説明

対象面からの距離が可変の多数ポートを備える静電スプレーノズル

【課題】 より均一な電界、又は実質的に均一な電界を各出口の先端にもたらす多数の出口を備える静電ノズルを構築する。
【解決手段】 動的静電エアフィルター用に提供されるノズルスプレーヘッドであり、このノズルスプレーヘッドアセンブリが出口として多数のノズル開口部を示し、出口と対象部材との距離が一定ではないようにノズル本体の底から伸びる、ノズルスプレーヘッド。帯電された多数の出口は、その先端でより均一な電界を示し、したがって、各個別出口によって、向上した、より均一なスプレーパターンを実現できる。1実施形態において、出口は同心円上に集められ、最も内側の円は最長の出口を含み、最も外側の円は最短の出口を含む。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は一般にスプレーノズル装置に関し、特に空気流中の粒子状物質を収集するために静電気的に帯電される液滴を噴霧する種類のノズルに関するものである。本発明は、特に、各ノズル出口に対する他の不平等電界の影響を克服するために、可変長の複数の出口を示すノズル本体を備える静電ノズルとして開示されるものである。ノズル出口(管)の可変長は、これらの出口で電界をより均一に分布させる傾向にある。それによって、各出口について、改善した、均一なスプレー分布パターンを実現する。ノズル出口と対象部材との差動電圧は等しくてもよいが、すべてのノズルの電界が等しいわけではない。これは、対象面と各種ノズル出口との距離を変更する工程が行われない限り、1つの隣接したノズル出口から隣のノズル出口への干渉効果が存在するからである。あるいは、異なる群のノズルについて対象面とノズル出口との差動電圧を変更することもできる。
【背景技術】
【0002】
多数の出口を備える静電スプレーノズルは当該技術分野においてかなり周知であり、従来の多くの装置において、個別出口はすべて同じ長さである。しかし、このように長さが均一であることによって個別の出口の先端に均一の電界がもたらされず、異なる出口で異なるスプレーパターンが生成される原因となる。出口の先端は、すべて同一の高圧値を示すので、これらの全く同一の出口の先端では、電界の強度及び方向に関して互いに干渉が発生する傾向にある。
【0003】
米国特許出願公開番号第2002/0007869 AI(ピュイ(Pui)に付与)では、ノズルの長さは異なるが、各ノズル出口の先端と対象面との距離は同一に保たれている。この関係は、ピュイ(Pui)の図5Aに示される。ピュイ(Pui)の主な目的は、個別ノズルの出口直径及びこれらの出口によって排出される液滴の大きさに関わらず、荷電粒子(又は液滴)を対象面に噴霧することである。この種類の装置は、「汚れた」空気流から微粒子を除去するために、帯電されたスプレー液滴が予め定められた空間内でスプレー煙を発生させることを意図する「空気清浄」装置には適していない。
【発明の概要】
【発明が解決しようとする課題】
【0004】
従来のノズル噴霧システムでは、すべての個別ノズルの充電電圧が単一の値であり、すべてのノズルの個別ノズル出口と対象面との距離が本質的に等しかったために、隣同士の帯電されたノズルの近接が原因で各個別ノズルの先端の電界強度は一定ではない。したがって、個別ノズルは、(隣同士のノズルが)均一の方法で噴霧しない。むしろ、スプレーパターンは、主に各ノズルの実際の電界強度によって異なる。一般に、内側のノズルの一部は、外側のノズルの一部よりも大幅に低い電界強度を示す。この低い電界強度によって、より小さく、恐らく分散範囲の狭いスプレーパターンが生成される。
【0005】
より均一な電界、又は実質的に均一な電界を各出口の先端にもたらす多数の出口を備える静電ノズルを構築できれば、進歩と言えるだろう。
【課題を解決するための手段】
【0006】
上述したように、より均一な電界、又は実質的に均一な電界を各出口の先端にもたらす多数の出口を備える静電スプレーノズルヘッドを構築することは、進歩である。これは、(1)一部のノズルチップをある電圧で帯電させ、他のノズルチップを第2の異なる電圧で帯電させる、又は(2)すべてのノズルチップを実質的に同じ電圧で帯電させるが、これらのノズルチップの一部が対象に近くなるようにこれらのノズルチップの一部で距離を変更し、これによってこれら特定のノズルチップが帯電されたスプレー液滴のより顕著で広範なパターンを生成できるようにより強い電界強度を容易に備える、という2種類の方法で達成できる。
【発明の効果】
【0007】
本発明の利点は、単一のスプレーヘッドに多数の出口を呈し、少なくともこれらの出口の一部が対象面から異なる距離に配置される静電ノズル装置を提供する点である。
本発明の別の利点は、単一のスプレーヘッドに多数の出口を示す静電ノズル装置を提供し、出口により均等に分布する電界を提供して、向上したより均一なスプレーパターン特性を実現する点である。
本発明のさらなる利点は、単一のスプレーヘッドに多数の出口を呈す静電ノズル装置を提供し、出口ノズルポートから対象面までの距離がノズルポートによって異なり、特に、出口ノズルポートを同心円状の環に配置でき、最も内側の環が最長の出口ノズルポート(対象面から最短距離)を備え、最も外側の環が最短の出口ノズルポート(対象面から最長距離)を備える点である。
【0008】
本発明のさらなる別の利点は、単一のスプレーヘッドに多数の出口を呈する静電ノズル装置を提供し、出口ノズルポートの長さは実質的に一定だが、出口ノズルポートの一部が他の出口ノズルポートよりも強い電圧の大きさを呈するように、1つ以上の充電電圧が提供される点である。
本発明のさらなる別の利点は、単一のスプレーヘッドに多数の出口を示す静電ノズル装置を提供し、出口ノズルポートの長さは実質的に一定だが、対象面自体、対象面と各種出口ノズルポートとの距離が異なるように非表面的な方法で成形される点である。
本発明のさらなる利点及び他の新規の特徴は、一部は以下の説明に記載されており、一部は以下を検討すれば当業者には明らかになり、又は本発明を実施することによってわかり得る。
【0009】
上記の利点やその他の利点を達成するために、本発明の1つの観点に従って、次の静電ノズル装置を提供する。ノズル本体、ノズル本体の第1の面にある流入口、ノズル本体の第2の面にある複数個の流出口を備え、前記複数個の流出口が複数個の個別ノズル出口、前記流入口と流出口との間の内流路、及び予め定められた第1の電圧の大きさに帯電された電極を備え、前記電極が前記流路の近位に配置され、前記流路を通過する流体の少なくとも一部に電荷を付与するノズルスプレーヘッド、及び前記複数個の個別ノズル出口から離れて配置され、前記複数個の個別ノズル出口方向を向く隣接面を呈する前記対象部材を備え、前記複数個の出口開口部と対象部材の隣接面との間の複数の予め定められた距離が設定されるように、複数個の個別ノズル出口がノズル本体の第2の面から複数個の出口開口部の1つまでの予め定められた距離を延長し、前記隣接面と複数個の出口開口部との予め定められた距離が、複数個の個別ノズル出口について一定ではない、静電ノズル装置。
【0010】
本発明の別の観点に従って、次の静電ノズル装置を提供する。ノズル本体、ノズル本体の第1の面にある流入口、ノズル本体の第2の面にある複数個の流出口を備え、前記複数個の流出口がノズル本体の第2の面から複数個の出口開口部の1つまでの予め定められた長さを延長する複数個の個別ノズル出口、前記流入口と前記流出口との間の内流路、及び予め定められた第1の電圧の大きさに帯電された電極を備え、前記電極が前記流路の近位に配置され、前記流路を通過する流体の少なくとも一部に電荷を付与するノズルスプレーヘッド、並びに前記複数個の個別ノズル出口から離れて配置され、前記複数個の個別ノズル出口の方向を向く隣接面を呈する前記対象部材を備え、前記複数個の個別ノズル出口が、前記複数個の出口開口部の1つと前記複数個の出口開口部の別の1つとの間の電界強度の勾配を最小化する傾向のある大きさで配置される、静電ノズル装置。
【0011】
本発明のさらなる他の利点は、本発明の好ましい一実施形態が、本発明を実施するために企図される最良の形態の1つで記述且つ示される、以下の説明及び諸図面から、当業者には明らかになる。理解されるように、本発明は、他の異なる実施形態が可能であり、そのいくつかの詳細は、すべて本発明から逸脱することなく様々な自明の態様すべてにおいて変形可能である。したがって、諸図面及び説明は、制限的なものではなく、例示的なものと見なす。
【図面の簡単な説明】
【0012】
【図1】本発明の原則に従って作成された、多ポートノズルの横断面の側正面図。
【図2】図1の多ポートノズルの底面図。
【図3】図1の多ポートノズルによって生成される電界分布の線図。
【図4】対象面が平面ではない、図1のノズルに類似した別の構造の横断面の側正面図。
【図5】本発明の原則に従って作成された、ノズルチップが対象面から非均一の距離にある多ポートノズルの側正面図。
【図6】図5の多ポートノズルによって生成される電界分布の線図。
【図7】図6の電界分布図から90°(垂直)の位置にある平面で発生するが、図5のノズルに類似した4環の多ポートノズルによって生成される電界電位の線図。
【図8】本発明の原則に従って作成された、図5の多ポートノズルに類似した多ポートノズルの特定の詳細の一部を示す側正面図。
【図9】三角形のノズル管配置パターンを持つ多ポートノズルの底面図。
【図10】六角形のノズル管配置パターンを持つ多ポートノズルの底面図。
【図11】個別ノズルが対象面から均一の距離にある、同心円状の4環の多ポートノズルのスプレーパターンを示している。
【図12】個別ノズルが対象面から非均一の距離にある、同心円状の4環の多ポートノズルのスプレーパターンを示している。
【図13】4組の同心円状の環の多ポートノズルを示す線図であり、ノズルが直接観察者のほうを向いた平面に示されている。
【発明を実施するための形態】
【0013】
以下、本発明の好ましい実施形態を詳細に参照するが、それらの例が添付図面に図解されており、同じ数字は図面全体を通して同一要素を示す。
本明細書に組み込まれてその一部を成す添付図面は、本発明の幾つかの態様を図示しており、本説明及び特許請求の範囲と相まって、本発明の原理を説明する働きをする。図面は以下の通りである。
【0014】
図1を参照すると、静電スプレーノズルが図解されており、一般に参照番号100で示される。装置100は、実際には多ノズルスプレーヘッドであり、複数の個別ノズル開口部を使用してスプレー煙の分量及び密度を増加させる。流入口は矢印102で示されており、円筒形の外壁104を備える。作動流体は流入口102を通過し、次にノズル本体上部110の内部にある経路(流路)106をそのまま通過する。この本体上部110は、典型的には、デルリン(DELRIN)(登録商標)などの非導電プラスチック製である。導電性の金属管はこの流路106に圧入されており、この金属管は、参照番号112で示される。
【0015】
高圧電極114は、充電管112と接触するように使用する。電極114は、典型的に、ノズル本体上部110の側にある開口部116を経由し、銅線(表示されない)などの導電体を介して高圧電源に接続させる。
【0016】
ノズル本体下部は参照番号120で示されており、開口部を備える個別ノズル出口の群を構成する複数の出口経路に(帯電された)流体を分配する流体チャンバー又は貯蔵槽124を含む。これらの出口ノズルポートは、参照番号132、134、及び136で示されており、一群としては一般に参照番号130で示されている。ノズル本体下部120は、必要に応じて取り付け穴122を備えることができる。最底面(図1を参照)は、126で示されており、図2にも表示されている。
【0017】
多数のノズル出口130は、ノズル本体の底面126及び底部120を貫いて流体貯蔵層又はチャンバー124に至るように圧入される、一連の小径ステンレス鋼管を備えてもよい。個別のノズル管130は、図2に示したように、必要に応じて同心円(「環」)のパターンに配置できる。最も内側の円のノズル管は、参照番号132で示されており、最も外側の同心円は、参照番号136で示されているノズル管を含む。中間の同心円(環)は、参照番号134で示されている一連のノズル管を含む。その他のノズル管配置パターンは、本発明の原則から離れることなく、以降の図に示すように容易に使用できる。
【0018】
貯蔵層/チャンバー124内の流体が十分に帯電され、接地面(又は異なる電圧の表面)が物理的に一定の近接距離内に存在する場合、各ノズル130から流体の静電スプレーを噴出するのに十分な電界が生成される。ほぼ同一の長さの出口(管)を備える帯電された多数の個別ノズルによって生成される電界分布の例は、図3に示されており、電界の抵抗ベクトルは、参照番号140、142、144、146、及び148など二次元の矢印で図解されている。図3では、ノズル出口(管)132、134、及び136が、実質的に同一の電圧の大きさにそれぞれ帯電される。
【0019】
各ノズルポート130は、隣接する個別ノズルポートによって生成される電界に影響を与える電界を生成する。図1〜2に図解した実施形態において、すべてのノズルポート130がスプレーヘッド100の底面126から同一の距離で突出し、すべてのノズル出口に適用される電圧+V1が一定であり、「対象」20が平坦な上面を示す場合、最も内側の同心円状の環のノズル管(132)は、隣接電界からの干渉が原因で、不均一に噴霧してもよく、又は全く噴霧しない。
【0020】
図1において、対象プレート20は、ノズル130から噴出されるスプレー液滴を受ける位置に配置する。空気清浄装置では、対象プレート20の面を打つ特定の液滴パターンを作成するよりも、実質的に均一の大きさ(直径)を示す電気的に帯電された液滴の霧状の「煙」を生成するほうが重要である。均一の大きさの液滴は、対象プレート20及びノズル本体100によって部分的に形成されるチャンバを通過する「汚れた」空気から粒子状物質を収集する場合に効果的である傾向にある。
【0021】
対象プレート20の実際の大きさ及び形状は、システム設計者の手に委ねることができる。プレート20は、必ずしも平坦な表面を備えていなくてもよく、実際、後述するように他の形状も極めて有用であり得る。対象プレート20は、予め定められた電圧の大きさに固定されてもよい。ただし、多数の用途において、図1の参照番号22に図解したように、好ましくは接地電位に固定する。流体はノズル本体100の内部で電気的に帯電されるので、ノズル出口も、図1の参照番号24で+V1と示されているように、事実上、電位まで帯電される。実際の電圧の大きさ及び極性は、システム設計者の手に委ねてもよく、用途によって適した電圧は大幅に異なってもよい。本明細書においては慣例上「+」の極性のみが使用するが、電圧は、当然ながら、接地電位に応じて負の極性でもよい。
【0022】
ノズル出口で+VIの電圧が示される場合、132、134、及び136の各出口では、ノズルチップを含む表面に沿って正の電界を示す。図1において、この電界は一般に+EI(参照番号26)として示される。しかし、ノズル出口管に沿った別の場所においては、ベクトル量+E1の強度及び方向が著しく異なることに留意しなくてはいけない。さらに、(図1の配置のように)対象プレート20と出口管の先端との距離が実質的に一定値の場合、最も内側のノズル管132の先端の電界強度は、最も外側のノズル管136の先端の電界強度よりも多少大きくなる。この現象については、図3を参照しながら詳細に後述する。
【0023】
図3は、図1及び2に図解したようなスプレーヘッドによって生成される電界(+EI)分布の横断面であり、スプレーヘッド100は、同心円状の3環のノズル管(即ち、132、134、及び136のノズル)を示している。すべてのノズル管について充電電圧が一定(均一)の場合、高品質のスプレーを生成する時の外環の(即ち、ノズル管136によって生成される)電界強度は、最も内側の環の(即ち、ノズル管132によって生成される)電界強度よりも約60%強い。これは、(最も外側の環のノズルの)電界強度矢印148と(最も内側の環のノズルの)電界強度矢印144とを比較することによって確認できる。これは、電圧の大きさV1、V2、及びV3が実質的に等しくても(それぞれ、ノズル群132、134、及び136)、対象プレート20が実質的に平らである、又は上面が平面である(図3参照)場合に発生する。
【0024】
電界の干渉が原因で、2つの内環のノズル(即ち、ノズル管132及び134)は、良質なスプレーを噴出するために不十分な電界強度を示し、ノズルから帯電された流体のスパッタリング又は液だれが発生する可能性が高い(少なくとも、図1の実施例のようにノズルが下向きの場合)。流体を帯電させる全体電圧が十分に上昇する場合、最終的には、すべてのノズルにおいて、液だれ又はスパッタリングが発生するのではなく、噴霧が行われるようになる。ただし、この上昇した電圧によって、外側ノズル(即ち、ノズル136)が過帯電状態になり、外側ノズル管136によって制御不能な多索状スプレーが噴出される場合がある。
【0025】
より均一な電界分布は有益であり、各ノズルから高品質のスプレーを噴出することができる。これは、静電スプレーノズルを空気清浄装置で使用する場合、特に重要である。これは、液滴の細かい、実質的に均質なスプレーによって、このような空気清浄装置を通過する気柱の断面積をより均一に浄化するからである。単にスパッタリング又は液だれが発生する個別ノズルは、液滴の高品質な「均一の」スプレーの噴出に寄与せず、したがって、このようなスパッタリング又は液だれが発生するノズル出口によってその結果形成される、液滴スプレーパターン(「霧状の煙」)の「隙間」に大量の粒子状物質を貫流させる。
【0026】
移動する「汚れた」空気流から、均一で高品質な粒子の洗浄を行うための別の要素は、実質的に均一な大きさ又は直径を示す、帯電されたスプレー液滴に関する。均一の大きさのスプレー液滴を形成するためには、通常、実質的に均一の直径を示す出口を備えるノズル管を使用する必要がある。ノズル出口に用いられる正確な大きさは、システム設計者の手に委ねることができ、指定の装置に必要な空気清浄装置の性能を決定する場合、他の要素も考慮しなければいけない。例えば、スプレー液滴の密度、スプレー液滴の噴出速度、加えて、液滴に加える電圧の大きさ、ノズル出口から噴出されてから液滴が有用な電圧を維持できる期間が重要である。
【0027】
本発明のスプレーノズルを用いる多くの他の用途が、液滴の高品質で「均一な」スプレーの使用による便益を受けることを留意しなくてはいけない。例えば、自動車業界では、塗料流体を帯電させるために非常に高い電圧を使用して多数の部品を吹き付け塗装するが、従来のシステムでは小さい塗料の塊が発生する。他の種類の材料は、非常に高い充電圧力でも凝集する可能性のある、帯電された粒子によって表面コーティングが施されている。本発明は、より均質な、細かい帯電された液滴の霧を生成するために使用でき、したがって多数又はすべての塊が形成されないようにできる。別の例としては、特定の化学反応における帯電された液滴の使用が挙げられる。多くのガソリン(又は他の炭化水素燃料)エンジンは燃料噴射装置を使用しており、密度の点でより均質である(及びほとんど又はまったく凝集しない)細かい燃料霧は、多くの燃焼反応において非常に有益である。細かい液滴の層状(不均一な)の密度を生成することが望ましい場合においても、本発明を使用して、(平面の対象面を使用して)個別出口ノズル管の長さを変更する、又は出口ノズル管の長さを実質的に一定に保ちながら、対象面を平面にならないように再成形することによって(詳細は後述)、より正確に予め定められた不均一な密度を生成できる。
【0028】
図3のノズルスプレーヘッドの電界強度の差異を克服する1つの方法は、ノズル管ごとに異なる電位で帯電させることである。図3では、最も内側の同心円状の環のノズル管132は電圧V1に帯電させることができるが、中間の同心円状の環のノズル管134はV1よりも低い異なる電圧V2に帯電させることができ、さらに、最も外側の同心円状の環のノズル管136は、V2よりも低い、さらに異なる電圧V3に帯電させることができる。この種類の高電圧充電システムの作成は一層困難であるかもしれないが、このシステムは、より均一な電界強度分布をすべてのノズルにもたらすという目的を達成し、すべてのノズル管132、134、及び136について「向上した」分布を示し、比較的細かいスプレー液滴の煙(霧)を生成する、より均一なスプレーパターンを提供するという総合的な目標を達成する傾向にある。図3に図解した電界分布は明らかに変わり、むしろ図6に図解したような外見になる。これについては、(異なるノズル管の作成について)後述する。
【0029】
ただし、最も内側のノズルが「過帯電」されないように注意する必要がある。電圧レベルは、過度の漏れ電流を発生させ得る、又は定期的なアーク放電もしくは充電電圧が異なるノズル管におけるフラッシュオーバーを発生させ得る、又はノズルスプレーヘッドの底面126に沿ってトラッキングをも発生させ(次に、底面の絶縁特性を低下させ)得る強度(例えば、40kV又は50kV超)に達してはいけない。特定のノズルヘッドデザインで優良なスプレーパターンが実現できない場合(即ち、「一定の」ノズル管の長さを使用した場合)、後述するように、本発明の別の設計を使用できる。
【0030】
多ノズルスプレーヘッドの別の実施形態は、一般に参照番号150で示される多ポートスプレーノズルによって図4に図解されている。ノズル150は、円筒形の開口部154によって作成される流入口152を示し、流体はここを通過して、174の流体チャンバー又は貯蔵槽まで伸びる流体経路又は流路156に流れ込む。本体上部は参照番号160で示されており、この本体の上部は、流入口152及び流体経路156を貫通する充電電極を含む。この電極は、流体経路156の長手方向軸に沿って伸びる長手方向の棒として参照番号162で示されている。棒162の底面(図4を参照)には、実質的に平坦な表面を持つディスク(又はその他の形)164が存在し、流体貯水槽174の内部に適合している。流体貯水槽174はノズル本体の底部分に作成され、一般に参照番号170で示される。ノズル本体のこの底部分には、必要に応じて取り付け穴172を備えることができる。ノズル本体の底部は、さらに低い(底の)面176を含む(図4を参照)。
【0031】
流体貯槽槽174から底面176を貫通して伸びる多数のノズル管が存在し、これらのノズル管は、群として、一般に参照番号180で示される。図4に示したように、同心円状の3つの環の個別ノズル管180(最も内側の環のノズル182、最も外側の環のノズル186、及び中間の同心円状の環のノズル184)が存在する。この構成において、これらのノズルは、図2に図解した底面からの外観と同一の外観を有する。当然のことながら、他のノズル配置パターンも、本発明の原則から離れることなく、使用できる。
【0032】
図4のノズル本体150は、同一条件下、即ち、ノズルチップでの電圧が一定であり、対象面が実質的に平面である(図1の20を参照)場合、図1のノズル本体100と比較して類似した静電スプレー特性を示す。しかし、図4においては、一般に参照番号30で示される対象が上面に沿って平面ではなく、その代わりに、38で上「頂点」、並びに37及び39で2つの緩やかな斜面を示している。この形状は、円錐形の外表面、例えば、対象面30の横断面を表すことができる。図4のこの例において、対象30は接地に接続されるが、ノズルは34で実質的に一定の電圧+V2に帯電されており、参照番号36で電界+E2を生成する。
【0033】
対象30の非平面的形状が、ノズル管182、184、及び186のノズル出口の先端において、より等しい、または実質的に等しい(均一)な電界強度を生成するのに寄与することに留意する必要がある。すべての出口ノズルについて誘発された+V2が一定でも、この構成では、様々なノズル管182、184、及び186が、ノズル管132、134、及び136のすべてに一定の電圧+V1が適用された場合に図1のノズル構成100によって生成されるよりも、均一な煙スプレーパターンを生成できる。これは主に、対象面30と中間のノズル管184及び最も外側のノズル管186との距離と比較して、最も内側のノズル管182と頂点38地点又はその付近の対象面30との距離を短くすることによって実現する。このようにより等しい、又はより均一な電界の例については、図6を参照しながら詳細に後述する。
【0034】
図4は、参照番号31で別の形状を持つ対象面も図解しており、放物線の輪郭を断面図で示している。この対象31がノズル本体150の下に配置されると、この場合も放物線の対象31の最上部と最も内側のノズル管182との距離が、放物線の対象31と中間のノズル管184及び最も外側のノズル管186との距離よりも短くなる。この構成も、すべての出口ノズルについて誘発された電圧+V2が一定である場合も含め、ノズル管182、184、及び186のノズル出口の先端でより等しい、又は実質的に等しい(均一な)電界強度を生成するのに寄与する。
【0035】
より均一な電界分布を実現するもう1つの方法は、最も外側のノズルがノズル本体から伸びる距離と比較して、最も内側のノズルがこのノズル本体の底面からさらに伸びるようにノズルを構成することである。この構成において、ノズルは先端と平面の対象面との距離に関して「ねじれ」ている。このような構成の例は、図5に図解されており、ノズルスプレーヘッドは、一般に、参照番号200で示される。
【0036】
ノズルスプレーヘッド200は、円筒形の壁204によって形成される流入口又はポート202を含む。この流入口202は、ノズル本体の上部210を貫通して伸びる流体経路又は流路206と連通している。図1の代表的なノズルに類似した方法で、充電管部材212はこの流体経路206に圧入することができる。ノズル本体自体は、好ましくはプラスチック(デルリン(DELRIN))などの非導電性材で構成されるが、充電管部材は導電性材で構成される。導電体214は電極を形成でき、開口部216を貫通して導電体が設置される。これは、経路206を通過する流体を電気的に高圧に帯電させ、その結果、静電スプレーとして使用され得る帯電された流体を生成する。
【0037】
ノズル本体の下部は、一般に、220で示され、1つ以上の取り付け穴222を備えることができる。ノズル本体の下面又は底面は、226に図解されている。液体貯蔵槽又はチャンバーは、本体下部220の224に形成される。貯蔵槽224に到達する前に液体に電荷が付与された場合、(流体自体に沿った)貯蔵層の内表面が電圧+V3などの電位に引き上げられる。
【0038】
一連の個別ノズルは、ノズル本体の下面226を貫通して貯蔵槽224から伸びており、この一連のノズルは群として、一般に、参照番号230で示される。ノズル群230の個別のノズルは、一連の同心円状の環に配置する。ここにおいて、最も内側の環はノズル232を、最も外側の環はノズル236を、中間の同心円状の環はノズル234をそれぞれ備える。個別ノズルのこの構成は、必要に応じて、(図5のように)底面から見た図2の外観を持つことができる。当然のことながら、他のノズル配置パターンも、本発明の原則から離れることなく、使用できる。
【0039】
(図5のように)側面から見た場合、「ねじれ」効果を直ちに認識でき、ノズル管232、234、及び236と対象プレート40の上面との距離が、すべてのノズル230について均一(等しい)わけではない。図5に図解した構成では、対象プレート40は(42で示されている)接地電位に結合させるが、常に結合させる必要はない。一般に対象プレート40とノズル管の先端との差動電圧が存在することは望ましいが、図5では、差動電圧は+V3(44)に等しい。図5では、差動電圧の+V3によって、ノズル出口で電界+E3が生成される。当然ながら、+3の極性が常に正である必要はない。また、すべてのノズルチップにおいて電界+E3が実質的に等しい(均質である)ことは望ましいが、電界+E3は、すべての場所において常に完全に均一ではない。
【0040】
群230の個別ノズルが同一の電圧に帯電させられた場合(充電電圧が極性214に適用され、次に電荷が流体に付与され、その結果電荷がノズル230に付与された場合)、個別ノズル230のすべての先端で、より均一な電界分布が示される。これは、最も内側の環のノズル(即ち、ノズル232)ではノズルの先端とノズルスプレーヘッド200の下に存在する接地プレート40との距離が短いからであり、その結果、これらのノズル232では有効電界(+E3)の強度が増加するからである。(図5及び図2に図解したように)3環構成の場合、最も内側の環のノズル232は、プレート40の上面に対して最も接近するように伸び、中間の同心円上の環のノズル234はプレート40の上面からやや距離が遠くなるように伸びるが、最も外側のノズル236よりもプレート40の上面までの距離が短くなるように伸びる。
【0041】
当然ながら、本発明は、(図4に図解した対象30又は対象31のような)非平面対象部材及び(底面226から伸びているノズル管232、234、236などのノズル管のような)ノズル本体の底面から可変長を示す一連の「ねじれ」ノズルの組み合わせを使用することによっても実現できる。このような構成は、作成するのにやや高価であるかもしれないが、ノズル出口と対象部材の隣接面との可変距離を維持しつつ、単一の電源を使用してスプレー液を帯電させるという目的を達成できる。
【0042】
電界分布(+E3)は、図6に図解したように、ノズルスプレーヘッド200の3環セットの同心円状のノズル230によって作成される。電界ベクトルは個別の矢印によって表され、最も内側のノズル232によって生成される電界の矢印248が、図3の最も内側のノズル132によって生成される矢印144よりもはるかに強い強度を持つことが分かる。図6において、電界+E3は、接地プレート40とノズル管232、234、及び236との差動電圧によって生成される。
【0043】
図6では、中間の同心円状の環のノズル234及び最も外側のノズル236によって生成される電界の矢印の強度は242で示されており、この強度は、どの環のノズルと比較してもほぼ等しい。これは、図3で中間の同心円状の環のノズル134(電界148を生成)及び最も外側のノズル136(電界142を生成)に関して対照的である。図3では、最も外側のノズル136が最大の電界強度142を生成することが分かる。ノズルの「側面」に沿った電界の強度(図3では140、図6では240)は比較的小さく、ノズルの先端230で生成されるスプレー液滴の対象として機能する接地プレート又は接地面(図5には表示されていない)に最も近いノズルチップ(即ち、出口開口部)付近の電界と比較すると微々たるものである。図6に示したように、ノズル232の最も内側のノズルチップ同士の間に存在する電界244も比較的小さい。
【0044】
図6のノズル構成において、個別ノズル出口(即ち、ノズル232、234、及び236)は、個別ノズル出口の開口部(即ち、これらのノズル232、234、及び236の「先端」)がこれらのノズルチップの1つと別のノズルチップとの間の電界強度の勾配を最小化する傾向にある予め定められた位置に存在するように配置され、大きさ(即ち、長さ)が調整される。換言すれば、図3の電界ベクトル142及び148のベクトル強度と比較して、図6の電界ベクトル242及び248の強度は相互にほぼ等しく、したがって、電界ベクトル242及び248のベクトル強度間の勾配は減少している。この現象は、実質的に等しい電界強度の集合と呼ぶこともできる。
【0045】
図7は、図5のノズルスプレーヘッド200の3環のノズルセットに類似した、ノズルの一連の同心円状の4環によって生成される電界分布260を抽象的に図解している。図7では、電界分布260は、各個別ノズルの先端で生成される電界の強度及びベクトル方向を抽象的に図解している。この構成において、最も内側のノズルがノズル本体の底から最も遠くまで伸び(したがって、平面対象52に最も接近する、図8を参照)、最も外側の環のノズルはノズル本体の底面から最も短い距離を伸びる(したがって、平面対象52から最も遠い、図8を参照)ように、ノズル本体の底面に関して非均一の長さのノズルセットが存在する。これによって、図7に図解したパターンに類似したノズルを配置する場合、ほぼ均一の強度(又は大きさ)の一連の電界+E4が生成される。換言すれば、最も内側のノズルは、264の電界を生成する次に外側の環のノズルから離れて配置されている限り、262の電界を生成する。最も内側のノズル(電界262を生成)と2つ目の環のノズル(電界264を生成)との距離と比べて、電界264を生成するノズルと電界266を生成する次に外側のノズルセットとの間隔は狭い。個別ノズルの数も、同心円の中心から広がる同心円状の環の各セットごとに増加する。最も外側のノズルは、電界パターン268を生成するが、これらも電界パターン266を生成するノズルの3番目の環から一定の距離をおいて配置する。
【0046】
図7に示したこれらの各電界形態の形状は、ノズル本体の底面に平行な平面によって表される断面図で見た場合、各ノズルチップから伸びる電界ベクトルの方向にほぼ比例している。図7においては電界ベクトル自体は図解されていないが、実際には、上述した平面に平行な「水平」コンポーネントを持つ方向に伸びる。これによって、図7に図解したパターンの形状がもたらされる。
【0047】
本発明において別の配置パターンを使用できることをさらに強調するために、このような他の例のパターンを図解する図9及び10を示す。図9では、個別ノズルが線状の三角型のパターンに集められ、一般に群として参照番号300で示される。(図9において)ノズルの上列は302で示されており、ノズルの個別「線状」セットは、(この図の上から)304、306、308、及び310で示されている。図10において、群としてのノズルパターンは、一般に参照番号320で示され、一連の六角形セルのセットで構成される。各ノズルは322で示されており、このような各ノズルが、この例の3つの別個の六角形セルの節点の1つを形成する。
【0048】
図8は、スプレーヘッド270のその他の構造上の詳細を無視した簡易図式で、一般に参照番号270で示されるノズルスプレーヘッドのノズルセットを図解する。図8では、本体下部272のみが図解されており、帯電された流体を各個別ノズルまたはノズル管に導く内部の流体経路(表示されていない)が含まれる。スプレーヘッド270は、4セットの同心円状の環のノズルを備えており、上述した図7に図解したパターンの作成に使用できる。最も内側のノズルは282、2番目の同心円状のノズルセットは284、3番目の同心円状のノズルセットは286、及び4番目(最も外側)のノズルセットは288で示されている。
【0049】
同心円状のノズルの中心線は280で示されており、すぐ後述する中心線からの半径方向距離及び個別ノズルの間隔が存在する。中心線280から最も内側のノズル282までの距離は「d0」、最初又は最も内側の環のノズル282と2番目の環(284)までの距離は「d3」、2番目と3番目の環(284と286)との距離は「d2」、及び3番目と4番目(最も外側)の環(286と288)との距離は「d1」とそれぞれ示されている。図に示したように、距離d3は、距離d1又はd2よりも大きいが、距離のみによって最終的なスプレーパターン又は電界強度分布が決まるわけではない。後述するように、ノズルの先端によって形成される角度も重要である。
【0050】
平面対象プレート50の上面52にも平行である水平線(図8)と比較すると、角度「A」は最初の環のノズル282及び2番目の環のノズル284の先端を結ぶ線によって形成される。平面対象プレート50の上面52にも平行である同一の水平線と比較すると、角度「B」は2番目の環のノズル284及び3番目の環のノズル286の先端を結ぶ線によって形成される。平面対象プレート50の上面52にも平行である同一の水平線と比較すると、角度「C」は3番目の環のノズル286及び4番目の最も外側のノズル288の先端を結ぶ線によって形成される。
【0051】
ある実施形態において、距離d1、d2、及びd3が、図8に図解した比率と比較して大幅に異なっていてもよいが、角度A、B、及びCは等しくてもよい。角度A、B、Cがすべて等しい場合、ノズルチップ282、284、286、288間の傾斜は同一線状となり、その結果、このようなスプレーヘッド構造は、ノズルチップ(又は出口)に沿って均一の傾斜を示す。図解された配置では、最も外側のノズル288の先端から対象面52までの距離d11は、ノズル286の先端から表面52までの距離d12よりも大きく、距離d12は、ノズル284の先端から表面52への距離d13よりも大きく、距離d13は、ノズル282の先端から表面52への距離d14よりも大きい。これらの可変距離d11、d12、d13、及びd14は、実質的に均一の分布を示す電界+E4を生成する傾向があり、282、284、286、及び288の各ノズル管が実質的に同一の電位+V4に帯電させられた場合でも、ノズルチップでの+E4電界のベクトルは、実質的に同一の強度を示す。
【0052】
図8の距離d1、d2、及びd3にほぼ同一の比率を使用する場合、角度Aが9°、角度Bが16°、及び角度Cが21°であると、代表的なスプレーパターンを生成できる。このノズル配置例において、d0〜d3の距離は実質的に、d0=3.175mm(0.125インチ)、d1=9.525mm(0.375インチ)、d2=6.35mm(0.25インチ)、及びd3=6.35mm(0.25インチ)である。生成される代表的なスプレーパターンは図12に示されており、後述されている。この例において、充電電圧は25〜35kVの範囲、液体流速は0.05〜0.15mL/ノズル出口の範囲、及びスプレー液滴の接地「対象」は、ノズル出口から50.8〜88.9mm(2.0〜3.5インチ)の範囲の距離に配置されたことに留意すべきである。一般に、各ノズル出口では少なくとも2kv/mの電界強度を生成することが望ましいが、同時に、(少なくとも、安全上の理由から)最大充電電圧を30kV未満に制限することが望ましい。
【0053】
図11は、図1の3環のノズルスプレーヘッド100に類似して、長さが均一、即ち、各ノズル管がノズル本体の底面から実質的に同一の距離だけ伸び、その先端では平面対象の表面からの距離が実質的に同一である、同心円状の4つの環のノズルによって生成されたスプレーパターンを図解したものである。最も内側のノズルの先端に十分な電圧がなく、最良のスプレーパターンのごく一部しか生成しない、またはスパッタリングが発生する傾向にある。このパターンは342で図解されており、一部のパターンは相応なスプレーパターンに見えるが、これは、最も内側のノズルが次の環のノズルよりもかなり離れて配置されていたからに過ぎない。次の2環のノズルは、不規則なパターン(344及び346)を生成する。これは、主に、流体のスパッタリング及び液だれによって生成されたものであり、所望のスプレーパターンのいずれでもない。最も外側のノズルのみが、相応のスプレーパターン348を生成した。これは、最も外側のノズルが最高の電界電位を備えていたからであり、3環の同心円状のノズルセットについて図3の電界分布を調べると予期される。
【0054】
図12も、4環の同心円状のノズルセットを図解しており、一般に、参照番号360で示される。図12では、ノズルは、ノズル本体の底からの長さが均一ではなく、ノズル先端から平面対象への距離も可変である(注:平面の対象面とノズル本体の底面は、互いに実質的に平行である)。この例において、最も内側のノズルはノズル本体の底から最も遠くまで伸び、その結果、平面の対象面との距離は最も接近する。これは、角度A、B、及びCがそれぞれ9°、16°、及び21°である、図8のノズルセット270によって生成されるスプレーパターンの種類である。最も内側のノズル282はスプレーパターン362を、2番目の環のノズル284はスプレーパターン364を、3番目の環のノズル286はスプレーパターン366を、4番目の最も外側の環のノズル288はスプレーパターン368を生成する。これらのスプレーパターンはすべて許容できるものであり、スパッタリングや液だれによって生成されたものではない。これは、平面対象40の表面から3環のノズルセットまでの距離が均一でないことを示す図6の電界分布を調べると予期される。
【0055】
当然ながら、同心円状の環の個別ノズルのノズル管に関する最適な角度構成は、すべての状況(即ち、すべてのノズル環間の傾斜が均一な場合)において線状ではなく、むしろ球状、放物線状、又は楕円形状のカーブによってノズル先端の実際に最適な位置を描いてもよい。最適な構成は、各環に含まれるノズル数、ノズルの環の間隔、ノズルの部材(例えば、ステンレス鋼管、又はそれ以外)、ノズル筐体自体の形状などの影響を受ける。図8のノズル配置270が均質な傾斜を示していないことに留意すべきである。
【0056】
図13は、3環の同心円状のノズルセットを図解しており、一般に参照番号380で示される。このノズル群380には、4個の個別の3環のノズルスプレーヘッド(382、384、及び386、並びに388)が存在する。追加のノズルスプレーヘッドは、特定の装置において所望されるように、より広範なスプレーパターンを生成し、より大きい流量のスプレー粒子を出力するために使用する。図13は、隣接したノズル群の影響を明らかにするために示したものである。これは、個別ノズルによって生成される電界が、他の隣接するノズル環の影響を受けるからである。例えば、参照番号392で示されている領域の最も外側のノズルの電界は、互いにやや隣接しているためにある程度強度が減少する。反対に、同一の同心円状の環の電界は、参照番号390で示されているように、外側の周囲よりも大きい。これは、群内の他のノズルに関して、互いにより遠位に存在するからである。この電界の差は、図13に図解したように、主に3つの外側の環において示されている。394の最も内側の環においては、この効果はあまり見られない。これは、主として、最も内側の環が外側の影響から最も保護されており、最も内側の環は、特定の各ノズル本体又はスプレーヘッドに関して、自身の他の同心円状の環から最も遠く離れて配置されるノズルを備えているからでもある。
【0057】
上記の例では、特定の環では均一の長さが用いられると説明されてきたが、特定の環に含まれるすべてのノズル(又はノズル管)の長さが、常に同一の長さ(又はターゲットからの距離)である必要はないことを留意しなくてはいけない。単一の環に含まれる一部のノズルの長さを変更することが許される場合、生成される電界に対する管理を強化できるようになり、これは一部の用途においては非常に有益であり得る。このような用途の1つは、図13に示されてる状況である。ここでは、隣接するノズル群が、特に最も外側の環において、互いの電界に影響を与えている。確かに、最も外側の環(並びに、必要に応じて一部の内側の環)のノズルの個別の長さを微調整することによって、電界効果をより厳密に管理でき、その結果、特に対象が平面上面を示す場合、ノズルチップと接地対象との物理的距離を微調整する。
【0058】
上述したとおり、本発明を使用する多くの用途において、噴霧された液滴は、スプレー液滴がほこり及び他の粒子又は微粒子を収集するように「汚れた」空気が流れ込む空間又は容積に向けられる。個別の液滴は、典型的には接地電位にある、収集面又は収集プレートに進む。この種類の設計は、同一の発明者らによる先行特許出願に総合空気清浄装置として記載されており、これらはともにザ・プロクター・アンド・ギャンブル・カンパニー(The Procter & Gamble Company)に譲渡されている。これらの先行特許出願の例としては、米国特許出願第10/282,586号、名称「電気的に帯電された液滴を使用した空気清浄用動的静電フィルター装置(DYNAMIC ELECTROSTATIC FILTER APPARATUSFOR PURIFYING AIR USING ELECTRICALLY CHARGED LIQUID DROPLETS)」(2002年10月29日出願)、及び米国暫定特許出願第60/422,345号、名称「大気粉塵の収集及び抽出用動的静電エアゾール収集装置(DYNAMIC ELECTROSTATIC AEROSOL COLLECTION APPARATUS FOR COLLECTING AND SAMPLING AIRBORNE PARTICULATE MATTER)」(2002年10月30日出願)が挙げられる。
【0059】
さらに高い電圧範囲など、上述した以外の電圧範囲でも本発明の設計が機能することは当然であり、帯電された液滴を作成するために使用される特定の種類の液体、及び特定の用途に必要な場合に増加した流量に関して望ましいこともある。また、すべての実施例の内部電極が、実質上いかなる種類の導電性材、又は恐らくある種の半導性材で作成され得ることも当然である。
【0060】
本発明のスプレーノズルが含まれる多くの用途では、ノズルによって噴出されたスプレー液滴を受けるチャンバー(即ち、ある種の予め定められた容量)が存在する。一般に、このチャンバーは、これらのスプレー液滴が影響を与える対象となる、対象面を含む。スプレー装置全体が(例えば、チャンバーを通過するガス流から微粒子を除去することによって)空気清浄装置として機能する場合、対象面は、典型的に、スプレー液滴が直接対象面上で液体に凝集する、又は液滴が総合スプレー装置の別個の収集部材に向けて(例えば、重力によって)噴出されるようになる。このような対象は固体表面を備える場合が多いが、固体表面が所望されない用途もあり得る。こうした場合、このような対象面は、メッシュ又は網部材で構成される、又は必要に応じて固体のように見えるが高多孔性を示すことができる。対象面にメッシュ又は網部材を使用することの電界分布への効果は、特定の装置について、検討が必要である。
【0061】
上述した対象面は、予め定められた電圧に帯電できる、または有効に接地電位に接続できるのいずれかであることは当然である。安全上の理由から、例えば静電気防止用ストラップ、又は接地平面を介して、対象面を接地に直接接続した方が良いこともある。しかし、状況に応じては、この対象面に電圧を適用することによって、向上したスプレーパターン又は向上した収集効率を得ることもある。多くの場合、このように適用される電位は、内部電極に適用される電圧(絶対強度)よりも絶対強度が低いが、これが常に制限となるわけではない。
【0062】
場合によっては、対象面に適用される電位は、スプレー液滴(内部)充電電極に適用される電圧と反対の極性でもよい。この場合、帯電されたスプレー液滴は、それによって帯電された対象面に(帯電によって)直接引き付けられ、スプレー流体の収集効率を向上させてもよい。しかし、空気清浄装置の場合、より重要な属性は、典型的に、空気流に含まれる粒子の収集効率であり、対象面の(接地されている、又は接地されていない)電位はこの特性に影響を与えることもある。本発明の1つの考えられるスプレー装置の物理的構成では、他の構成(空気流量、帯電された液滴の噴霧量、空気清浄装置による予測圧力低下、気温、湿度などを含む)と比較して大幅に異なることがあり得るし、こうした各構成について対象面の最適電位を検討しなくてはいけない。
【0063】
上述したように、本発明で使用される流体は空気清浄用に使用してもよく、この機能を実行する装置全体は、電気流体力学空気清浄装置と呼ばれることもある。最適化された電気流体力学(EHD)スプレーは、高い電荷質量比を持つ均一の液滴直径によって主に構成され、空気流から他の粒子状物質を除去できる。一般には、大気粉塵を収集できる帯電された液滴の煙を生成することが望ましく、このような微粒子収集を最適化するために重要な流体特性の例として、表面張力、伝導度、及び誘電率などが挙げられる。本発明、又は多くの種類のEHD空気清浄装置で用いるのに適した流体の種類は、同一の発明者らの一部による同時係属の特許出願に記載されており、ともにザ・プロクター・アンド・ギャンブル・カンパニー(The Procter & Gamble Company)に譲渡されている。この特許出願は、米国特許出願第10/697,229号、名称「大気粉塵の収集及び抽出用動的静電エアゾール収集装置(Dynamic Electrostatic Aerosol Collection Apparatus For Collecting And Sampling Airborne Particulate Matter)」(2003年10月30日出願)であり、米国暫定特許出願第60/422,345号(2002年10月30日出願)の便益を主張する。
【0064】
本発明の原則は、同一の発明者らの一部による別の発明にも適用でき、ノズル装置で内部及び外部電極の両方を使用し、内部電極がスプレー流体を帯電させ、外部電極が帯電されたスプレー液滴の誘導に寄与する。本発明は、同時係属の特許出願に記載され、ともにザ・プロクター・アンド・ギャンブル・カンパニー(The Procter & Gamble Company)に譲渡されている。この特許出願は、米国特許申請第10/969633、名称「内部電極及び外部電極を備える静電スプレーノズル(ELECTROSTATIC SPRAY NOZZLE WITH INTERNAL AND EXTERNAL ELECTRODES)」(2004年10月20日出願)である。
【0065】
「発明を実施するための最良の形態」で引用した全ての文献は、その関連部分において本明細書に参考として組み込まれ、いかなる文献の引用も、それが本発明に対する先行技術であることを認めるものと解釈すべきではない。
【0066】
本発明の特定の実施形態を説明し記載してきたが、本発明の趣旨及び範囲から逸脱することなく、他の様々な変形及び修正を実施できることが、当業者には明白であろう。したがって、本発明の範囲内にあるそのようなすべての変更及び修正を、添付の特許請求の範囲で扱うものとする。

【特許請求の範囲】
【請求項1】
静電ノズル装置であって、
ノズル本体、ノズル本体の表面にある流入口、ノズル本体の裏面にある複数個の流出口を備え、前記複数個の流出口はノズル本体の前記裏面から複数個の出口開口部の1つまでの予め定められた長さを延長する複数個の個別ノズル出口、前記流入口と流出口との間の内流路、及び予め定められた第1の電圧の大きさに電気的に帯電された電極を備え、前記電極が前記流路の近位に配置され、前記流路を通過する流体の少なくとも一部に電荷を付与するノズルスプレーヘッド、並びに
前記複数個の個別ノズル出口から離れて配置され、前記複数個の個別ノズル出口の方向を向く隣接面を示す前記対象部材を備え、
前記複数個の個別ノズル出口は、前記複数個の出口開口部の1つと前記複数個の出口開口部の別の1つとの間の電界強度の勾配を最小化する傾向にある大きさで配置され、前記複数個の個別ノズル出口の少なくとも別の1つと比較すると、前記複数個の個別ノズル出口の1つについて、前記裏面と複数個の各出口開口部との前記予め定められた長さは一定ではなく、対象部材の隣接面は平面である静電ノズル装置。
【請求項2】
前記複数個の個別ノズル出口は、複数個の各出力開口部で均一の電界強度を示すような大きさで配置される、請求項1に記載の静電ノズル装置。
【請求項3】
静電ノズル装置であって、
ノズル本体、ノズル本体の表面にある流入口、ノズル本体の裏面にある複数個の流出口を備え、前記複数個の流出口はノズル本体の前記裏面から複数個の出口開口部の1つまでの予め定められた長さを延長する複数個の個別ノズル出口、前記流入口と流出口との間の内流路、及び予め定められた第1の電圧の大きさに電気的に帯電された電極を備え、前記電極が前記流路の近位に配置され、前記流路を通過する流体の少なくとも一部に電荷を付与するノズルスプレーヘッド、並びに
前記複数個の個別ノズル出口から離れて配置され、前記複数個の個別ノズル出口の方向を向く隣接面を示す前記対象部材を備え、
前記複数個の個別ノズル出口は、前記複数個の出口開口部の1つと前記複数個の出口開口部の別の1つとの間の電界強度の勾配を最小化する傾向にある大きさで配置され、前記複数個の個別ノズル出口の少なくとも別の1つと比較すると、前記複数個の個別ノズル出口の1つについて、前記裏面と複数個の各出口開口部との前記予め定められた長さは一定である、静電ノズル装置。
【請求項4】
前記対象部材の隣接面は平面ではない、請求項3に記載の静電ノズル装置。
【請求項5】
前記複数個の個別ノズル出口は少なくとも2つの同心円のパターンに配置される、請求項1に記載の静電ノズル装置。
【請求項6】
前記ノズルスプレーヘッドは(a)前記少なくとも2つの同心円の第1の同心円と前記少なくとも2つの同心円の第2の同心円との間にある前記裏面の放射状の線に沿って存在する、第1の空間寸法、(b)前記少なくとも2つの同心円の前記第2の同心円と前記少なくとも2つの同心円の第3の同心円との間にある前記裏面の放射状の線に沿って存在する、第2の空間寸法を示し、及び
前記第1の空間寸法は、距離の点で前記第2の空間寸法と等しくない、請求項5に記載の静電ノズル装置。
【請求項7】
前記ノズルのスプレーヘッドは(a)前記少なくとも2つの同心円の第1の同心円と前記少なくとも2つの同心円の第2の同心円との間にある前記裏面の放射状の線に沿って存在する、第1の空間寸法、(b)前記少なくとも2つの同心円の前記第2の同心円と前記少なくとも2つの同心円の第3の同心円との間にある前記裏面の放射状の線に沿って存在する、第2の空間寸法を示し、及び
前記第1の空間寸法は距離に関して前記第2の空間寸法と等しい、請求項5に記載の静電ノズル装置。
【請求項8】
前記裏面と複数個の各出口開口部との前記予め定められた長さは複数個のノズル出口のすべてについて一定であり、前記複数個の個別ノズル出口の第1の群は第1の電圧の大きさに帯電され、前記複数個の個別ノズル出口の第2の群は前記第1の電圧の大きさとは異なる第2の電圧の大きさに帯電される、請求項1に記載の静電ノズル装置。
【請求項9】
静電ノズル装置であって、
ノズル本体、ノズル本体の第1の面にある流入口、ノズル本体の第2の面にある複数個の流出口を備え、前記複数個の流出口は複数個の個別ノズル出口、前記流入口と流出口との間の内流路、及び予め定められた第1の電圧の大きさに電気的に帯電される電極を含み、前記電極が前記流路の近位に配置され、かつ前記流路を通過する流体の少なくとも一部に電荷を付与する、スプレーヘッドを備え、
前記ノズルスプレーヘッドは、(a)前記少なくとも2つの同心円の第1の同心円と前記少なくとも2つの同心円の第2の同心円との間にある前記裏面の放射状の線に沿って存在する、第1の空間寸法、(b)前記少なくとも2つの同心円の前記第2の同心円と前記少なくとも2つの同心円の第3の同心円との間にある前記裏面の放射状の線に沿って存在する第2の空間寸法を示し、かつ前記第1の空間寸法が、距離の点で前記第2の空間寸法と等しくなく、
前記複数個の個別ノズル出口から離れて配置され、前記複数個の個別ノズル出口の方向を向く隣接面を示す前記対象部材を備え、
前記複数個の個別ノズル出口は、前記複数個の出口開口部及び前記対象部材の隣接面との間に複数の予め定められた距離が設定されるように、前記ノズル本体の裏面から複数個の出口開口部までの予め定められた長さを延長し、
前記複数個の個別ノズル出口は少なくとも2つの同心円のパターンに配置され、
複数個の個別ノズル出口を少なくとも別の1つと比較すると、複数個の個別ノズル出口の1つについて、前記隣接面と複数個の出口開口部との前記予め定められた距離は一定ではない、静電ノズル装置。
【請求項10】
静電ノズル装置であって、
ノズル本体、ノズル本体の第1の面にある流入口、ノズル本体の第2の面にある複数個の流出口を備え、前記複数個の流出口は複数個の個別ノズル出口、前記流入口と流出口との間の内流路、及び予め定められた第1の電圧の大きさに電気的に帯電される電極を含み、前記電極が前記流路の近位に配置され、前記流路を通過する流体の少なくとも一部に電荷を付与するノズルスプレーヘッド、並びに
前記複数個の個別ノズル出口から離れて配置され、前記複数個の個別ノズル出口の方向を向く隣接面を呈する前記対象部材を備え、
前記複数個の個別ノズル出口は、前記複数個の出口開口部及び前記対象部材の隣接面との間に複数の予め定められた距離が設定されるように、前記ノズル本体の裏面から複数個の出口開口部までの予め定められた長さを延長し、前記対象部材の隣接面は平面であり、
複数個の個別ノズル出口を少なくとも別の1つと比較すると、複数個の個別ノズル出口の1つについて、前記隣接面と複数個の出口開口部との前記予め定められた距離は一定でない、静電ノズル装置。
【請求項11】
静電ノズル装置であって、
ノズル本体、ノズル本体の表面にある流入口、ノズル本体の裏面にある複数個の流出口を備え、前記複数個の流出口はノズル本体の前記裏面から複数個の出口開口部の1つまでの予め定められた長さを延長する複数個の個別ノズル出口、前記流入口と流出口との間の内流路、及び予め定められた第1の電圧の大きさに電気的に帯電された電極を備え、前記電極が前記流路の近位に配置され、前記流路を通過する流体の少なくとも一部に電荷を付与するノズルスプレーヘッド、並びに
前記複数個の個別ノズル出口から離れて配置され、前記複数個の個別ノズル出口の方向を向く隣接面を示す前記対象部材を備え、
前記複数個の個別ノズル出口は、前記複数個の出口開口部の1つと前記複数個の出口開口部の別の1つとの間の電界強度の勾配を最小化する傾向にある大きさで配置され、
前記複数個の個別ノズル出口の少なくとも別の1つと比較すると、前記複数個の個別ノズル出口の1つについて、前記裏面と複数個の各出口開口部との前記予め定められた長さは一定ではなく、
前記複数個の個別ノズル出口は少なくとも2つの同心円のパターンに配置される、
前記ノズルスプレーヘッドは(a)前記少なくとも2つの同心円の第1の同心円と前記少なくとも2つの同心円の第2の同心円との間にある前記裏面の放射状の線に沿って存在する、第1の空間寸法、(b)前記少なくとも2つの同心円の前記第2の同心円と前記少なくとも2つの同心円の第3の同心円との間にある前記裏面の放射状の線に沿って存在する、第2の空間寸法を示し、及び前記第1の空間寸法は、距離の点で前記第2の空間寸法と等しくない、静電ノズル装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate


【公開番号】特開2012−50984(P2012−50984A)
【公開日】平成24年3月15日(2012.3.15)
【国際特許分類】
【出願番号】特願2011−231839(P2011−231839)
【出願日】平成23年10月21日(2011.10.21)
【分割の表示】特願2007−537969(P2007−537969)の分割
【原出願日】平成17年10月18日(2005.10.18)
【出願人】(590005058)ザ プロクター アンド ギャンブル カンパニー (2,280)
【Fターム(参考)】