説明

太陽電池の導光構造、太陽電池ユニット及び太陽電池モジュール

【課題】太陽光を効率的に太陽電池に導光できる太陽電池の導光構造を提供する。
【解決手段】太陽光が入射される受光層210と、受光層210から入射された太陽光を乱反射光として乱反射させる乱反射層230と、受光層210と乱反射層230との間に介在されて、乱反射光を太陽電池素子に導光する導光層220とを備える太陽電池の導光構造である。受光層210は、導光層220に対して所定の傾斜角度を有し、入射される太陽光を導光層220側に反射させる受光反射面212と、受光反射面212で反射された太陽光を導光層220へ入射させる入射口214と、受光層210と導光層220との境界面で、入射口以外の箇所に形成されて、導光層220内の乱反射光を反射させる導光反射面216とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、太陽電池の導光構造、その導光構造を備える太陽電池ユニット、及びそのユニットを複数組み合わせた太陽電池モジュールに関するものである。特に、太陽光を効率的に太陽電池に導光できる導光構造に関するものである。
【背景技術】
【0002】
地球温暖化や環境汚染に対する関心が高まる中で、二酸化炭素や汚染物質の排出がない太陽電池の普及が進められている。この太陽電池のユニットとして、太陽電池素子に太陽光を効率的に導光するための導光構造を組み合わせたものがある(例えば、特許文献1)。
【0003】
この技術は、受光層、導光層、中間層、乱反射層を順次積層したシート状の集光器に係る。高屈折率物質からなる導光層は、低屈折率物質からなる受光層及び中間層で挟まれる。導光層の表面の一部には、受光層の設けられていない箇所があり、その箇所に太陽電池素子が配置される。一方、乱反射層には、多数の気泡が内包されている。受光層から入射した光は、乱反射層の気泡で種々の方向に乱反射され、導光層に入射される。その際、導光層の内部では、その界面に臨界角以上の入射角で進入した光は、導光層内で反射を繰り返し、導光層内に閉じ込められる。そして、この導光層内の光は、導光層内での反射を繰り返すうちに、太陽電池素子に入射される。
【0004】
このような集光器によれば、高価な太陽電池素子の面積よりも大きな面積に照射される太陽光を太陽電池素子に導光することができ、太陽電池素子に照射される太陽光のエネルギー密度を高めることができるとされる。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】国際公開WO2006/035698号 図1
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかし、上記の従来技術においても、太陽電池素子に十分な導光が行われているとは言い難い。これは、一旦受光層に入射された太陽光のうち、太陽電池素子に到達する前に、再度、受光層から外部に漏出する光量が多いためと考えられる。つまり、乱反射層で乱反射された光が導光層内に入射されても、所定の臨界角未満の入射角で導光層と受光層の界面に進入する光が相当程度あり、そのような光はほぼ全て受光層から外部に漏出してしまう。そのため、受光層に入射した太陽光の一部しか太陽電池素子に入射させることができない結果になると考えられる。
【0007】
本発明は、上記の事情に鑑みてなされたもので、その目的の一つは、太陽光を効率的に太陽電池に導光することができる太陽電池の導光構造を提供することにある。
【0008】
また、本発明の他の目的は、上記導光構造を備える太陽電池ユニット及び太陽電池モジュールを提供することにある。
【課題を解決するための手段】
【0009】
本発明の太陽電池の導光構造は、太陽光が入射される受光層と、受光層から入射された太陽光を乱反射光として乱反射させる乱反射層と、受光層と乱反射層との間に介在されて、前記乱反射光を太陽電池素子に導光する導光層とを備える。この受光層は、受光反射面と、入射口と、導光反射面とを備える。受光反射面は、前記導光層に対して所定の傾斜角度を有し、入射される太陽光を導光層側へ反射させる。入射口は、この受光反射面で反射された太陽光を導光層へ入射させる。そして、導光反射面は、受光層と導光層との境界面で、前記入射口以外の箇所に形成されて、導光層内の乱反射光を反射させる。
【0010】
この構成によれば、受光反射面により、受光層に入射する太陽光を効率的に入射口へと導くことができる。また、入射口から導光層を通って乱反射層で乱反射された光は、その大半が導光反射面で反射されて導光層内に閉じ込められ、ごく一部の乱反射光しか入射口から外部に漏出しない。そのため、受光層に入射した光の多くを太陽電池素子に導光することができる。
【0011】
本発明の実施形態として、前記乱反射層における受光層とは反対側の面に底部反射面を備えることが挙げられる。
【0012】
この構成によれば、導光構造における受光層とは反対側の面から光が漏出することを抑制できる。
【0013】
本発明の実施形態として、前記導光層の側面に側方反射面を備えることが挙げられる。
【0014】
この構成によれば、導光構造における側面から光が漏出することを抑制できる。
【0015】
本発明の実施形態として、導光層における乱反射層側の面に太陽電池素子の取付面を備えることが挙げられる。
【0016】
この構成によれば、受光層と太陽電池素子とを重ねることができる。それにより、受光層と太陽電池素子とを並列した場合に比べて、受光層の面積を大きくしながら、導光構造に太陽電池素子を組み合わせたモジュールの全体面積を小さくできる。
【0017】
本発明の実施形態として、前記取付面が、導光層の長手方向の中央部に設けられていることが挙げられる。
【0018】
この構成によれば、取付面が導光層の長手方向の中央部からずれている場合に比べて、受光層に入射した光が太陽電池素子に達するまでの導光層内での伝播長及び反射回数を減少できるため、光の損失を低減し、導光効率を高めることができる。
【0019】
一方、本発明の太陽電池ユニットは、本発明の太陽電池の導光構造と、前記取付面に固定された太陽電池素子とを備えることを特徴とする。
【0020】
この構成によれば、本発明の導光構造により、効率的に太陽電池素子に太陽光を導光することができる。
【0021】
さらに、本発明の太陽電池モジュールは、複数の太陽電池ユニットが並列された太陽電池モジュールに係る。この太陽電池ユニットは、本発明の太陽電池の導光構造と、前記取付面に固定された太陽電池素子とを備える。そして、隣接する太陽電池ユニット同士の太陽電池素子の位置がずれるように各太陽電池ユニットが並列されていることを特徴とする。
【0022】
太陽電池素子の光電変換効率は、一般に素子の温度上昇に伴って低下する。太陽電池素子に太陽光が集光されると温度上昇が起こるため、複数の太陽電池ユニットを並列した際、各ユニットの太陽電池素子が隣接すると、さらに個々の素子の温度上昇が促進されて光電変換効率が低下する虞がある。そのため、隣接するユニットの太陽電池素子の位置がずれるように各ユニットを並列すれば、個々の太陽電池素子からの放熱が効果的に行われ、光電変換効率の低下を抑制することができる。
【0023】
この太陽電池モジュールの実施形態として、導光層の幅方向における中央部からずれた同じ位置に太陽電池素子を備える複数の太陽電池ユニットを用いる。そして、隣接する太陽電池ユニットの向きを交互に変えて並列することで、隣接する太陽電池ユニット同士の太陽電池素子の位置がずれるようにすることが挙げられる。
【0024】
この構成によれば、隣接する太陽電池ユニット同士の太陽電池素子の位置がずれるような構成の太陽電池モジュールを、太陽電池素子の取付位置が共通する1種類のユニットにて実現することができる。
【発明の効果】
【0025】
本発明の太陽電池の導光構造によれば、太陽光を効率的に太陽電池に導光することができる。また、本発明の太陽電池ユニットや太陽電池モジュールによれば、太陽電池素子の受光面積よりも大きい面積に照射される太陽光を太陽電池素子に導光して効率的に発電できる。
【図面の簡単な説明】
【0026】
【図1】本発明の実施形態1に係る導光構造を示す概略構成図である。
【図2】図1の導光構造の製造工程を示す説明図である。
【図3】本発明の実施形態2に係る導光構造を示す概略構成図である。
【図4】本発明の実施形態3に係る導光構造を示す概略構成図である。
【図5】本発明の実施形態4に係る導光構造を示す概略構成図である。
【図6】本発明の実施形態5に係る導光構造を示す概略構成図である。
【図7】図6のユニットを並列したモジュールの平面図である。
【図8】本発明の実施形態6に係るモジュールの平面図である。
【図9】本発明の実施形態7に係るモジュールの平面図である。
【発明を実施するための形態】
【0027】
以下、本発明の実施の形態を図に基づいて説明する。以下の説明において、実施形態2以降の各実施形態は、実施形態1との相違点を中心に説明し、その他の構成は実施形態1と共通であるため説明を省略することとする。また、各図において、共通する部材には同一符号を付している。
(実施形態1)
【0028】
[太陽電池ユニットの構成]
<全体構成>
図1に示すように、この太陽電池ユニットは、太陽電池素子100と、同素子100に太陽光を導光するための導光構造200とを備える細長いシート状のものである。そのうち、導光構造は200、太陽光の入射側から順次、受光層210、導光層220、及び乱反射層230が重ねられてなり、さらに必要に応じて乱反射層230と導光層220との間に中間層(図示略)を備えてもよい。受光層210に入射した太陽光は、導光層220を通って乱反射層230で乱反射される。この乱反射光の大半は導光層220内に閉じ込められて反射を繰り返し、太陽電池素子100に入射されて光電変換される。以下、本例のユニットの各構成をより詳しく説明する。
【0029】
<太陽電池素子>
太陽電池素子100は、太陽光を電気エネルギーに変換できる物であれば良く、公知の種々の素子が利用できる。例えば、シリコン系、化合物系、有機物系などの太陽電池がある。シリコン系太陽電池には、単結晶又は多結晶の結晶系シリコン太陽電池や、アモルファスシリコンを薄膜状に成膜した薄膜系シリコン太陽電池などがある。化合物系太陽電池には、銅・インジウム・セレンなどを原料とするCIS系太陽電池や、ガリウム砒素などの化合物半導体を用いたGaAs系太陽電池のほか、Cu2ZnSnS4(CZTS)系太陽電池やCdTe-CdS系太陽電池などがある。特に、GaAs系太陽電池は素子に入射される光エネルギーの増加に対する光電変換効率の上昇率が高く好ましい。さらに、有機物系太陽電池には、色素増感型太陽電池などがある。
【0030】
通常、素子100の形態としては、板状又は薄膜状のものが好適に利用される。本例のユニットでは、導光層220上面における一端側の一部領域を太陽電池素子100の取付面218とし、受光層210に隣接して矩形膜状の太陽電池素子100が配置される構成となっている。導光層220内で反射を繰り返して導かれてきた光は、取付面218を介して太陽電池素子100に入射される。
【0031】
<導光構造>
(受光層)
受光層210は、太陽光を効率的に導光層220側へ入射させるための層で、受光反射面212、入射口214、及び導光反射面216を備える。さらに、必要に応じて、受光反射面212や入射口214の表面に防汚コーティング(図示略)を施しても良い。
【0032】
《受光反射面》
受光反射面212は、太陽光を反射させて導光層220側に導くための反射面である。この受光反射面212は、導光層220に対して所定の傾斜角度を備え、想定される太陽光の入射角度に対して、極力広範囲の太陽光が入射できるような角度に形成されて、入射された太陽光を全反射して導光層220側に導くように構成されている。例えば、導光層220に対する受光反射面212の傾斜角度は60〜90°が好ましい。また、受光反射面212には、同反射面212を境界として境界内外に屈折率の異なる物質を配することで形成しても良いが、反射率が高いコーティング、特に反射率99%以上の全反射コーティングを施すことが好適である。
【0033】
本例では、底辺が上辺よりも狭い倒立台形状の断面を有する複数の溝を受光層210に形成し、この溝の側面に受光反射面212を形成している。このようなV型配置の受光反射面212を複数対並列することで、太陽光を溝内の一方の受光反射面212で反射させて直接導光層220に入射させたり、溝内で対向する受光反射面212間での反射を介して導光層220に入射させることができる。それにより、受光層210に入射する太陽光を効率的に導光層220に導くことができる。
【0034】
《入射口》
入射口214は、受光反射面212で反射された光を導光層220に入射させるための窓である。上述した倒立台形状の溝の底面に相当する箇所には、受光反射面212に形成した高反射率のコーティングが施されていない。そのため、受光反射面212で反射されてきた太陽光又は直接入射口214に入射する太陽光は、入射口214を介して導光層220に入射される。
【0035】
受光層210の面積全体に占める入射口214の面積の比率は、小さければ一旦導光層220内に入射した光を外部に漏出する割合を小さくできるが、あまり小さいと導光層220内に入射できる光量が少なくなるため、10〜50%程度が好適である。
【0036】
《導光反射面》
一方、導光反射面216は、入射口214から導光層220内に入射した光のうち、受光層210側に向かう光を導光層220の内側に反射させて、極力導光層220内に閉じ込めるための反射面である。この導光反射面216は、受光層210と導光層220との境界面において、入射口214のない領域に形成されている。この導光反射面216も受光反射面212と同様のコーティングを利用することが好ましい。
【0037】
(導光層)
導光層220は、受光層210から導かれた光を可及的に内部に閉じ込め、太陽電池素子100に導くための層である。入射口214から導光層220に入ってきた太陽光は、一旦、次述する乱反射層230に到達して乱反射される。この乱反射光の大半は、導光反射面216で全反射され、再度乱反射層230側に進行する。そのため、入射口214から導光層220に入ってきた光の大半は、導光反射面216と乱反射層230との間で反射を繰り返すうちに、取付面218から太陽電池素子100に入射されることになる。一方、乱反射光のうち、入射口214に向かった一部の光は外部に漏出してしまうが、この漏出する光量は極僅かであるため、高い集光率とすることができる。
【0038】
また、必要に応じて、導光層220のうち、太陽電池素子100が取り付けられる取付面218と対向する箇所には、傾斜反射面219を設けることが好適である。この傾斜反射面219を設けておくことで、導光層220内の光を取付面218側に向けて反射させることで、効率的に集光することができる。
【0039】
(乱反射層)
乱反射層230は、導光層220を透過してきた光を乱反射させ、種々の方向に光を進行させることで、入射口214から漏出する光の量を低減する機能を有する。この乱反射層230は、光を乱反射できるように導光層220との境界面が微細な凹凸状に形成されていることが好ましい。この凹凸は、乱反射層230の境界面にブラスト処理を施したり、平面状に成形した乱反射層230にローラで凹凸を形成したり、さらにはモールドにより当初から粗面化した表面を形成することにより実現できる。その他、特許文献1に示すように、気泡を内包した層を乱反射層230としても良い。
【0040】
(中間層)
さらに、必要に応じて、導光層220と乱反射層230との間に中間層を介在させて、導光層220と中間層との境界面で、導光層220内の光のうち、所定の臨界角以上の入射角で境界面に進入する光を全反射するようにしてもよい。つまり、乱反射層230で乱反射された光は、中間層を透過して導光層220に入射し、その入射光の大半が導光層220内に閉じ込められることになる。中間層を設ける場合、導光層220と中間層の屈折率は、「中間層<導光層」となるようにする。
【0041】
[太陽電池ユニットの製造方法]
上記ユニットの製造は、例えば、図2に示すように行えば良い。以下の製造過程において、受光層、導光層、乱反射層、及び中間層は、各種樹脂やガラスで構成できる。樹脂の具体例としては、完全フッ素化ポリマー、ポリメタクリル酸メチル、ポリカーボネート、ポリスチレン、アクリル、ポリアミド、ポリエステル及びこれらを主成分とする共重合体、並びにこれらの混合物が挙げられる。ガラスとしては、石英ガラスが好適に利用できる。
【0042】
まず、公知の成形方法にて、図2(a)に示すように、断面において、二等辺三角形状の突条が一定の間隔をあけて複数並列された基部211を成形する。この基部211では、突条の間に倒立台形状の溝が形成されることになる。
【0043】
次に、突条の表面、つまり基部211の上面のうち、溝の底面以外の箇所に公知の成膜方法にて全反射コーティングを行う。この全反射コーティングが受光反射面212となる(図2(b))。
【0044】
次に、基部211の上面のうち、突条の裏面に相当する箇所に全反射コーティングを施す。この全反射コーティングが導光反射面216となる(図2(c))。つまり、基部の上下面のうち、溝の底面に相当する箇所の表裏には全反射コーティングが施されておらず、その非コーティング箇所が入射口214となる。
【0045】
そして、上述したコーティングを施した基部211を、予め作製しておいた導光層220と乱反射層230に接着する。本例では、受光層の溝部分は空洞になっているが、この溝部分を導光構造の光学性能に影響を及ぼさない充填剤で埋めても良い。
【0046】
導光層220と乱反射層230の作製は、特許文献1に示されるように、樹脂の共押出などにより行うことができる。
【0047】
[太陽電池ユニットの作用効果]
本発明の太陽電池ユニットによれば、受光層210の受光反射面212により、効率的に導光層220に光を導くことができる。また、一旦、入射口214から導光層220に入った光は、乱反射層230で乱反射され、導光反射面216の存在により、ごく一部の光しか入射口214から外部に漏出しない。そのため、導光層220内に閉じ込めることができる光の割合を多くすることができ、太陽電池素子100の面積よりも大面積に入射する太陽光を効率的に太陽電池素子100に集光することができる。
【0048】
また、この太陽電池ユニットは、導光機構により太陽電池素子100に光を導光する構成であるため、集光のためのレンズや、太陽の追尾機構も必要としない。
(実施形態2)
【0049】
上記実施形態1の構成に加え、図3に示すように、乱反射層230の底面(受光層210と反対側)にも全反射コーティングを施して底部反射面240を形成することが好ましい。
【0050】
この底部反射面240により、乱反射層230から導光層220とは反対側に向かう光の漏出を抑制して、より効率的に太陽電池素子100への集光を実現することができる。
(実施形態3)
【0051】
上記実施形態1の構成に加え、図4に示すように、導光層220の側面にも全反射コーティングを施して側方反射面250を形成することが好ましい。この側方反射面250は、さらに乱反射層230の側面や、中間層がある場合には、中間層の側面にまで及ぶように形成することが好ましい。
【0052】
この側方反射面250の形成により、導光層220(乱反射層230又は中間層)の側面からの光の漏出を抑制して、より効率的に太陽電池素子100への集光を実現することができる。もちろん、上記底部反射面240と側方反射面250の双方を備えることが一層好ましい。
(実施形態4)
【0053】
実施形態1では、導光層220の上面において、受光層210に隣接して太陽電池素子100を設けたが、図5に示すように、導光層220の下面において、乱反射層230に隣接して太陽電池素子100を設けても良い。
【0054】
この構成によれば、太陽電池素子100と受光層210の一部を重複した構成とできる。そのため、受光層210から入射した光は、導光層220での反射を経て太陽電池素子100に到達するのみならず、導光層220を透過して反射を経ることなく太陽電池素子に到達させることができる。そのため、実施形態1に比べて、ユニットの単位面積当たりに換算した光電変換効率を向上できる。その結果、このユニットを複数組み合わせて太陽電池発電システムなどを構成する際、全ユニットの設置面積を小さくすることができる。
(実施形態5)
【0055】
実施形態1から4では、ユニットの幅方向(導光層220の幅方向)の一端側に太陽電池素子100を配置したが、図6に示すように、同ユニットの中央部に太陽電池素子100を配置しても良い。
【0056】
この構成よれば、実施形態1のユニットに比べて、導光層220に入射した光が太陽電池素子100に到達するまでの光の伝播長及び反射回数を低減することができ、光の損失が低減できる。その結果、太陽電池素子100への集光率を高めることができる。
【0057】
なお、本実施形態のユニットを複数並列してモジュールを構成した場合、図7に示すようになる。つまり、隣接するユニットの太陽電池素子100は互いに隣接する配置となる。
(実施形態6)
【0058】
実施形態1や実施形態5では、各ユニットの幅方向における太陽電池素子100の配置位置を一定にしたユニットとしたが、この太陽電池素子100の配置位置が異なるユニットを複数種類用意し、図8に示すように、隣接するユニットで太陽電池素子100の位置が異なるようにしても良い。
【0059】
図7のモジュールでは、隣接するユニットの太陽電池素子100は互いに隣接することになる。一般に、太陽電池素子100は、その温度が上昇すると発電電圧が下がる。そのため、図7のように、隣接するユニットの太陽電池素子100同士が隣接すれば、かえって各素子の温度上昇を促進することがあり、発電効率が低下する虞がある。図8の本例のように、太陽電池素子100の位置が異なる複数種のユニットを用いれば、隣接するユニットの太陽電池素子100を隣接しないようにずらすことができ、上記発電効率の低下を抑制することができる。
(実施形態7)
【0060】
実施形態6では、太陽電池素子100の配置位置が異なる複数種のユニットを用いたが、図9に示すように、1種類のユニットで同様の作用効果を実現することもできる。
【0061】
つまり、各太陽電池ユニットは、導光層220の幅方向における中央部からずれた同じ位置に太陽電池素子100を設ける。本例では、ユニットの一端からユニット長手方向の約1/4の箇所に太陽電池素子100を設けている。
【0062】
このような1種類のユニットを多数用意し、モジュールを構成する際には、隣接するユニットの向きを交互に逆にすることで、各ユニットの太陽電池素子100が隣接しないようにすることができる。
【0063】
なお、本発明の範囲は上記の実施例に限定されるわけではなく、種々の変形を行うことができる。
【産業上の利用可能性】
【0064】
本発明の太陽電池の導光構造、太陽電池ユニット、及び太陽電池モジュールは、太陽光による発電システムなどに好適に利用することができる。
【符号の説明】
【0065】
100 太陽電池素子
200 導光構造
210 受光層
211 基部 212 受光反射面 214 入射口 216 導光反射面
218 取付面 219 傾斜反射面
220 導光層
230 乱反射層
240 底部反射面
250 側方反射面

【特許請求の範囲】
【請求項1】
太陽光が入射される受光層と、受光層から入射された太陽光を乱反射光として乱反射させる乱反射層と、受光層と乱反射層との間に介在されて、前記乱反射光を太陽電池素子に導光する導光層とを備える太陽電池の導光構造であって、
前記受光層は、
前記導光層に対して所定の傾斜角度を有し、入射される太陽光を導光層側に反射させる受光反射面と、
この受光反射面で反射された太陽光を導光層へ入射させる入射口と、
受光層と導光層との境界面で、前記入射口以外の箇所に形成されて、導光層内の乱反射光を反射させる導光反射面とを備えることを特徴とする太陽電池の導光構造。
【請求項2】
前記乱反射層における受光層とは反対側の面に底部反射面を備えることを特徴とする請求項1に記載の太陽電池の導光構造。
【請求項3】
前記導光層の側面に側方反射面を備えることを特徴とする請求項1又は2に記載の太陽電池の導光構造。
【請求項4】
導光層における乱反射層側の面に太陽電池素子の取付面を備えることを特徴とする請求項1〜3のいずれか1項に記載の太陽電池の導光構造。
【請求項5】
前記取付面が、導光層の長手方向の中央部に設けられていることを特徴とする請求項4に記載の太陽電池の導光構造。
【請求項6】
請求項4又は5に記載の太陽電池の導光構造と、
前記取付面に固定された太陽電池素子とを備えることを特徴とする太陽電池ユニット。
【請求項7】
複数の太陽電池ユニットが並列された太陽電池モジュールであって、
前記太陽電池ユニットは、
請求項4に記載の太陽電池の導光構造と、
前記取付面に固定された太陽電池素子とを備え、
隣接する太陽電池ユニット同士の太陽電池素子の位置がずれるように各太陽電池ユニットが並列されていることを特徴とする太陽電池モジュール。
【請求項8】
各太陽電池ユニットは、導光層の幅方向における中央部からずれた同じ位置に太陽電池素子を備え、
隣接する太陽電池ユニットの向きを交互に変えて並列することで、隣接する太陽電池ユニット同士の太陽電池素子の位置がずれるようにしたことを特徴とする請求項7に記載の太陽電池モジュール。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2010−212280(P2010−212280A)
【公開日】平成22年9月24日(2010.9.24)
【国際特許分類】
【出願番号】特願2009−53524(P2009−53524)
【出願日】平成21年3月6日(2009.3.6)
【出願人】(000002130)住友電気工業株式会社 (12,747)
【Fターム(参考)】