向の音波の伝播速度、及び、横方向の音波の伝播速度を有し、該縦方向の音波の伝播速度は、流体のそれと等しく、かつ、該横方向の音波の伝播速度は、該縦方向の音波の伝播速度より小さいことを特徴とするフォノニック結晶。
【請求項2】
該構造は、円柱形であることを特徴とする請求項1に記載のフォノニック結晶。
【請求項3】
該構造は、二次元フォノニック構造を形成することを特徴とする請求項2に記載のフォノニック結晶。
【請求項4】
該第1の固形媒質は、ゴムを含むことを特徴とする請求項1に記載のフォノニック結晶。
【請求項5】
該第2の固形媒質は、鋼を含むことを特徴とする請求項4に記載のフォノニック結晶。
【請求項6】
該構造は、少なくとも二次元でフォノニック構造を形成することを特徴とする請求項1に記載のフォノニック結晶。
【請求項7】
音の焦点を合わせるための方法であって、該方法は、
(a)第1の密度を有する第1の固形媒質と、
該第1の媒質中に配置された略周期的な配列の構造と、
を備えるフォノニック結晶であり、該構造は、該第1の密度と異なる第2の密度を有する第2の固形媒質から作られるフォノニック結晶であって、
該第1の媒質は、縦方向の音波の伝播速度、及び、横方向の音波の伝播速度を有し、該縦方向の音波の伝播速度は、流体のそれと等しく、かつ、該横方向の音波の伝播速度は、該縦方向の音波の伝播速度より小さいことを特徴とするフォノニック結晶を提供することと、
(b)該音の焦点が合うように経路にフォノニック結晶を配置することと、
(c)該フォノニック結晶を使用して、該音の焦点を合わせることと、
を備える音の焦点を合わせるための方法。
【請求項8】
該フォノニック結晶は、該音の焦点が合う波長において負の屈折率を有することを特徴とする請求項7に記載の方法。
【請求項9】
該フォノニック結晶は、該音の焦点が合う波長においてスーパーレンズ効果を示すことを特徴とする請求項7に記載の方法。
【請求項10】
該フォノニック結晶により焦点を合わせた音は、イメージングで使用されることを特徴とする請求項7に記載の方法。
【請求項11】
該イメージングは、非侵襲性のイメージングであることを特徴とする請求項10に記載の方法。
【請求項12】
該ステップ(c)は、第3の媒質の中で該音の焦点を合わせて画像を形成することを備えることを特徴とする請求項11に記載の方法。
【請求項13】
該第3の媒質は、水を含むことを特徴とする請求項12に記載の方法。
【請求項14】
該構造は、円柱形であることを特徴とする請求項7に記載の方法。
【請求項15】
該構造は、二次元フォノニック構造を形成することを特徴とする請求項14に記載の方法。
【請求項16】
該第1の固形媒質は、ゴムを含むことを特徴とする請求項7に記載の方法。
【請求項17】
該第2の固形媒質は、鋼を含むことを特徴とする請求項16に記載の方法。
【請求項18】
該構造は、少なくとも二次元にフォノニック構造を形成することを特徴とする請求項7に記載の方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5A】
image rotate

【図5B】
image rotate

【図5C】
image rotate

【図6】
image rotate

【図7】
image rotate


【公表番号】特表2012−519058(P2012−519058A)
【公表日】平成24年8月23日(2012.8.23)
【国際特許分類】
【出願番号】特願2011−553037(P2011−553037)
【出願日】平成22年3月2日(2010.3.2)
【国際出願番号】PCT/US2010/025909
【国際公開番号】WO2010/101910
【国際公開日】平成22年9月10日(2010.9.10)
【出願人】(510140696)ザ アリゾナ ボード オブ リージェンツ オン ビハーフ オブ ザ ユニバーシティ オブ アリゾナ (2)
【Fターム(参考)】