説明

変形マップに制約を課す方法およびそれを実装するためのシステム

変形マップに制約を課すシステムおよび方法。この方法は、2つの画像間の変形マップを生成するステップと、それらの画像の一方において限定された構造を特定するステップと、変形ベースの限定された構造を作り出すために、限定された構造を一方の画像から他方の画像に関連付けるように変形マップを適用するステップと、変形ベースの限定された構造を変更するステップと、変形ベースの限定された構造を変更するステップに応答して変形マップを更新するステップとを含む。

【発明の詳細な説明】
【技術分野】
【0001】
本出願は、SYSTEM AND METHOD FOR FEEDBACK GUIDED QUALITY ASSUARANCE AND ADAPTATIONS TO RADIATION THERAPY TREATMENT(放射療法治療へのフィードバック誘導品質保証および適用のためのシステムおよび方法)と題する2005年7月22日出願の米国特許仮出願第60/701580号に対する優先権を主張するものであり、その内容全体を参照により本明細書に組み込む。
【背景技術】
【0002】
過去数十年にわたって、コンピュータおよびネットワーキング、放射線療法治療計画ソフトウェア、および医用撮像様式(CT、MRI、US、およびPET)における改良が、放射線療法の行為に組み入れられてきた。こうした改良により、画像誘導放射線療法(「IGRT)の開発に至った。IGRTは、健康な器官への放射線の照射を低減しながら、放射線量をより確実に腫瘍に当てるために患者の内部の解剖学的構造の断面画像を用いる放射線療法である。腫瘍に放出される放射線量は、強度変調放射線療法(「IMRT)で制御され、これは、患者の腫瘍の寸法、形状、および配置に一致するように、放射線ビームの寸法、形状、および強度を変更することを含む。IGRTおよびIMRTは、腫瘍の制御を改善し、同時に、腫瘍を囲む健康な組織への放射線照射による急性の副作用の可能性を低減する。
【0003】
IMRTはいくつかの国では標準的な医療になりつつある。しかし、多くの状況で、IMRTは、時間、資源、および請求額の制約により、患者を治療するために使用されていない。患者の日々の画像を使用して、IMRTの計画によって生成された高い勾配が患者の治療のために正しい位置にあることを保証することができる。また、それらの画像は、その計画をオンラインで、または必要な場合にはオフラインで適合させるために必要な情報を提供することができる。
【0004】
放射線療法の分野では、患者の治療過程で起きる恐れがある不確定さおよび変化には多くの発生源があることが一般に知られている。これらの発生源のうちいくつかは、毎日の患者のセットアップ位置におけるわずかな違いなど、不規則なエラーを示す。他の発生源は、患者の腫瘍が退行し、または患者が療法中に体重を減らす場合に生じる可能性のある生理学的変化に起因する。第3の可能な範疇は運動に関係する。いくつかの運動は、患者の咳または放屁など、より不規則であり予測できないので、他の範疇のいずれかと重複する可能性があるが、呼吸運動など、他の運動はより規則的になることもある。
【0005】
放射線療法では、不確定さが患者の治療の質に影響を及ぼす可能性がある。例えば、治療線量をターゲット部位に放出するときには、ターゲット周りの高線量「マージン」部位も治療することが標準の行為である。これは、治療の過程で、またはそれどころか単一のフラクション中にその位置が変化した場合でもターゲットが所望の線量を確実に受けるようにする。ターゲットの位置が不明確になればなるほど、一般に必要な、使用するマージンは大きくなる。
【0006】
適応放射線療法は、一般に、後の治療を改善するために放射線療法治療の過程でフィードバックを使用する概念を指す。オフラインの適応療法プロセスおよびオンラインの適応療法プロセスでフィードバックを使用することができる。オフラインの適応療法プロセスは、治療フラクションの間など、患者が治療されていない間に行われる。この1つのバージョンでは、各フラクション中に、患者の新しいCT画像が各フラクションの前または後で取得される。最初のいくつかの治療フラクションから画像が取得された後で、それらの画像が評価されて、ターゲット構造の複数日にわたる位置の効果的なエンベロープを決定する。次いで、標準の運動の仮定を使用するのではなく、ターゲット構造の運動の範囲をより良く反映する新しい計画を作成することができる。オフラインの適応療法のより複雑なバージョンは、各フラクションの後で放出された線量を再計算し、場合によっては変形技法を使用してそれらの線量を蓄積し、蓄積中に内部の運動を調整する。次いで、蓄積された線量を計画した線量と比較することができ、何らかの不一致が認められた場合、その変化を調整するために後続のフラクションを変更することができる。
【0007】
オンラインの適応療法プロセスは、一般に、患者が治療室にいる間に行われ、必ずしも必要ではないが、施療中に行われることもある。例えば、いくつかの放射線療法治療システムは、オンラインCTまたはX線システムなどの撮像システムを備える。それらのシステムを治療前に使用して、施療のための患者のセットアップを検証または調節することができる。撮像システムを使用して、実際の施療中に治療を適合させることもできる。例えば、撮像システムは、患者の解剖学的構造の変化を反映するように、施療を変更するために、場合によっては、治療と同時に使用することができる。
【0008】
本発明の一態様は、適応療法技法の用途の新しい機会を開示することであり、いくつかのさらなる態様は、適応療法のための新規の方法を示すことである。具体的には、適応療法は、一般に患者の治療を変更するためのフィードバックに焦点を当ててきたが、本発明は、品質保証の背景で使用される適応療法プロセスに焦点を当てている。これは、システム全体を検証する状況において特に当てはまる。
【0009】
例えば、検出器を使用して、患者を通過した治療ビームの量を示す情報を収集することができ、それにより、治療出力の大きさならびに放出に使用された放射線パターンを判定することができる。放出検証プロセスの利点は、操作者が不適切なリーフパターンまたは機械出力など、機械放出におけるエラーを検出することができることである。
【0010】
しかし、機械が適切に機能していることを検証すること自体が、治療計画の適切な引渡しを保証することにはならない。というのは、機械をプログラムするために使用された外部入力が有効であり整合性があることも検証する必要があるからである。したがって、本発明の一態様は、治療プロセス全体の改善された品質保証のために、適応型フィードバックループのより広い概念を含む。この態様では、本発明は、治療のために患者を配置し画像誘導の方法を用いて患者の位置を決定するステップと、画像誘導に基づいて、治療に必要なように患者を再配置するステップと、治療を開始するステップとを含む。次いで、治療中または治療後に、患者の線量を再計算するステップと、治療前または治療中に収集された患者の画像情報を組み込むステップとを含む。これらのステップの完了後に、品質保証データが収集されて、放出がどの程度計画通りに実施されたかを分析するだけではなく、計画した放出が新しく利用可能なデータに即して妥当であるかを検証する。この点において、フィードバックの概念は、患者または放出の変化に基づいて治療に対する変更を指示するためにはもはや使用されず、元の放出自体を検証するために使用される。
【0011】
一例として、ある患者に対する治療計画を作成することが可能であるかもしれないが、誤った密度の較正を適用することによるなど、計画に使用された画像が壊れている可能性がある。この場合、治療計画は、誤った情報に基づいており、患者に正しい線量を放出しないかもしれない。しかし、多くの品質保証技法は、機械に対する命令が正しい入力情報に基づいているかどうかを検査するのではなく、機械が命令どおりに動作していることを確認するので、こうしたエラーを検出しないことになる。同様に、いくつかの適応療法技法は、こうした放出に適用することができるが、この例の較正問題が残存する場合には、適応治療は同様の欠点を有することになる。
【0012】
品質保証の目的でフィードバックの使用を拡張するために使用することができる、いくつかのプロセスがある。例えば、一実施形態では、このプロセスは、上述の放出検証技法を含む。それらの方法が提供する機械性能の妥当性検査は、システム全体の品質保証ツールセットの価値のある構成要素である。さらに、放出検証プロセスを拡張して、一部が欠けた視野を有する画像に基づいた放出など、他のシステムエラーを分析するようにすることができる。
【0013】
品質保証のこうした方法はまた、レジストレーション技法、具体的には、変形可能なレジストレーション技法の使用から利益を得る。レジストレーションは、複数の画像にわたる患者の解剖学的構造または生理学的構造の位置間の相互関係を判定するための方法であり、変形可能なレジストレーションは、画像、フェーズ、または時間の間の解剖学的構造の固定されない変化を調整するようにそれを行う方法である。前述のように、品質保証の方法の重要なステップは、オンライン画像および機械からのフィードバックに基づく線量の再計算である。それらの線量を分析するときには、エラーが増幅されているかどうか、または互いに緩和し合っているかどうかを判定するために、複数の治療にわたって線量を蓄積することが有用である。
【発明の開示】
【発明が解決しようとする課題】
【0014】
提示された発明は、これらの品質保証プロセスを、実施されている適応療法プロセスなしで適用することができる、あるいは、適応療法をこれらのQA方法なしで行うことができるという点で、適応療法と根本的に結びついているわけではないが、これらの技法に加えて適応療法を使用して追加の利益が存在する可能性があることに留意されたい。したがって、放出のフィードバックを使用することによって不一致が認められた場合、それらの不一致は、オンラインの、またはフラクション間の任意の数のメカニズムによって修正することができる。修正される不一致が、例えば、プロセスとの不適合性、または所与の治療計画のために機械をプログラムするために使用された欠陥のある入力に対して、機械自体で識別される問題を超えて及ぶことがある。
【課題を解決するための手段】
【0015】
一実施態様では、本発明は、変形マップに制約を課す方法を提供する。その方法は、2つの画像間の変形マップを生成するステップと、それらの画像の一方において限定された構造を特定するステップと、変形ベースの限定された構造を作り出すために、限定された構造を一方の画像から他方の画像に関連付けるように変形マップを適用するステップと、変形ベースの限定された構造を変更するステップと、変形ベースの限定された構造を変更するステップに応じて変形マップを更新するステップとを含む。
【0016】
他の実施態様では、本発明は、変形マップに制約を課す方法を提供する。その方法は、2つの画像間の変形マップを生成するステップと、それらの画像の一方において限定された構造を特定するステップと、変形ベースの限定された構造を作り出すために、限定された構造を一方の画像から他方の画像に関連付けるように変形マップを適用するステップと、変形ベースの限定された構造を変更するステップと、変形ベースの限定された構造を変更するステップに応答して変形マップを更新するステップと、更新された変形マップに基づいて輪郭を生成するステップとを含む。
【0017】
他の実施形態では、本発明は、変形マップに制約を課す方法を提供する。その方法は、変形マップに制約を課す方法のステップを含む。この方法は、第1の輪郭セットを生成するステップと、第2の輪郭セットを生成するステップと、第1の輪郭セットと第2の輪郭セットの間の変形マップを生成するステップとを含む。
【0018】
詳細な説明および添付の図面を検討することにより、本発明の他の態様が明らかになるであろう。
【発明を実施するための最良の形態】
【0019】
本発明の任意の実施形態を詳細に説明する前に、本発明は、その用途において、以下の説明で述べられ、または以下の図面に示された構成要素の構成および配置の詳細に限定されないことを理解されたい。本発明は、他のいくつかの実施形態も可能であり、様々な方式で実施し、または実行することができる。また、本明細書で使用される表現法および用語は説明のためのものであり、限定するものと見なすべきではないことを理解されたい。「含む」、「備える」、または「有する」およびその変形の本明細書における使用は、その後に列挙される要素およびその均等物ならびに追加の要素を包含することを意味する。その他の形で指定されまたは限定されない限り、用語「取り付けられる」、「接続される」、「支持される」、および「結合される」ならびにその変形は、広く使用され、直接的および間接的の両方の、取付け、接続、支持、および結合を包含する。さらに、「接続される」および「結合される」は、物理的または機械的な接続または結合に限定されない。
【0020】
上側、下側、下方向、上方向、後方法、底部、前方、後方など、方向の参照は、本明細書では図面の説明において行われるが、これらの参照は、便宜上、図面に対して(普通に眺めたときに)行われる。それらの方向は、本発明をどんな形であれ、文字通りとられることまたは限定することを意図していない。さらに、「第1」、「第2」、および「第3」などの用語は、説明のために本明細書で使用され、相対的な重要性または意義を指示または暗示するものではない。
【0021】
さらに、本発明のいくつかの実施形態は、議論のためにそれらの構成要素の大多数がハードウェア中に単独で実装されるかのように、例示され説明されている、ハードウェアとソフトウェアの両方、および電子構成要素またはモジュールを含むことを理解されたい。しかし、当業者なら、この詳細な説明を読むことに基づいて、少なくとも一実施形態では、本発明の電子ベースのいくつかの態様がソフトウェアで実装されることを理解するはずである。したがって、複数のハードウェアおよびソフトウェアベースのデバイス、ならびに複数の異なる構造的構成要素が、本発明を実装するために使用することができることに留意されたい。さらに、後続の段落で説明するように、図面に示された特定の機械的な構成は、本発明のいくつかの実施形態を例示するものであり、他の代替の機械的な構成も可能であることが意図される。
【0022】
図1は、患者14に放射線療法を提供することができる放射線療法治療システム10を示す。放射線療法治療は、光子ベースの放射線療法、近接照射療法、電子ビーム療法、陽子、中性子または粒子線療法、あるいは他のタイプの治療療法を含むことができる。放射線療法治療システム10は、ガントリ18を含む。ガントリ18は、放射線モジュール22を支持することができ、その放射線モジュール22は、放射線源24および放射線ビーム30を生成するように動作可能な線形加速器26を含むことができる。図面に示すガントリ18がリングガントリ、すなわち、完全に360度延びて、完全なリングまたは円形を作り出すガントリであるが、他のタイプの取付け構成を採り入れることもできる。例えば、C字タイプ、部分的にリング状のガントリ、またはロボットアームを使用することができる。患者14に対して様々な回転および/または軸方向の位置で放射線モジュール22を配置することができる他の任意のフレームワークを採り入れることもできる。さらに、放射線源24は、ガントリ18の形状に追従しない経路を移動することができる。例えば、放射線源24は、図示のガントリ18が全体的に円形であっても、非円形の経路を移動することができる。
【0023】
放射線モジュール22は、放射線ビーム30を変更しまたは変調するように動作可能である変調デバイス34を含むこともできる。変調デバイス34は、放射線ビーム30を変調し、放射線ビーム30を患者14に向ける。具体的には、放射線ビーム34は、患者の一部分に向けられる。広く言えば、その部分は体全体を含むことができるが、一般に体全体より小さく、2次元の面積および/または3次元の体積によって限定することができる。ターゲット38またはターゲット部位と呼ばれることがある、放射線を受けることが望ましい部分は、関心領域の一例である。他のタイプの関心領域は危険を伴う領域である。ある部分が危険を伴う領域を含む場合、放射線ビームは、危険を伴う領域から進路を変えることが好ましい。患者14は、放射線療法を受ける必要がある、1を超えるターゲット部位を有することができる。こうした変調は、強度変調放射線療法(「IMRT」)と呼ばれることがある。
【0024】
変調デバイス34は、図2に示すようにコリメーションデバイス42を含むことができる。そのコリメーションデバイス42は、1組のジョー46を含み、そのジョー46は、放射線ビーム30がその中を通過することができる開口部50の寸法を限定し調節する。ジョー46は、上側ジョー54および下側ジョー58を含む。上側ジョー54および下側ジョー58は、開口部50の寸法を調節するように移動可能である。
【0025】
一実施形態では、図2に示すように、変調デバイス34は、マルチリーフコリメータ62を備えることができ、そのマルチリーフコリメータ62は、強度の変調を行うために位置を次々に移動するように動作可能である複数の組み合わされたリーフ66を含む。リーフ66は、最少の開放位置と最大の開放位置の間のいずれかの位置に移動することができることにも留意されたい。複数の組み合わされたリーフ66は、放射線ビーム30が患者14上のターゲット38に到達する前に、放射線ビーム30の強度、寸法、および形状を変調する。各リーフ66は、リーフ66が放射線の通路を迅速に開閉することができるようにモータまたは空気弁など、アクチュエータ70によって独立に制御される。アクチュエータ70をコンピュータ74および/または制御装置によって制御することができる。
【0026】
放射線療法治療システム10は、放射線ビーム30を受けるように動作可能な検出器78、例えば、キロボルトまたはメガボルトの検出器を含むこともできる。線形加速器26および検出器78は、患者14のCT画像を生成するように、コンピュータ断層撮影(CT)システムとして動作することもできる。線形加速器26は、放射線ビーム30を患者14のターゲット38に向けて放射する。ターゲット38は、放射線をいくらか吸収する。検出器78は、ターゲット38によって吸収された放射線の量を検出または測定する。線形加速器26が患者14の周りを回転し患者14に向けて放射線を放射すると、検出器78は、様々な角度から吸収データを収集する。その収集された吸収データは、吸収データを処理し、患者の体の組織および器官の画像を生成するためにコンピュータ74に送信される。画像は、骨、軟組織、血管を示すこともできる。
【0027】
扇形、マルチスライス幾何形状またはコーンビーム幾何形状の放射線ビーム30でCT画像を取得することができる。さらに、メガボルトのエネルギーまたはキロボルトのエネルギーを放出する線形加速器26でCT画像を取得することができる。取得したCT画像は、(放射線療法治療システム10または他のCTスキャナ、MRIシステム、およびPETシステムなど、他の画像取得デバイスから)前に取得したCT画像とレジストレーションすることができることにも留意されたい。例えば、前に取得した患者14のCT画像は、輪郭付けプロセスを介して作成された、識別されるターゲット38を含むことができる。新たに取得した患者14のCT画像を、新しいCT画像においてターゲット38を特定することを助けるために、前に取得したCT画像とレジストレーションすることができる。レジストレーションプロセスは、固定された、または変形可能なレジストレーションツールを使用することができる。
【0028】
いくつかの実施形態では、放射線療法治療システム10は、X線源およびCT画像検出器を含むことができる。X線源およびCT画像検出器は、画像データを取得するための前述のような線形加速器26および検出器78と同様にして動作する。画像データは、コンピュータ74に送信され、そこでは、患者の体の組織および器官の画像を生成するために処理される。
【0029】
放射線療法治療システム10は、患者14を支持する(図1に示す)治療台82などの患者サポートを含むこともできる。治療台82は、x、y、またはz方向の少なくとも1軸84に沿って移動する。本発明の他の実施形態では、患者サポートは、患者の体の任意の部分を支持するように適合されるデバイスとすることができる。患者サポートは、患者の体全体を支持しなければならないものに限定されない。システム10は、治療台82の位置を操作するように動作可能な駆動システム86を含むこともできる。駆動システム86をコンピュータ74によって制御することができる。
【0030】
図2および図3に示すコンピュータ74は、様々なソフトウェアプログラムおよび/または通信アプリケーションを動作させるためのオペレーティングシステムを含む。具体的には、コンピュータ74は、放射線療法治療システム10と通信するように動作可能なソフトウェアプログラム(1つまたは複数)90を含むことができる。ソフトウェアプログラム(1つまたは複数)90は、外部のソフトウェアプログラムおよびハードウェアからのデータを受信するように動作可能であり、データをソフトウェアプログラム(1つまたは複数)90に入力することができることに留意されたい。
【0031】
コンピュータ74は、医療従事者によってアクセスされるように適合された適切な任意の入力/出力デバイスを含むことができる。コンピュータ74は、プロセッサ、入出力インターフェース、および記憶デバイスまたはメモリなど、典型的なハードウェアを含むことができる。コンピュータ74は、キーボードおよびマウスなどの入力デバイスを含むこともできる。コンピュータ74はさらに、モニタなど、標準の出力デバイスを含むことができる。さらに、コンピュータ74は、プリンタおよびスキャナなどの周辺装置を含むことができる。
【0032】
コンピュータ74を、他のコンピュータ74および放射線療法治療システム10とネットワーク化することができる。他のコンピュータ74は、追加のかつ/または異なるコンピュータプログラムおよびソフトウェアを含むことができ、本明細書で説明したコンピュータ74と同一であることは必要とされない。コンピュータ74および放射線療法治療システム10は、ネットワーク94と通信することができる。コンピュータ74および放射線療法治療システム10は、データベース98およびサーバ102と通信することもできる。ソフトウェアプログラム90がサーバ102上に常駐することができることに留意されたい。
【0033】
ネットワーク94は、ネットワーキング技術またはトポロジ、あるいは技術およびトポロジの組合せに従って構築することができ、複数のサブネットワークを含むことができる。図3に示すコンピュータとシステムの間の接続は、ローカルエリアネットワーク(「LAN」)、広域ネットワーク(「WAN」)、公衆電話交換網(「PSTN」)、無線ネットワーク、イントラネット、インターネット、または他の適切な任意のネットワークを介して行うことができる。病院または医療介護施設では、図3に示すコンピュータとシステムの間の通信は、ヘルスレベルセブン(「HL7」)プロトコルまたは任意のバージョンを有する他のプロトコル、および/あるいは他の必要なプロトコルを介して行うことができる。HL7は、健康管理環境で電子データを交換するための異なるベンダからの2つのコンピュータアプリケーション(送信側と受信側)の間のインターフェースの実装形態を指定する標準プロトコルである。HL7により、健康管理施設は、異なるアプリケーションシステムからの基本のデータセットを交換できるようになる。具体的には、HL7は、交換されるデータ、相互に交換するタイミング、およびアプリケーションに対するエラーの通信を定義することができる。そのフォーマットは、概して包括的な性質のものであり、行われるアプリケーションの必要性を満たすように構成することができる。
【0034】
図3に示すコンピュータとシステムの間の通信は、任意のバージョンを有する医用画像通信規格(「DICOM:Digital Imaging and Communications in Medicine(医学におけるデジタル描写法および通信)」)プロトコルおよび/または他の必要なプロトコルを介して行うことができる。DICOMは、NEMAにより開発された国際的な通信規格であり、医用機器の異なる部分間で医用画像に関連したデータを転送するのに使用されるフォーマットを定義する。DICOM RTは、放射線療法データに特有の標準を示す。
【0035】
図3の両方向の矢印は、概して、ネットワーク94と、図3に示すコンピュータ74およびシステム10のいずれか1つとの間の両方向通信および情報転送を表す。しかし、何らかの医療用でコンピュータ化された機器の場合、1方向だけの通信および情報転送が必要となってよい。
【0036】
ソフトウェアプログラム90は、放射線療法治療プロセスの機能を実行するように互いに通信する、図4に示す複数のモジュールを含む。様々なモジュールは、2つの画像の変形マップを生成し、それらの画像のうち1つの様々な修正に応じて変形マップを修正するように、互いに通信する。概して、変形プロセスは、施療を開始する前に行う。以下で説明するモジュールすべてが通信し上述の様々な機能を実行するわけではないことに留意されたい。
【0037】
ソフトウェアプログラム90は、治療計画モジュール106を含み、その治療計画モジュール106は、医療従事者がシステム10に入力したデータに基づいて、患者14のための治療計画を生成するように動作可能である。そのデータは、患者14の少なくとも一部分の1つまたは複数の画像(例えば、計画画像および/または治療前画像)を含む。治療計画モジュール106は、治療を複数のフラクションに分割し、医療従事者が入力した処方に基づいて、各フラクションまたは治療に関する放射線量を決定する。治療計画モジュール106はまた、ターゲット38の周りに描かれた様々な輪郭に基づいて、ターゲット38に関する放射線量を決定する。複数のターゲット38が同じ治療計画中に存在し含まれてよい。
【0038】
ソフトウェアプログラム90はまた、画像モジュール110を含み、その画像モジュール110は、患者14の少なくとも一部分の画像を取得するように動作可能である。治療計画の引渡しの前に、画像モジュール110は、治療開始前に患者14の1つまたは複数の治療前画像を取得するように、CT撮像デバイスなどのオンボード画像デバイスに命令することができる。他のオフラインの撮像デバイスまたはシステムを使用して、非定量的CT、MRI、PET、SPECT、超音波、透過撮像、X線透視法、高周波ベースの定位など、患者14の治療前画像を取得することができる。取得した治療前画像を、患者14のレジストレーションのために、かつ/または1つまたは複数の計画画像と1つまたは複数の治療前画像との差を特定するために変形マップを生成するように、使用することができる。
【0039】
ソフトウェアプログラム90はまた、変形モジュール114を含むこともでき、その変形モジュール114は、それらの画像の変形マップを生成するために、画像モジュール110および治療計画モジュール106ならびに他の患者からの画像データと、治療計画モジュール106からのシステムデータなどのデータを受けるように動作可能である。変形モジュール114は、変形技法を使用して、施された治療すべての蓄積放射線量を判定することができる。
【0040】
変形マップを利用して、線量計算のために複数の画像を関連付けることができる。例えば、変形マップが、線量計算に有用な計画画像と、定性的な価値は有するが線量計算には直接有用ではないオンライン画像を関連付けることができる。次いで、こうした関係を利用して、より定量的な画像を、オンラインの定性的な形状またはより定量的でない画像に「再マップする」ことができる。その結果得られた再マップ画像は、第1の画像の定量的な利点を有するが、第2の画像に含まれるような更新された解剖学的情報も有するので、線量計算または定量的な用途のためには、計画画像またはオンライン画像のいずれの画像より適切になるはずである。これは、第1の画像(例えば、計画画像)がCT画像であり、第2の画像が定量的な画像の価値を欠く(例えば、MRI、PET、SPECT、超音波、または非定量的なCTなどの画像)場合など、様々な場合に有用である。患者14に放出された放射線量を判定するために、変形マップはまた、3D画像(例えば、計画画像または治療前画像)などの参照画像と、4D CT画像など、時間ベースの1連の画像を関連付けることもできる。
【0041】
変形モジュール114は、定量的な制限に代えて、またはそれに加えて、形状の歪み、欠点、および/または不完全さを修正することができる。例えば、解剖学的構造をよく表しているが形状の歪みを含む現在のMRI画像は、歪みを受けないCT画像に再マップすることができる。あるいは、複数の画像を使用して、解剖学的な変化を表しながら、同時に歪みを修正することができる。
【0042】
変形マップを使用して、計画画像の後で取得された患者画像上の放射線量を計算することができる。放出された複数のフラクションの線量を蓄積することも有用である。線量の物理的空間の位置に基づいて、線量を追加することができるが、他の方法では、それらの構造が位置を変更した場合でも線量を受けた構造に基づいて線量を追加するように、プロセスに変形方法を組み込む。変形モジュール114は、患者14が前に放出したフラクションから受けた放射線の線量を計算することができる。
【0043】
ターゲット38の周りに輪郭を限定する目的で、変形マップ生成することができる。ソフトウェアプログラム90は、画像上に1つまたは複数の輪郭を生成するように動作可能な輪郭モジュール118を含むことができる。一般に、医療従事者は、手動で、計画画像にターゲット38の周りに輪郭を限定する。こうしたプロセスは時間を浪費する。新しく取得した画像(例えば、治療前画像)は、限定された輪郭を有しない。輪郭を含む古い画像に基づいて新しい画像上に輪郭を生成することが望ましい。変形マップを使用して、古い画像から新しい画像に輪郭を転送することによって輪郭付けプロセスを助けることができ、品質保証の手段を提供しながら医療従事者のために時間を節約することができる。
【0044】
新しい画像(例えば、治療前画像)のために自動的または半自動的に輪郭を生成することができる。図5〜図10は、計画画像から新しく取得した画像上に輪郭を適用するための変形マップの使用を示す。こうしたプロセスは、初期の輪郭セットを有する計画画像またはベースラインの患者画像で始める。図5は、患者の前立腺の周りの輪郭122および直腸の周りの輪郭126を有する計画KVCTを示す。品質保証または適応療法のいずれかを行っているときに、輪郭がまだ利用可能ではない新しい画像を有することが一般的である。医療従事者に手動で新しい画像に輪郭付けをするように要求するのではなく、変形可能な画像レジストレーションを実施し、次いで、その変形結果を、新しい患者の解剖学的構造を反映するように元の輪郭セットを変更するための基礎として使用することが、より迅速かつより整合性があるものになることができる。図6は、図5に示す同じ患者の治療前画像を示す。その画像は、変形可能なレジストレーションを使用して、自動的に生成された輪郭を評価する目的で、患者の前立腺の周りの手動で描かれた輪郭130および直腸の周りの手動で描かれた輪郭134を含む。図7は、図5の画像と図6の画像の間の変形可能なレジストレーションから得られる変位ベクトルを示す。図8は、前立腺の周りに自動的に生成された輪郭138および直腸の周りに自動的に生成された輪郭142を示し、比較の目的で、手動で描かれた輪郭130および134も示す。画像の直腸部分に注目すると、手描きの輪郭134が変形可能なレジストレーションのための制約として使用される場合は、その結果得られる、図5の画像と図6の画像の間の変形可能なレジストレーションが、図9および図10に示される。前立腺の周りの新しく追加された輪郭146(破線)は、手動で描かれた輪郭130によりよく似ている。同様に、直腸の周りの新しく追加された輪郭150(破線)は、手動で描かれた輪郭134によりよく似ている。手描きの輪郭は再現不能という欠点を有することがあるが、自動的に生成された輪郭は最初の輪郭の原理を後続の輪郭の生成に適用する際に、より整合性がある可能性があるということが一般に知られている。
【0045】
画像および輪郭の以前に利用可能であった組に基づいて、新しく利用可能な画像のための輪郭を生成するために、テンプレートベースの輪郭付けアルゴリズムと同様のファミリーが開発されてきた。こうしたテンプレートベースのアルゴリズムは、前の患者画像および輪郭に基づいて、あるいは場合によっては、標準のまたはアトラス患者画像および輪郭に基づいて、新しい患者画像を輪郭付けすることができる。これは、自動的な日々の輪郭をそれぞれが有する日々の画像で、線量を蓄積する手段として適応療法のために実施することができる。変形ベースの輪郭付けまたはテンプレートベースの輪郭付けを、放射線療法品質保証および適応療法に対して適用することがこの発明の一態様である。この態様では、本発明は、これらの技法を、画像誘導放射線療法中に生ずる特定の豊富な画像データおよびタイプに適用する。具体的には、これは、輪郭の組が画像の1つに対して存在するに過ぎない可能性のある、同じ患者の複数の画像変形ベースまたはテンプレートベースの輪郭付けを含む。これらの複数の患者画像は、各画像が異なる日に撮られる可能性があるオンラインまたは室内患者撮像システムの使用から生じてよく、あるいは、これらの画像は、呼吸フェーズなど、運動のフェーズを各画像が表す、CTスキャナなどの「4D」撮像システムから導出される可能性がある。オンラインまたは室内撮像システムは、参照画像と同じ、同様の、または異なる様式であることにも留意されたい。例えば、参照画像は、CT画像であるかもしれないが、オンライン画像は、CT画像、コーンビームCT画像、メガボルトCT画像、MRI画像、超音波画像、または異なるシステムまたはデバイスによって生成された画像とすることができる。これらの輪郭付け技法を品質保証および適応療法の用途に移植することにより、画像の輪郭付けから相当な量の時間を節約することが可能になり、この方法はまた、同じ患者の複数の画像(異なる時間に撮られたか、または異なるフェーズを表す)にわたり輪郭の整合性を改善することもできる。
【0046】
このプロセスの他の利点は、生成された輪郭が変形プロセスの妥当性検査を実現することである。生成された輪郭が、手動で描くであろうはずのものに近い輪郭を反映する場合には、変形プロセスが妥当であることを示し、一方、自動的な輪郭があまり適切ではない場合、おそらく変形が適切ではないことが医療従事者に示されるが、手動の輪郭を確認し誤りまたは不整合性を検査する機会もまた医療従事者に提供される。本発明の他の態様では、変形ベースの輪郭を適応プロセスのための輪郭の素案として使用し、オンライン画像のための所望の輪郭を反映するように手動で編集することができる。次いで、それを行うときに、変形プロセスを再度実行して、最初の輪郭を手動で編集した自動的な輪郭に適合させるように変形マップに制約を課すことができ、これにより、残りの画像を通して直接整合性のある結果が得られるようになる。
【0047】
上記の変形プロセスは、ある画像を他の画像にレジストレーションするという状況で説明したが、2つ以上の画像の組を、1つまたは複数の画像の他の組に変形可能にレジストレーションすることで、動作することもできる。例えば、1つのMRI画像およびCT画像をそれぞれの対が含む2対の画像がある場合、変形マップは、MRIがより多くの情報を有する部位で2つのMRI画像を共に、またCTがより多くの情報を有する部位でCT画像を共にレジストレーションすることができる。次いで、これらの変形を合成することができる。あるいは、MRI画像および変形における形状の歪み、欠点、および/または不完全さを修正するようにCT変形マップを使用し、次いで、軟組織の運動をより的確に分析するためにMRI変形マップを使用して、その歪み、欠点、および/または不完全さを修正するためなど、画像間の変形マップを共に使用することができる。解剖学的構造の寸法、形状、および内容物のような情報を示す変形技法を適用することによって、不良な画像をより良く理解し、したがって、改善するので、一般的な意味では、こうしたプロセスは、変形により撮像の改善を可能にする。こうした情報を、画像の再構築、変更、または画質向上プロセスに組み込むことができる。
【0048】
ソフトウェアプログラム90はまた、施療モジュール154も含み、それは、放射線療法を治療計画に従って患者14に施すように、放射線療法治療システム10に命令するように動作可能である。施療モジュール154は、放射線を患者14に放出するように命令を生成し、ガントリ18、線形加速器26、変調デバイス34、および駆動システム86に命令を伝達することができる。それらの命令は、治療計画に指定されるように放射線ビーム30を適切なターゲットに適切な量だけ放出するように、ガントリ18、変調デバイス34、および駆動システム86の必要な運動を調整する。
【0049】
施療モジュール154はまた、治療計画によって指定された処方に適合するように、放出すべき放射線ビーム30の適切なパターン、位置、および強度を計算する。放射線ビーム30のパターンは、変調デバイス34によって、より具体的には、マルチリーフコリメータの複数のリーフの運動によって生成される。施療モジュール154は、治療パラメータに基づいて、放射線ビーム30のための適切なパターンを生成するように、標準的な、所定のまたはテンプレートのリーフパターンを使用することができる。施療モジュール154はまた、現在の患者データを比較して放射線ビーム30に対するパターンを決定するために、アクセス可能な典型的な症例に対するパターンのライブラリを含むことができる。
【0050】
図11は、変形マップに制約を課す方法の流れ図を示す。医療従事者が、患者14の少なくとも一部分の1つまたは複数の画像(例えば、計画画像)の取得を開始する(200で)。次に、医療従事者は、1つまたは複数の輪郭付けまたは他の特定用ツールを使用して、患者14の1つまたは複数の画像において1つまたは複数の構造を特定または限定する(204で)。限定された構造は、典型的には、1つまたは複数の画像のターゲット38である。医療従事者は、変形ベースの限定された構造を作り出すために、限定された構造を一方の画像から他方の画像に関連付けるように、変形モジュール114によって前に取得した2つ以上の画像間の変形マップの生成を開始する(208で)。医療従事者は、変形ベースの限定された構造を変更し(212で)、変更された変形ベースの限定された構造に基づいて、変形マップを更新するために、変形モジュール114を開始することができる(216で)。
【0051】
図12は、変形マップに制約を課す方法の流れ図を示す。医療従事者が、患者14の少なくとも一部分の1つまたは複数の画像(例えば、計画画像)の取得を開始する(250で)。次に、医療従事者は、1つまたは複数の輪郭付けまたは他の特定用ツールを使用して、患者14の1つまたは複数の画像において1つまたは複数の構造を特定または限定する(254で)。限定された構造は、典型的には、1つまたは複数の画像のターゲット38である。医療従事者は、変形ベースの限定された構造を作り出すために、限定された構造を一方の画像から他方の画像に関連付けるように、変形モジュール114によって前に取得した2つ以上の画像間の変形マップの生成を開始する(258で)。医療従事者は、変形ベースの限定された構造を変更し(262で)、変更された変形ベースの限定された構造に基づいて、変形マップを更新するために、変形モジュール114を開始することができる(266で)。更新された変形マップに基づいて、輪郭モジュール118は、一方の画像上に輪郭を生成する(270で)。
【0052】
図13は、変形マップに制約を課す方法の流れ図を示す。医療従事者が、患者14の少なくとも一部分の1つまたは複数の画像(例えば、計画画像)の取得を開始する(300で)。次に、医療従事者は、第1の輪郭セットまたは他の特定用ツールを使用して、1つまたは複数の構造を患者14の1つまたは複数の画像において特定または限定する(304で)。限定された構造は、典型的には、1つまたは複数の画像のターゲット38である。医療従事者は、第2の輪郭セットまたは他の特定用ツールを使用して、患者14の1つまたは複数の画像において1つまたは複数の構造を特定または限定するか(308で)あるいはさらに限定する。医療従事者は、輪郭セット間の違いを特定するために、第1の輪郭セットと第2の輪郭セットの間の変形マップの生成を開始する(312で)。
【0053】
本発明の様々な特性および利点が以下の特許請求の範囲に記載される。
【図面の簡単な説明】
【0054】
【図1】本発明を具体化する放射線療法治療システムの斜視図である。
【図2】図1に示す放射線療法治療システムで使用することができるマルチリーフコリメータの斜視図である。
【図3】図1の放射線療法治療システムの概略図である。
【図4】本発明の一実施形態に従って変形マップに制約を課す方法の、放射線療法治療システムで使用されるソフトウェアプログラムの概略図である。
【図5】輪郭を含む、患者の計画画像である。
【図6】手動で描かれた輪郭を含む、患者の治療前画像である。
【図7】図5〜図6の画像間の変形マップである。
【図8】図7に示す変形マップを適用した後の、輪郭を含む、結果として得られた患者の画像である。
【図9】制約として図6の手動で描かれた輪郭を使用する変形マップである。
【図10】図9に示す変形マップを適用した後の、輪郭を含む、結果として得られた患者画像である。
【図11】本発明の一実施形態による、変形マップに制約を課す方法の流れ図である。
【図12】本発明の一実施形態による、変形マップに制約を課す方法の流れ図である。
【図13】本発明の一実施形態による、変形マップに制約を課す方法の流れ図である。

【特許請求の範囲】
【請求項1】
2つの画像間の変形マップを生成するステップと、
前記画像の一方において限定された構造を特定するステップと、
変形ベースの限定された構造を作り出すために、前記限定された構造を前記一方の画像から他方の画像上に関連付けるように、前記変形マップを適用するステップと、
前記変形ベースの限定された構造を変更するステップと、
前記変形ベースの限定された構造を変更する前記ステップに応答して前記変形マップを更新するステップと、
を含む変形マップに制約を課す方法。
【請求項2】
前記変形ベースの限定された構造を変更するステップは手動で行われる、請求項1に記載の方法。
【請求項3】
変形マップに制約を課す前記方法は、放射線療法治療計画の計画および引渡し中に行われる、請求項1に記載の方法。
【請求項4】
前記画像は、患者の少なくとも一部分のコンピュータによって生成される画像であり、前記コンピュータによって生成される画像は、医用撮像デバイスを使用して取得される、請求項1に記載の方法。
【請求項5】
前記更新された変形マップに基づいて、輪郭を生成するステップをさらに含む、請求項1に記載の方法。
【請求項6】
前記変形マップに基づいて、前記患者の蓄積線量を判定するステップをさらに含む、請求項1に記載の方法。
【請求項7】
前記変形マップに基づいて前記画像の一方を再マップするステップをさらに含む、請求項1に記載の方法。
【請求項8】
前記画像の一方に前記変形マップを適用することによって新しい画像を生成するステップをさらに含む、請求項1に記載の方法。
【請求項9】
新しい画像を生成するために前記2つの画像と前記変形マップを合成するステップをさらに含む、請求項1に記載の方法。
【請求項10】
前記画像が異なる撮像様式から生成される、請求項1に記載の方法。
【請求項11】
前記画像が体積の時系列の組に基づいている、請求項1に記載の方法。
【請求項12】
2つの画像間の変形マップを生成するステップと、
前記画像の一方において限定された構造を特定するステップと、
変形ベースの限定された構造を作り出すために、前記限定された構造を前記一方の画像から他方の画像上に関連付けるように、前記変形マップを適用するステップと、
前記変形ベースの限定された構造を変更するステップと、
前記変形ベースの限定された構造を変更する前記ステップに応答して前記変形マップを更新するステップと、
前記更新された変形マップに基づいて輪郭を生成するステップと、
を含む変形マップに制約を課す方法。
【請求項13】
前記変形ベースの限定された構造を変更するステップは、手動で行われる、請求項12に記載の方法。
【請求項14】
変形マップに制約を課す前記方法は、放射線療法治療計画の計画および引渡し中に行われる、請求項12に記載の方法。
【請求項15】
前記画像が、患者の少なくとも一部分のコンピュータによって生成される画像であり、前記コンピュータによって生成される画像は、医用撮像デバイスを使用して取得される、請求項12に記載の方法。
【請求項16】
前記変形マップに基づいて、前記患者の蓄積線量を判定するステップをさらに含む、請求項12に記載の方法。
【請求項17】
前記変形マップに基づいて、前記画像の一方を再マップするステップをさらに含む、請求項12に記載の方法。
【請求項18】
前記画像の一方に前記変形マップを適用することによって新しい画像を生成するステップをさらに含む、請求項12に記載の方法。
【請求項19】
前記画像は、異なる撮像様式から生成される、請求項12に記載の方法。
【請求項20】
前記画像は体積の時系列の組に基づいている、請求項12に記載の方法。
【請求項21】
第1の輪郭セットを生成するステップと、
第2の輪郭セットを生成するステップと、
前記第1の輪郭セットと前記第2の輪郭セットの間の変形マップを生成するステップと、
を含む変形マップに制約を課す方法。
【請求項22】
前記第1の輪郭セットおよび前記第2の輪郭セットの1つが画像を含む、請求項21に記載の方法。
【請求項23】
前記画像は、患者の少なくとも一部分のコンピュータによって生成される画像であり、前記コンピュータによって生成される画像は、医用撮像デバイスを使用して取得される、請求項22に記載の方法。
【請求項24】
前記画像の一方に前記変形マップを適用することによって新しい画像を生成するステップをさらに含む、請求項22に記載の方法。
【請求項25】
前記画像が、異なる撮像システムから生成される、請求項22に記載の方法。
【請求項26】
前記画像が体積の時系列の組に基づいている、請求項22に記載の方法。
【請求項27】
変形マップに制約を課す前記方法は、放射線療法治療計画の前記計画および引渡し中に行われる、請求項21に記載の方法。
【請求項28】
前記第1の輪郭セットは第1の関心領域を限定しており、前記第2の輪郭セットは第2の関心領域を限定しており、変形ベースの限定された関心領域を作り出すために、前記第1の関心領域を前記第2の関心領域上に関連付けるように、前記変形マップを適用するステップをさらに含む、請求項21に記載の方法。
【請求項29】
前記変形ベースの限定された関心領域を変更するステップをさらに含む、請求項28に記載の方法。
【請求項30】
第1の撮像システムを使用して第1の画像を取得するステップと、
前記第1の撮像システムとは異なる第2の撮像システムを使用して第2の画像を取得するステップと、
第2の画像の歪み、欠点、および不完全さのうち1つを修正するために、前記第1の画像と前記第2の画像の間の変形マップを生成するステップと、
を含む変形マップに制約を課す方法。
【請求項31】
前記第1の画像において限定された構造を特定するステップと、
変形ベースの限定された構造を作り出すために、前記限定された構造を前記第1の画像から前記第2の画像上に関連付けるように、前記変形マップを適用するステップと、
前記変形ベースの限定された構造を変更するステップと、
前記変形ベースの限定された構造を変更する前記ステップに応答して、前記変形マップを更新するステップとをさらに含む、請求項30に記載の方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate


【公表番号】特表2009−507524(P2009−507524A)
【公表日】平成21年2月26日(2009.2.26)
【国際特許分類】
【出願番号】特願2008−523016(P2008−523016)
【出願日】平成18年7月21日(2006.7.21)
【国際出願番号】PCT/US2006/028536
【国際公開番号】WO2007/014092
【国際公開日】平成19年2月1日(2007.2.1)
【出願人】(506024320)トモセラピー・インコーポレーテッド (27)
【Fターム(参考)】