説明

広角ミラーシステム

【課題】良好な複合ミラーシステムを提供すること。
【解決手段】複合ミラーシステムは、複数のミクロ層と、を有するワイドバンドの薄いフィルム干渉スタックと、大気の屈折率より大きいがスタックの最小屈折率より小さい屈折率を有する光学的に厚い層とを含む。該ミラーシステムは、例えば、支持体構造と接触することによって、汚れまたは吸収材料などの他の障害がミラーの裏側に存在する場合、反射率の低下を避けつつ、超臨界角度で、スタック内と光学的に厚い層中を、光が伝播するための高い反射率を提供することができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ミラーシステムおよび薄いフィルム干渉スタックを使用するミラーシステムに関する。
【背景技術】
【0002】
高い反射率のミラーを必要とする多くの光学製品および装置は、その目的のために薄いフィルム干渉スタックを使用する。そのようなスタックを、経済的に作製することができ、人間可視波長スペクトル、特定の光源の出力スペクトル、または特定の検出器の感応スペクトルなどの、望ましい波長バンドにわたって高い反射率を提供するように設計することができる。スタックはまた、入射光線の角度の範囲にわたって反射率を提供することもできる。優れた反射率は通常、特定の波長で、または対象の全体の波長範囲にわたって、垂直の入射光線および入射の中程度の角度に対して達成することができる。この性能は通常、意図する最終使用用途に充分に適している。
【発明の概要】
【発明が解決しようとする課題】
【0003】
しかしながら、用途またはシステムが入射の極端な角度で高い反射率も必要とする場合、そのようなスタックは、その性能を実現できない場合がある。特定の波長での干渉スタックの反射率は、(1)スタック内で隣接するミクロ層間のそれぞれ誘電体/誘電体境界面の反射率が、光のp−偏光構成要素について、入射角が増加するとともにブルースター角で最小限のゼロまで減少すること、および(2)幾何学的観点から、スタック内で隣接する境界面によって形成される光の波長間の光学経路の違いによる相のシフトが、π/2ラジアンに非常に近くなり、多数のミクロ層の累積された効果と拡張された厚さの勾配をもってしても、構造的な干渉が許容可能な反射を形成するのに不充分である、といった2つの要素のためにそのような極端な角度で低下する場合がある。要素(2)は、入射の角度が増加するにつれ、スタックの反射バンドがより短い光学的波長へとシフトし、入射の極端な角度で、反射バンドが対象の全波長範囲にもはやカバーしないほど遠くにシフトする、または対象の波長範囲のいずれの部分にさえももはやカバーしないほど遠くにシフトする、ということによって異なって表現される場合がある。要素(1)に関して、米国特許第5,882,774号(ジョンザエット(Jonzaet)ら)および、ウェーバー(Weber)らによるジャーナル出版物(journal publication)「巨大複屈折光学(Giant Birefringent Optics)」サイエンス287,2365(2000年3月31日)は、スタック内の少なくともいくつかの複屈折ミクロ層を使用することによって、および入射角が増加するとともに減少するp−偏光の光の反射率の通常の挙動(等方性のミクロ層とともに示す)を減少し、排除し、あるいはさらに覆すために隣接するミクロ層の屈折入射を選択することによって、この問題を解決することができる方法を教示する。例えば、これらの参考文献は、屈折率の適切な選択で、ブルースター角を除くことができる方法を教示する。しかしながら、そのような方法は要素(2)を解決しない。多くの場合において、要素(2)は、反射バンドを拡張するために、さらなる層を単に加えることによっては解決することができない。
【課題を解決するための手段】
【0004】
出願者は、要素(1)および(2)が極度に反射率を低下することを防止するために、入射角のより広い範囲にわたって光を反射することができるミラーシステムの必要性を確認してきた。そのようなミラーシステムは、例えば、拡散粒子または他の拡散要素を含む前側表面コーティングなど、多層干渉スタックが前側表面拡散構造と組み合せられた場合において望ましい場合がある。拡散要素は、要素(1)および/または(2)によって、多層スタックの背面の主要面、または裏側へ伝播する入射の極端な角度を含む、多層スタック内のすべての方向に光を散乱してもよい。裏側が平坦で、平滑で、汚れがなく、大気にさらされている場合、そのような光は、多層スタックの前側表面に向かって全内部反射(TIR)によって反射され、ミラーシステムの高い反射率を維持する。他方では、裏側が傷つけられ、または吸収性材料(例えば、支持部材、締結具、グリース、インク、または塵)と接触している場合、そのような光は、吸収され、システムの反射率を低下する。例えば、多層干渉スタックの前側が光拡散層でコーティングされているミラーシステムでは、多層干渉スタックの裏側への両面接着テープの1片を適用することによって、スタックへのテープの片の接触領域に対する大きさおよび形状に対応する、灰色または他の暗くなった領域を生じ、ミラーシステムの前側で目に見えるようにすることができる。テープが、接触するか、不透明なプラスチック支持体などのさらに強力な吸収性材料で置き換えられるか、またはインクを吸収する場合、該領域は、前側の観察者の見地から見てさらに暗くなる可能性がある。
【0005】
多層干渉スタックに基づく複合ミラーが、局所的に減少された裏側の反射率を示す時に前側で可視である暗くなった領域は、要素(2)とミラーの裏側での全内部反射の局部的損失との組み合せによって生じる。光が、対象の波長で(例えば、入射の高い角度でミラー反射バンド内においてシフトすることによって)適切に反射しないように、拡散要素は、入射の充分に高い角度で散乱した光の一部をミラーに入れるようにする。代わりに、この光は、ミラーの裏側へ到達し、局部的により反射の少ない領域を通じてミラーから出る。その一方で、平坦で、平滑で、汚れがなく、大気にさらされたままのミラーの裏側の隣接する領域に達する光は、全内部反射を受ける。これらの隣接領域での拡散反射率によって、ミラーをその正面から見た場合、暗くなった領域が可視となる。
【0006】
したがって、入射角のより広い範囲にわたって光を反射することができるミラーシステムに対する必要性が存在する。また、ミラーの裏側領域での局部的に減少された反射率に関わらず、前側から光の入射を均一に反射することができるミラーシステムに対する必要性も存在する。これらの必要性は、可視波長のミラーに限定されず、対象の他の波長範囲に対して生じる可能性がある。
【0007】
したがって、本出願は、特に、薄いフィルム干渉スタックを形成する、または複数のスタックを形成する複数のミクロ層と、を含む複合ミラーシステムを開示する。これらのミクロ層は、対象の波長範囲にわたって、およびミクロ層の1つの媒体と対応する参照媒体中で測定される対象の角度範囲にわたって、光を反射するために選択された屈折率および厚さを有する。この後者の範囲は、本明細書において対象のミクロ層の角度範囲と称される。該システムはまた、ミクロ層に結合する光学的に厚い層を含む。該光学的に厚い層は、大気の屈折率より大きいが、ミクロ層の屈折率より小さい中間屈折率を有する。ミラーシステムはまた、例えば、光学的に厚い層へ、そしてそこからミクロ層へ、または光学的に厚い層内に、そしてそこからミクロ層へ、「超臨界的な伝播角度」でミラーシステムへ光を注入する構成要素を含む。超臨界的な伝播角度の概念は、以下でさらに論じられるが、そのような層に対して平坦で垂直な表面を通じて大気から層へ光を注入することによって達成され得るものよりもより傾斜している、あらゆる非大気媒体(non-air medium)の層(光学的に厚い層、またはミクロ層など)において一般に伝播角度と称される。光学的に厚い層は、対象の波長範囲から対象のミクロ層の角度範囲の範囲内に注入された光を制限する役目を果たすか、または対象の波長範囲内かつ対象のミクロ層の角度範囲外の注入された光を、光学的に厚い層に組み込まれた境界面で全体的に内部に反射させる。これらの開示されたミラーシステムは典型的に、垂直入射光線だけではなく、入射の超臨界角度を含む入射の極端な角度で伝播する光に対して、薄いフィルム干渉スタック、中間屈折率の光学的に厚い層、および超臨界的な伝播角度で注入する光のための構成要素の組み合せを通じて、高い反射率を提供することができる。
【0008】
本願はまた、複数のミクロ層と、ミクロ層と結合する光学的に厚い層、ならびに実質的に90°の角度で光学的に厚い層中を伝播する光を含む光を光学的に厚い層およびミクロ層へ注入する構造を備える、ミラーシステムも開示する。ミクロ層は、参照軸線に対して概して平行であり、そして対象の波長範囲および対象のミクロ層の角度範囲にわたって光を実質的に反射するために選択された屈折率および厚さを有する。光学的に厚い層は、大気の屈折率より大きいが、ミクロ層の屈折率より小さい屈折率を有する。対象の角度範囲は、ミクロ層の1つの媒体と対応する参照媒体中で測定される角度θamax、および光学的に厚い層中での実質的に90度伝播角度と対応する参照媒体中のθamaxにまで及ぶ。
【0009】
本出願はまた、屈折率および厚さが、対象の波長範囲および対象のミクロ層の角度範囲にわたって光を反射する複数のミクロ層と、ミクロ層と結合し、そして大気の屈折率より大きいがミクロ層の屈折率より小さい屈折率を有する光学的に厚い層と、光学的に厚い層内の、または光学的に厚い層と結合する1つ以上の拡散要素と、を備え、ミラーの裏側領域で反射率が局部的に低下するにも関わらず、人間の観察者に可視光が均一に反射するように見えるように、ミクロ層の反射バンドが、近赤外にまで充分及ぶ、ミラーシステムを開示する。
【0010】
本願のこれらの態様および他の態様は、以下の詳細な説明から明らかとなろう。しかし、上記要約は、請求された主題に関する限定として決して解釈されるべきでなく、主題は、添付の特許請求の範囲によってのみ規定され、実行の間補正されてもよい。
【図面の簡単な説明】
【0011】
【図1】材料「a」と「b」の相互のミクロ層を有する薄いフィルム干渉スタック上に大気から斜め入射する光の概略的断面図。
【図2a】図1の様々な媒体内での光の移動に対する可能性がある伝播角度の範囲を示す角度プロットであり、大気媒体中の光のためのものである。
【図2b】図1の様々な媒体内での光の移動に対する可能性がある伝播角度の範囲を示す角度プロットであり、スタックの「a」ミクロ層内の光のためのものである。
【図2c】図1の様々な媒体内での光の移動に対する可能性がある伝播角度の範囲を示す角度プロットであり、スタックの「b」ミクロ層内の光のためのものである。
【図3】入射の垂直の入射およびいくつかの斜角で、等方性の薄いフィルムスタックの反射バンドを表すいくつかの理想的な曲線を伴う、反射率対波長のグラフ。
【図4】異なるミラーシステム形状のためのスタックの「a」ミクロ層における平均反射率対伝播角度(θ)の理想的なグラフを表わし、反射率は、対象の波長(または、波長範囲にわたって平均化された)での光であり、すべての偏向状態にわたって平均化される。
【図5】スタック内に超臨界角度で光を注入できる構造と結合する薄いフィルムスタックを有するミラーシステムの概略的側面図。
【図6】スタック内に超臨界角度で光を注入することができる代替の構造を有するミラーシステムを表わす。
【図7】スタック内に超臨界角度で光を注入することができる代替の構造を有するミラーシステムを表わす。
【図8】スタック内に超臨界角度で光を注入することができる代替の構造を有するミラーシステムを表わす。
【図9】薄いフィルムスタックおよびスタック内の光の伝播角度を制限する中間屈折率の光学的に厚い層を含み、光学的に厚い層の組み込まれた境界面で、スタックが完全に内部で反射される能力を超えた極端な入射の角度で光を伝播させる、広角ミラーシステムの概略断面図。
【図9a】図9の様々な媒体内で光が移動するための伝播角度の範囲を示す角度プロットであり、注入層(「c」)内での光を表す。
【図9b】図9の様々な媒体内で光が移動するための伝播角度の範囲を示す角度プロットであり、光学的に厚い中間屈折率層(「i」)中での光を表す。
【図9c】図9の様々な媒体内で光が移動するための伝播角度の範囲を示す角度プロットであり、スタックの最低屈折率「a」ミクロ層内での光を表す。
【図10】別の広角ミラーシステムの概略的断面図。
【図10a】光が図10の様々な媒体内での移動に対する伝播角度の範囲を示す角度プロット。
【図10b】光が図10の様々な媒体内での移動に対する伝播角度の範囲を示す角度プロット。
【図10c】光が図10の様々な媒体内での移動に対する伝播角度の範囲を示す角度プロット。
【図11】さらに別の広角ミラーシステムの概略的断面図。
【図11a】光が図11の様々な媒体内での移動に対する伝播角度の範囲を示す角度プロット。
【図11b】光が図11の様々な媒体内での移動に対する伝播角度の範囲を示す角度プロット。
【図12】実施例において論じる様々なミラーシステムのための分光透過率または反射率を示すプロット。
【図13】実施例において論じる様々なミラーシステムのための分光透過率または反射率を示すプロット。
【図14】実施例において論じる様々なミラーシステムのための分光透過率または反射率を示すプロット。
【図15】実施例において論じる様々なミラーシステムのための分光透過率または反射率を示すプロット。
【図16】実施例において論じる様々なミラーシステムのための分光透過率または反射率を示すプロット。
【発明を実施するための形態】
【0012】
この発明を実施するための最良の形態の目的として、用語「大気」とは、標準温度および圧力での地表大気、または他の温度または圧力を指すことができ、またさらには真空を指すことができる。そのような媒体の屈折率間の微妙な区別は、本明細書においては無視され、屈折率は本質的に1.0であると仮定される。また、発明を実施するための最良の形態の目的として、以下の専門用語が使用される。
【0013】
minは、いずれかの軸線に沿った、波長または対象の波長範囲でのスタックにおけるいずれかのミクロ層の最小屈折率である。
【0014】
a、bは、薄いフィルムスタックに使用される光学材料、またはaは少なくとも1つの軸線に沿った屈折率nminを有し、bはnminよりも大きい少なくとも1つの軸線に沿った屈折率を有し、またb材料は通常、スタックで(いずれかの軸線に沿った)最大の屈折率も有する、そのような材料から成るミクロ層である。これはフィルムスタックがただ2つの異なるタイプのミクロ層に限られることを意味せず、スタックは、「a」と「b」以外の光学材料も含む。
【0015】
iは、大気の屈折率(n=1)およびスタックの屈折率(n=nmin)の間の中間屈折率nを有する、別の光学材料、層、またはそのような材料から成る他の物体である。
【0016】
cは、いずれかの軸線に沿った屈折率がnよりも大きく、通常実質的にnおよびnminよりも大きい、そのような材料から成る別の光学材料、層、または他の物体である。一部の場合において、「c」材料は「a」材料、または「b」材料であることが可能である。
【0017】
は、波長、または対象の波長範囲での、所定の材料または層x(x=a、b、c、またはi)の屈折率である。材料が複屈折である場合、nは、特定の軸線に沿った(例えば、x−、y−、またはz−軸線に沿った)屈折率であるか、または所定の方向に伝播する特定の偏向状態(例えば、s−またはp−偏光、あるいは左または右側の円偏光に対して)に対しての有効屈折率であることが可能である。
【0018】
対象の波長範囲は、通常、可視または近可視光線(例えば、400〜700nm波長)、近赤外光線(例えば、これらの範囲の1つの選択が検出器または透過媒体に時折左右されて、700〜1000nm、700〜1400nm、または700〜5000nm)、あるいは可視および近赤外光線の両方である。他の範囲もまた、波長範囲または対象として使用されてもよい。例えば、ミラーシステムが、LEDまたはレーザーなどの、狭周波数帯エミッタ−を用いたシステムで使用される場合、対象の波長範囲は比較的狭い場合がある(例えば、100nm、50nm、10nm、またはそれ以下)。ミラーシステムが、液晶ディスプレイ(LCD)装置、または他のディスプレイ用のバックライトなどの照明システムに使用される場合、対象の波長範囲はより広範(例えば、400〜800nm、400〜900nm、400〜1000nm、400〜1200nm、400〜1400nm、400〜1600nmまたは400〜1700nm)である場合があり、これらの範囲はさらに以下により詳しく説明する理由で可視を超えて及ぶ。
【0019】
θは、媒体xに、または媒体xの表面に垂直である軸線と関連する媒体xで測定される、媒体xで伝播する光線の角度である。
【0020】
θxcは、媒体xのための臨界角、すなわち、光をグレージング角(90°)で隣接する大気媒体へ反射するための、媒体xで測定される入射角である。第2の下付き文字「c」は、「臨界」を示し、第1の下付き文字としてあらわれる場合がある光学材料「c」と混同されるべきではないことに留意されたい。
【0021】
θxlimは、臨界角と類似の媒体xのための制限された角度であるが、隣接する媒体は、大気ではない。したがって、θxlimは、光を、グレージング角(90°)で隣接する非大気媒体に反射するための媒体xで測定される入射角である。
【0022】
θamaxは、薄いフィルムスタックが、対象の波長範囲にわたって適切な反射率を提供するための、媒体「a」で測定される最大光伝播角度である。この角度は、意図する用途において所要の、または目標反射率のような多くの要素の機能であり、ミクロ層の総数、ミクロ層スタックの厚さの勾配、ミクロ層間の屈折率の相違など、スタック設計の詳細である。
【0023】
ここで図1を参照すると、概略的断面図において、屈折率n=1の大気媒体にさらされた薄いフィルム干渉スタック10を見て取れる。デカルトx−y−z座標系はまた、参照の目的でも示される。特定の波長の光12は、角度θでのスタック上の入射であり、反射されたビーム12aと、透過ビーム12bを生じるためにスタックと接触する。
【0024】
スタックは典型的に、例えば4分の1波長スタックなど、干渉スタックに配置された光学材料a、bのそれぞれ構成された、数十、数百、数千のミクロ層14a、14bを含む。光学材料a、bは、無機物(Tio、Sio、CaF、または他の従来の材料など)であろうが、有機物、例えばポリマー(ポリエチレンナフタレート(PEN)、ポリメチルメタクリレート(PMMA)、ポリエチレンテレフタレート(PET)、アクリル、および他の従来の材料)であろうが、干渉スタックにおいて実用性を有することが既知であるいずれかの適切な材料であることが可能である。スタックは、すべて無機物、すべて有機物、または混合された無機物/有機物構造体を有してもよい。初めに、説明を簡潔にするために、ミクロ層が等方性である場合を論じるが、結果は、複屈折ミクロ層に容易に及ぶことが可能である。複屈折ミクロ層は、あらゆる偏向の垂直な入射光を均一に反射する、対称反射システム、または、1つの偏向に対する垂直な入射光に高い反射率を有し、直交する偏向に対する垂直な入射光に低い反射率を有する非対称反射システムで使用されてもよい。
【0025】
ミクロ層は、光の波長の一部である光学的な厚さ(屈折率によって積算された物質的厚さ)を有する。ミクロ層は、例えば、光学的な反復単位(ORU)の光学的な厚さが、対象の波長範囲での光の波長の半分である、ORUと称される反復するパターンに配列される。そのような薄い層は、波長依存の反射およびスタックの透過特性に関与する光が建設的または相殺的になることを可能にする。スタック10のためのORUは、層abの1対であるが、米国特許番号第5,103,337号(シュレンク(Schrenk)ら)、同第3,247,392号(テレン(Thelen))、同第5,360,659号(アレンズ(Arends)ら)、および同第7,019,905号(ウェーバー)で論じられる配置などの、他の既知の配置もまた可能である。スタックの厚さ面積に沿って変化するORUの光学的厚さである、厚さの勾配は、望ましい場合、反射バンドを広げるためにスタックへ組み込まれることができる。スタック10は、その全体の範囲にわたって平坦または平面である必要はないが、所望に応じて非平面形状に形成、成形、エンボス加工が可能である。しかしながら、少なくとも局部的に、図1に示されるスタックの一部のように、ミクロ層は、局部x〜y座標面に対して実質的に平行に位置するまたは及ぶと言える。したがって、局部z軸線は、ミクロ層に垂直であり、隣接するミクロ層間の各境界面に垂直である。
【0026】
図の簡素化のために、図1に、入射光線12の屈折した一部のみが表わされているが、閲覧者は、反射された光の波は、ミクロ層の境界面でも形成され、それらの波のコヒーレント積算が反射ビーム12aをもたらすことを理解するであろう。入射光線12がスタック10に接触すると、大気中のθの角度からミクロ層14aのθの角度へ屈折する。そこから、ミクロ層14bへ入る時にさらに表面垂線に向かって(z軸線に垂直である)屈曲し、伝播角度θを達成する。相互のa、b層でのさらなる屈折の後、光は、スタック10を通じて透過されたすべての波のコヒーレント積算としても認識される透過ビーム12bとしてあらわれる。
【0027】
ここでは入射光線の方向を変化することの影響について考察する。入射光線の方向に制限を設けない場合、例えば、大気中のすべての方向からスタックを照射した場合、入射角θは、0〜90°、または0〜π/2ラジアンの範囲である。ミクロ層中の光の伝播角度も変化するが、異なる屈折率のために、角度はπ/2半角を一掃しない。むしろ、角度は、θac(層14aに対する)およびθbc(層14bに対する)の半角を一掃する。これは、図2a〜cの角度プロットにグラフで示される。図2aにおいて、π/2の半角を有する弧20は、大気媒体からのすべての伝播方向を表す。そのような伝播方向は、実際に3次元で半球を形成し、図2aは、y〜z面での半球の部分を示す。屈折を通じて、この大気中の入射角の範囲は、図2bに示す光学材料での入射角のより狭い範囲へ並進する。その図において、半角が臨界角θacである実線の弧22aは、層14aにおける注入された光のすべての伝播方向を表す。臨界角θacを、sin−1(1/n)として計算することができる。波線の弧22bは、本明細書においては超臨界的な伝播角度として称されるθacよりも大きい伝播角度θを表す。したがって、超臨界伝播方向または角度は一般に、平坦でありそのような層に平行な表面を通じて、大気から光を層へ注入することによって達成され得る以上に傾斜したいずれかの非大気媒体(光学的に厚い層またはミクロ層など)の層における伝播角度に言及する。これはまさに図1における場合であるため、―光が、問題になっているミクロ層14aに平坦であり垂直である表面を通じて大気中においてすべての角度からスタック10へ注入され、―これらの臨界超過角度でミクロ層14a内で光を伝播せず、したがって弧22bは、実線よりはむしろ波線で示される。
【0028】
図2cの角度プロットは、図2bのものと類似しているが、高い屈折率のミクロ層14bにおける伝播する光に対するものである。半角が臨界角θbc(sin−1(1/n)と等しい)である実線の弧24aは、層14bにおける注入された光のすべての伝播方向を表す。波線の弧24bは、θbcよりも大きい伝播角度、すなわちミクロ層14bにおける臨界超過角度を表す。図1の大気注入の配列を使用することで、これら超臨界角度では光を伝播しない。
【0029】
図3は、図1のスタック10などの薄いフィルムスタックの理想的な反射率特性のグラフを示す。曲線30は、垂直入射でのスタックの反射率、すなわち、θ=θ=θ=0を示す。薄いフィルム設計の当業者は、適した屈折率の相互性の材料、スタックにわたるミクロ層の厚さ特性、および示される特性(可視領域31全体に拡張しおよび、近赤外へ拡張し、はっきりとした左側および右側バンド縁部を有し、少なくとも70%、80%、または90%以上の少なくとも可視領域全体にわたって(および一部の用途に対し、近赤外全体にもわたって)高い平均反射率を有する、反射バンド)を有するスタックを提供するためのミクロ層の総数を容易に選択することができる。例えば、複屈折の多層スタックを使用する3M社によって販売されるビキュイティ(Vikuiti)(商標)強化鏡面反射体(Enhanced Specular Reflector)(ESR)フィルムを参照する。また、実施例において以下で論じられるように、反射バンドがさらに赤外線へ及ぶ薄いフィルムスタックに対するビキュイティ(商標)EDRフィルムなどの複屈折多層スタックをラミネート加工することによって作製され得る変性フィルムを参照する。
【0030】
入射角が0°から増加する場合、上述の要素(1)および(2)に関連する2つの効果が生じ始める。まず、ミクロ層間の境界面の反射率はs−偏光(入射面に垂直に偏向される)と比較してp−偏光(入射面で偏向される)に対して異なり、垂直の入射反射バンドを、p−偏光に対する第1の反射バンド32aおよび、s−偏光に対する異なる第2の反射バンド32bに分割する結果となる。薄いフィルムスタックに等方性の材料のみが使用された場合、p−偏光に対する反射バンドの頂点反射率は、p−偏光の反射率がゼロになる時点で、ブルースター角が達成されるまで入射角が増加することに伴って単調に低下する。次に、反射バンド32a、32bの両方は、要素(2)と関係して上述の相シフトの効果により、より短い波長へとシフトする。入射角がさらに増加すると、反射バンドは、p−偏光に対する第1の反射バンド34aおよびs−偏光に対する第2の反射バンド34bによって示されるより短い波長へと継続してシフトする。ブルースター角へ入射角が接近するとp−偏光に対する頂点反射率が低下するが、増加する入射角に伴ってs−偏光に対する頂点反射率は増加することに留意されたい。
【0031】
要素(1)に関して、米国特許第5,882,774号(ジョンザ(Jonza)ら)は、増加する入射角に伴うp−偏光に対する反射率の低下が、どのように低下され、排除され、または逆行され得るかを示す。要するに、隣接するマイクロ層間のz−軸線に沿って不一致の屈折率が、面内(x−またはy−)の軸線に沿った屈折率の不一致と関連するサインで、小さい(例えば、2分の1または4分の1またはそれ以下)、ゼロ、または反対となるように制御されるように、複屈折材料は、フィルムスタックで使用される。ゼロまたはほぼゼロの大きさのz−屈折率の不一致が、p偏光に対する反射率が入射角の関数として一定またはほぼ一定である界面をミクロ層の間にもたらす。面内屈折率の差異と比較して、異極性のz−屈折率の不一致は、s−偏光の事例として、p−偏光に対する反射率が入射の角度が増加することに伴い増加する境界面をもたらす。このような教示を使用することにより、薄いフィルムスタックが、s−偏光およびp−偏光の両方に対して高い頂点反射率を維持することを容易にすることができる。
【0032】
しかしながら、上述のように、すべての偏光に対して高い反射率の境界面を保つことは、入射角が増加する、すなわち要素(2)の場合に、反射バンドがより短い波長へとシフトするのを止めることに対し、あまり影響がないか、全く影響しない。実際に、ブルースター角を拡張するか、または除くための複屈折材料の使用は、角度を伴う波長のシフトを加速する場合がある。結局、ある角度で、反射バンドはもはや対象の波長範囲をカバーせず、そのスペクトル範囲の反射率は受容可能なレベルまたは目標より下へ下降する。この角度は、θamaxとして参照される。それは、スタック媒体aで評価されるか、または測定される。
【0033】
設計の観点から、θamaxを、薄いフィルムスタックにより多くのミクロ層を付加することによって、より大きい光学的な厚さの層を含むために層の厚さ特性を拡張することによって、より高い角度へ増加することができる。しかし、適度に高い目標反射率値について、θamaxは、ミクロ層のいずれかの有限数でも90°に達することはできない。
【0034】
一部の場合において、ブルースター角を完全に除くために、z−屈折率の不一致を調整するよりはむしろ、90度(等方性のミクロ層のみを有する多層スタックに関連して)に近い対応する境界面で、ブルースター角を単に拡張するために多層スタックにおいて隣接するミクロ層間のz−屈折率の不一致を調整することに充分である場合がある。例えば、媒体「a」で測定される場合、それが、ブルースター角がθamaxよりも大きくなることに充分である場合がある。
【0035】
高い界面p−偏光反射率を達成するためにz−屈折率の一致技術を使用する薄いフィルムスタックに対しても、高い入射角でのs−反射バンドおよびp−反射バンドは異なる形状を有し、左側および右側バンド縁部が入射角の変化に伴って同じ量でシフトしないため、異なるバンド幅を有することにも留意されたい。s−反射バンドおよびp−反射バンドの間の違いは、90°に接近する超臨界角度θに対して最も明白である。典型的に、p−偏光反射バンドは、s−反射バンドよりも狭く、θが増加すると、p−反射バンドの右側バンド縁部は、s−反射バンドが移動する前に対象の所定の波長にわたって移動する。言い換えると、スタックがp−偏光のための高い界面の反射率のために設計されたとしても、θが増加する場合、波長または対象の波長範囲での反射率の最初の大きな下降は典型的に、より短い波長に対するp−偏光のための反射バンドのシフトによるものであるが、そのような角度のs−偏光の反射率は、波長または対象の波長範囲で高い状態を維持してもよい。
【0036】
1つの模範的な例において、550のミクロ層を有する複屈折4分の1波長の薄いフィルムスタックを評価した。「a」層は、633nmでポリメチルメタクリレート(PMMA)光学材料の典型例であるx−、y−、およびz−軸線に沿ってそれぞれ1.49、1.49、および1.49の屈折率を有していた。これらは、約42°の臨界角θacをもたらす。「b」層は、633nmで配向ポリエチレンナフタレート(PEN)光学材料の典型例であるx−、y−、およびz−軸線に沿ってそれぞれ1.75、1.75、および1.49の屈折率を有していた。該模範はまた、PMMAおよびPEN材料の実際の分散性も考慮に入れた。好適な層の厚さの勾配で、スタックの垂直な入射反応バンドは、約400nmから約1600nmに及ぶように作製されることが可能である。反射バンドは、0〜約65°の伝播角度θに対する可視領域にわたり、約99%の平均反射率を維持した。約65°を超えると、p−反射バンドのシフトは、平均反射率における急激な降下に関与した。したがって、θamaxは、99%の目標平均反射率に対し約65°であった。
【0037】
図4は、媒体「a」において、平均反射率対伝播角度θの理想的な表現をプロットし、スタックの特定のタイプに対して正確であると考えられる定性的な特性を包含する。反射率は、すべての偏向状態および対象の波長範囲にわたって平均であると仮定される。曲線40は、上述の550の層のスタックに類似して、隣接するミクロ層間で一致する実質的なz−屈折率を有する複屈折スタックの反射率を表わす。曲線42は、同様の多くのミクロ層および類似の垂直入射の反射バンドを有する、完全に等方性のスタックの反射率を表わす。曲線40、42の両方は、垂直入射で、θの中程度の値に対して、高い反射率を有する。また、両曲線は、超臨界角度θamax(2)の近傍で急激に降下する。より短い波長へのバンドのシフトによって、反射バンドを対象の波長範囲の外側へ移動させるのは、この角度θamax(2)の近傍である。曲線40は、その良好な斜角p−偏光反射率によって、範囲0≦θ≦θamax(2)にわたり、比較的高い反射率を維持する。曲線42は、対照的に、その範囲にわたって反射率が低下し、ブルースター角の影響によってθamax(1)の角度で、目標平均反射率41を下回って低下する。曲線40は、角度θamax(2)で、目標反射率41を超える。目標平均反射率41が薄いフィルムスタックの設計において変化を伴わずより高くなるように選択された場合、θamax(1)およびθamax(2)は、より小さい角度へとシフトし、目標平均反射率41がより低くなるように選択された場合、θamax(1)およびθamin(2)は、より高い角度へシフトすることに留意されたい。目標平均反射率の選択は、ミラーの意図される用途に強く左右されるが、一般的な値は90%、95%、96%、97%、98%、および99%を含む。
【0038】
スタックにおいて超臨界伝播光を注入するために使用することができる様々な構造、および設計者が反射機能を達成するために従来の薄いフィルムスタックのみを使用する場合に起こり得る問題についての議論について、ここで図5〜8に注意を向ける。プリズム、導光体、拡散粒子(例えば、散乱体)、あるいは粗面化またはミクロ構造化された表面などの構造は通常、スタックに超臨界光を注入する単独の目的のためには提供されない。むしろ、超臨界光の注入は、意図される最終使用用途で構造が果たす機能の結果である。
【0039】
図5において、屈折率nを有する光学材料「c」で作製されたプリズム50は、光学材料「a」および「b」から成るミクロ層を代わりに含む薄いフィルムスタック52と光学的に結合し、好ましくは光学的に密接に接触する。光学材料cは、材料aまたはbと同一であってもよいが、nは、スタックのミクロ層の最小屈折率nmin以上である。プリズム50は、物理的に大きいか、または小さく、図面に対して垂直な軸線に沿って直線的に拡張してもよく、または形状が角錘であってもよく、類似または非類似のプリズムの1つの配列であってもよい。プリズム表面は、平坦または均一である必要はなく、いずれかの適したプリズム角度を使用できる。例えば、両方が3M社によって販売される、ビキュイティ(商標)輝度強調フィルム(Brightness Enhancement Film)(BEF)の製造品目、または3M(商標)スコッチライト(Scotchlite)(商標)反射材料の製造品目で具現化されるあらゆるプリズム幾何学が使用可能である。
【0040】
フィルムスタック52は、前述のフィルムスタック10と類似であることが可能である。スタック52は好ましくは、単一のスタックまたはパケットに、あるいは光学的に厚い保護境界層(PBL)によって分離された複数個のスタックまたはパケットに配列されてもよい数十、数百、または数千のミクロ層を含む。ミクロ層の数、ならびにその厚さおよび屈折率は、対象の波長範囲にわたり、また超臨界角度を含み、0≦θac≦θamax≦90°である最大角度θamaxに及ぶ伝播角度θの範囲にわたる、目標反射率よりも大きい平均反射率を提供するために選択される。スタック52はまた、その外側主要面で光学的に厚い表面薄層を含んでもよい。この点について、1つの層は、その光学的厚さが、対象の波長範囲の平均波長、またはそれ以上に近似している場合、光学的に厚いと言える。好ましくは、光学的な厚さは、そのような平均波長の少なくとも10、50、または100倍である。あらゆる表面薄層またはPBLは、スタックのミクロ層の最小屈折率nmin以下のいずれの屈折率も有しないという条件で、薄いフィルムスタックの一部であると考えられてもよいことにも留意されたい。通常、あらゆる表面薄層、またはPBLは、ミクロ層のために使用される材料a、bの1つから成る。フィルムスタック52は、完全にポリマーであってもよく、上述の界面p−偏光反射率を高めるために、ミクロ層中に適した量の複屈折を生じさせるように、共押出プロセスおよび好ましくは延伸プロセスによっても作製されてよい。あるいは、フィルムスタック52は、無機材料を含むか、あるいはそれに限定されてもよく、真空蒸発技術によって作製されてもよい。無機材料を使用し、複屈折を形成することができる複屈折薄いフィルムスタックの教示のための、米国特許第6,590,707号(ウェーバー)を参照されたい。フィルムスタック52が、プリズム50から独立して生産される場合、それを光学的接着剤の光学的に薄いまたは厚い層、あるいは他の適した材料でラミネート加工することができる。
【0041】
対象の波長範囲内で光を放射している光源54からの光は、フィルムスタック52に対して実質的に傾斜するプリズム表面56でプリズム50に突き当たる。光はプリズム50へ屈折し、次にスタック52へぶつかる。プリズム表面56の傾斜およびプリズムの屈折率nの結果として、光を臨界角θacよりも大きい角度、すなわち超臨界角度で、スタック52に伝播することができる。スタック52は、上述のように、一部の超臨界角度θac≦θ≦θamaxを含む、θ=0およびθ=θamax間の角度で伝播する、対象の光を満足に反射する。しかしながら、スタック52は、本明細書においては、極端な伝播角度または極端な入射角と称されるθ>θamaxに対する他の超臨界角度で伝播する光を満足に反射しない。図5に示すように、そのような光は、スタックの外側の主要面52aに届くまで、スタック52全体を通じて伝播する。表面52aが平坦で、平滑で、汚れがなく、大気にさらされている場合、この光は、表面52aで全内部反射(TIR)を受け、それが極端でない入射角(0≦θ≦θamax)で伝播する他の光と同様に反射されたかのように、スタック52を通じて逆に伝播し、プリズム50へ入る。しかしながら、表面52a(またはその一部)は、脂っぽく、汚れて、傷付き、ないしは、例えば、取り付け金具、支持部材、基材、またはコーティングなどの別の材料と接触している場合がある。表面52aに対するそのような障害は、障害58によって図5に概略的に表わし、表面52aで局部的に低下された反射率の領域を表わす。したがって、障害58が位置するかどうかに関わらず、極端な伝播角度での光は表面52aを通じてスタック52を出て、その位置で反射率を低下する。スタックを通じて伝わるか、または漏れる光は、図中で59と標識付けされる。
【0042】
図6において、プリズム50は、導光体60によって置き換えられ、光源54は、その側面60aを通じて導光体60へより効果的に光を注入することを助けるために反射体54aを含む。導光体は、上述のように光学材料「c」から作製され、また上述のように、薄いフィルムスタック52に光学的に結合する。導光体は、あらゆる所望の大きさまたは形状であってもよく、均一な厚さまたは先細であってもよい。導光体は、例えば、携帯電話、ラップトップ型コンピュータ、テレビ、または他の用途における液晶ディスプレイ(LCD)のためのバックライトでの使用に好適であってもよい。抽出特性62は、前面上、あるいは液晶パネルまたは照らされる他の構成要素に向かって光を導光体の外へ導くことが知られる導光体上または内の他の場所で提供される。
【0043】
光は、側面60aを通じて導光体60へ注入されるため、光を、導光体内およびスタック52内でも、高い入射角で伝播することができる。上記で説明されるように、スタックは、0≦θ≦θamaxからの角度で伝播する対象の波長であらゆる光を満足に反射するが、極端な伝播角度では光を満足に反射しない。スタックの外側の主要面52a上の局部的障害物58によって、そのような光59を、表面52aを通じてスタック52から出し、再びその位置で反射率を低下させる。
【0044】
図7において、導光体60は、屈折率nのマトリックス材料で分散された拡散粒子72を含有する光学的要素70によって置き換えられる。粒子72は、実質的に光を散乱させる限りは、組成物、大きさ、分配、ないしは別のもので、あらゆる所望のタイプまたは構成であることが可能である。構成要素70は、比較的薄いか厚い層、またはより複雑な構造であることが可能である。例えば、構成要素70は、表面薄層であってもよい。構成要素70は、感圧性接着剤または他の接着剤などの接着層であってもよい。光源54からの光は、大気媒体から構成要素70へ入ってもよいが、粒子72のため、光は散乱し、構成要素70内の本質的にすべての方向に伝播する。次に、この光はすべての角度からスタック52にぶつかる。スタックは、0≦θ≦θamaxからの角度で伝播する対象の波長範囲であらゆる光を満足に反射するが、極端な伝播角度では光を満足に反射しない。スタックの外側主要面52a上の局部的障害物58によって、そのような光を表面52aを通じてスタック52から出し、その位置で反射率を低下させる。
【0045】
図8において、光学的構成要素70は、非平滑化され、粗面化され、ミクロ構造化され、ないしは平滑でない表面上80aを有する構成要素80によって置き換えられる。表面80aは、単にマット仕上げで粗面化されてもよく、精密な幾何学模様でミクロ複製されてもよく、またはホログラムのような回折要素を形成する微小なファセットを含有してもよい。光学的構成要素80は、屈折率nの光学材料「c」から成る。光が光学的構成要素80に高い入射角で伝播するように、平滑でない表表面80aは、大気媒体中にあってもよい光源54から光を屈折、回折、ないしは散乱する。スタック52は構成要素80と光学的に結合し、構成要素80からの光はすべての角度から、または少なくとも超臨界角度の範囲にわたってスタックにぶつかる。スタックは、0≦θ≦θamaxからの角度で伝播する対象の波長範囲内であらゆる光を満足に反射するが、極端な伝播角度では光を満足に反射しない。スタックの外側主要面52a上の局部的障害物58によって、そのような光59を表面52a通じてスタック52から出し、その位置で反射率を低下させる。
【0046】
閲覧者は、スタック内の超臨界伝播光を注入することについて、図5〜8に示される構造が単に代表的なものであり、限定的であると見なされないことを理解するであろう。さらに、該構造は、プリズム内で粒子を拡散することを組み込むこと、または導光体上で平滑でない表面を組み込むことなど、あらゆる方法に組み込まれることができる。
【0047】
スタックの外側表面上、またはミラーシステムの別の外側表面での局部的障害物で光を失うことになく、極端な伝播角度で光を反射することができるミラーシステムを提供するために、図9〜11は、大気およびスタック内のミクロ層の最小の屈折率nminの間の中間屈性率nを有する光学材料「i」から成る、光学的に厚い層94を取り入れる。薄いフィルムスタック内の材料の選択に左右される代表的な低屈折率材料は、フッ化マグネシウム、フッ化カルシウム、シリカ、ゾルゲル、ならびにフルオロポリマーおよびシリコーンなどの有機フィルム形成材料のような無機材料を含む。エアロゲル材料は、約1.2以下、または約1.1以下の極めて低い有効屈折率を達成することができるため、特に好適である。エアロゲルは、溶媒で充填されたコロイド上状のシリカ構造単位から成るゲルの乾燥の高い温度および圧力の臨界点によって作製される。得られる材料は疎密度であり、ミクロ孔質の媒体である。多層スタック内のミクロ層の屈折率に応じて、より高い屈折率材料は、一部の場合において、例えば、屈折率が約1.5以下、1.4以下、または1.3以下などの光学的に厚い層に使用されてもよい。光学的に厚い層は、全内部反射の現象を避けるために、好ましくは少なくとも約1マイクロメートル、または少なくとも約2マイクロメートルである。
【0048】
図9において、ミラーシステム90は、光学材料「c」の第1の層92および光学材料「i」の光学的に厚い層94と共に、上述のように薄いフィルムスタック52を含む。第1の層92は、要素50、60、70、または80のいずれか1つ、またはこれらの組み合せであることが可能である。それは、光学的に厚い、光学的に薄い、微視的、巨視的、有機(例えばポリマー)または無機であることが可能である。上述のいずれかのメカニズムを使用し、光は、層92内の超臨界的な伝播角度で、およびすべての伝播角度にわたる代表的な実施形態において、伝播する。図9aは、完全な半円弧100が、材料c内で入射θのすべての角度で移動する光を表す、層92内で伝播する光の角度プロットを示す。図9aはまた、材料cに対する臨界角θcc、加えて限界角θclimも示す。材料c内の限界角θclimで伝播する光は、グレージング入射で層94のより低い屈折率材料「i」へ屈折する。したがって、θclimよりも大きい角度で層92内で伝播する光は、層92が層94に接触する組み込まれた表面94aで完全に内部に反射される。この光は光線96によって図9に表わされる。層92内で伝播する他の光は、層94へ屈折し、そこで図9bの半円弧102によって表わされる角度のすべての範囲にわたり伝播する。層94内で伝播する光は、媒体「i」内の臨界角θicよりも大きい角度での光を含むことに留意されたい。
【0049】
好ましくは、層94の屈折率nは、媒体「i」内でグレージング入射θ=90°で伝播する光が、角度θ≒θamaxでスタックの媒体「a」へ屈折するように、スタック52設計の機能として選択される。この状態は、超臨界角度および媒体「i」内の極端な角度においてさえ伝播する光が、スタックによって満足に反射され得る角度(目標平均反射率またはそれ以上で、および対象の波長範囲内で)で、材料「a」の層へ屈折することを確実にする。同様に、角度θ>θamaxで材料「a」内で伝播し、材料「i」とともに境界面に接触するあらゆる光は、そのような境界面で完全に内部に反射する。
【0050】
材料「i」のこの選択で、外側主要面52aへ実質的に届く光はなく、層94からスタック52上にぶつかる対象の波長範囲内のすべての光は、スタックによって反射される。図9cは、より高い角度で伝播する光がないことを示す弧104bと共に、弧104a(0≦θ≦θamax)内のスタック内でミクロ層の「a」材料内で伝播する光を示す。図9は、スタック52によって反射された、漸次より高い入射角の光98a、98b、98cを示す。層92からの一部の光は、層94の組み込まれた表面でTIRによって反射され、層92からの光の残部は、表面52aにいずれの光も届くことを可能にすることなく、スタック52によって反射される。したがって、図5〜8のミラーシステムとは異なり、図9のミラーシステム90は、ミラーシステムの外側表面、すなわち表面52aでいかなる障害に対しても敏感ではない。しかし、ミラーシステム90は、スタック52および光学的に厚い層94の組み合せを通じて少なくとも目標平均反射率を有するすべての角度で光を反射することができる。したがって、ミラーシステム90は、対象の波長範囲に前面、「漏れないミラー(non-leaky mirror)」を提供する。
【0051】
図10は、システム90と類似のミラーシステム110を示すが、層92、94の間に挟まれるように、スタック52の配置が変更される。ここでも、光は、超臨界的な伝播角度で、およびすべての伝播角度にわたる代表的な実施形態において、層92内で伝播する。図10aは、θccよりも大きい超臨界角度を含む、完全な半円弧114が材料c内の入射θのすべての角度で移動する光を表わす、層92内で伝播する光の角度プロットを示す。次に、この光は、材料「a」および「b」のそのミクロ層を含む、スタック52に接触する。垂直入射光線112aおよび一部の斜め入射光112bは、0〜θamaxの範囲の角度θで光学材料「a」へ屈折するため、通常、スタック112によって反射される。しかしながら、残部光は、極端な伝播角度で材料「a」へ屈折され、スタックによって満足に屈折されない。弧116が、θamaxよりも大きい角度を含むすべての入射角θで材料「a」内で伝播する光を表わす、図10bを参照のこと。
【0052】
幸いにも、層94は、組み込まれた表面94aで、光112cなどの極端な伝播光を完全に内部に反射する屈折率nを有する。そのような光はスタック52を通じて層92へ逆に進む。上方からの層94上でのすべての光の入射は、表面94aで反射され、図10c内の弧118は、層94内で光が伝播しないことを示す。層94の下側主要面上におかれるあらゆる障害58は、層94が層を通じてトンネリングするあらゆるエバネッセント波(evanescent wave)を避けるのに充分に厚いため、ミラーシステム110の反射率に影響しない。したがって、ミラーシステム110もまた、対象の波長範囲に前面「漏れないミラー」を提供する。
【0053】
図11は、図9のシステム90と類似のミラーシステム120を示すが、層92は排除され、超臨界角度で光を注入するための上述の構造のいずれもが、中間屈折率材料「i」の光学的に厚い層94へ組み込まれる。したがって、光は、光を材料「i」においてすべての角度θで伝播するように、層94へあらゆる開示された技術によって注入される。これは、図11aの弧124によって示される。上述の材料「i」およびその屈折率nの選択のため、この光のすべては0≦θ≦θamaxからの角度の範囲にわり、材料「a」のミクロ層へ屈折されることで、スタック52が、垂直入射(122a)であろうが、またはいずれかの角度(122b、122c)での斜め入射であろうとも、この光のすべてを満足に反射することを確実にする。図11bの弧126aは、垂直入射から超臨界の範囲の角度で伝播する光を示すが、弧126bは、θ=θamaxを超えて光が伝播しないことを示す。
【0054】
ミラーシステム90と同様に、ミラーシステム120の背部外側表面52aへ光が届かないため、そのような外部表面上に存在または配置されたいずれかの障害は、ミラーシステム120の反射率に影響を及ぼさない。同時に、ミラーシステム120は入射角の広い範囲にわたって光を反射する。ミラーシステム120は、対象の波長範囲にわたって「漏れないミラー」を提供する。
【0055】
前述の議論において、材料「i」の光学的に厚い層中に、加えて薄いフィルム干渉スタックのミクロ層中での超臨界的な伝播角度で注入する光の特定の機能を行うことができる、様々な構造を説明してきた。これらの構造の1つは、微細な光散乱粒子である。そのような散乱物が、所定の用途に対して拡散性(つまり、光散乱)を提供するために用いられる場合、様々な要素は複合ミラー特性を制御することが必要とされる時に調整されてもよい。例えば、そのような粒子が位置する層の厚さ(例えば、表面薄層、接着層、または他の層)に応じて、大きさ、屈折率、濃度、および粒子の分配は変化されてもよい。別の開示された構造は、表面での屈折によって光を散乱または偏向する突出部および/または凹部を画定するために形成された表面である。(そのような表面は、薄いフィルムスタックに対してラミネート加工されることができる層の一部であってもよいし、あるいは、例えば表面薄層または薄いフィルムスタックの前側上のコーティングなどに直接エンボス加工されてもよい。)様々な要素はまた、屈折率、形状、大きさ、および突出部/凹部要素の表面適用範囲、および表面トポロジーの他の性質など、複合ミラー特性を制御するために、この場合に使用されることができる。体構造化された表面、散乱粒子、またはその両方のどれであれ、これらの構造体の構成の詳細を、光散乱または偏向の所望の量を形成するために調整することができる。例えば、散乱は、実質的にランベルト分布(Lambertian distribution)を提供するために充分強い可能性があるか、または散乱はより弱い可能性がある。また、構造体の詳細を、意図する用途に応じて、好ましい角度または角度の範囲で散乱を行うように調整することができる。
【0056】
したがって、前述の説明は、広角の反射率を有するミラーシステムの様々な製造を可能にする。1つのそのようなミラーシステムは、あらゆる屈折率の媒体にさらされた場合、すべての入射の角度で極めて高く反射する、拡散的に反射するミラーを含む。そのようなミラーシステムは、ミラーの裏側領域で局部的に低下された反射率に関わらず、均一に光を反射することができる。
【0057】
ここで代表的な実施形態は、以下の図示した実施例に説明され、すべての割合および百分率はすべて指示がない限り重量による。
【0058】
(実施例1)
配向PENおよびPMMAから作製された2つの多層ミラーをともにラミネート加工するために、光学的接着剤を使用することによって拡張バンドミラーフィルムスタックを作製した。垂直入射非偏光については、約400nmから約1000nmに及ぶ反射バンドを有する可視および近赤外線ミラーを提供するために、米国特許第6,783,349号(ニービン(Neavin)ら)に記載の方法にそれぞれ従った倍率器と265層の2つのパケットを使用して形成されたPEN/PMMAの530層で、第1のミラーを作製した。第2のミラーは、同様に作製されたが、約1000nm〜1700nmの反射率バンドを有する赤外線ミラーを提供するためにPEN/PMMAの165層の1つのパケットのみが含有された。MA材料は約1.49の屈折率を有する実質的に等方性にととどまる一方、各ミラーは、約1.75の実質的に等しい面内屈折率(633nmで測定される)、および約1.49のz−軸線屈折率を有するPMPEN材料複屈折を提供するために、2軸的に適した状態下で伸張された。光学的接着材は、ミネソタ州セントポール(St.Paul,Minnesota)、3M社から入手可能である、25ミクロン(1.0ミル)の厚さのアクリル感圧性接着剤(屈折率が633nmでおよそ1.4742)の、3M(商標)光学透明ラミネート接着剤(Optically Clear Laminating Adhesive)8141であった。結果として得られたワイドバンドラミネート加工ミラーフィルムスタック(wideband laminated mirror film stack)は、垂直入射で約400nm〜1700nmの反射率バンドを有した。斜め入射に関して、ラミネート加工されたスタックは、PMMA材料(ここでは材料「a」として指定される)で測定された伝播角度θが0°〜約65°の範囲である光のための高い反射率を維持する。θが約65°を超過し始めると、p−偏光のためのバンド縁部が、近赤外波長から可視波長へ移動し始めることによって、ミラーシステムの反射率を急激に降下させる。急速な反射率の降下は、可視スペクトラム(約700nm)の長い波長末端部で始まり、θが増加するとともに可視スペクトラムからより短い波長へわたって進行する。図12の曲線Aは、大気(θ=0である)中での垂直入射でラミネート加工されたミラーに対して測定された分光透過率のプロットであり、曲線Bは、大気(θ≒35.5°である)中での60°入射でのp−偏光に対する透過率のプロットである。反射率値は、所定の波長において、Rはパーセント反射率であり、Tはパーセント透過率である、関係R+T≒100%を使用してグラフから決定することができる。
【0059】
このラミネート加工されたミラー装置のための対象の波長範囲は、可視波長領域であり、およそ400〜700nmであった。適切な平均反射率が提供される対象のミクロ層の角度範囲は、θamaxと対応する約65°の上限を有する、θに対して約0〜65°であった。
【0060】
フルオロポリマー拡散層は、以下の方法で作製された。THV−500(商標)フルオロポリマー樹脂(ミネソタ州セントポール、ダイニオンLLC(Dyneon LLC))を、標準フィルム作製装置を使用して約0.05mm(2mil)の厚さのフィルムとして押し出し、模型した。フィルムは、通常白色塗料に使用されるタイプの、二酸化チタン粉末の約2重量%を含有した。粉末を、分離されたTHVのマスターバッチ(masterbatch)へ約35重量%まで化合した。次に、マスターバッチ樹脂のペレットを、透明なTHV樹脂へ混合し、最終重量パーセントが約2%となった。THVフルオロポリマーの屈折率は約1.35であり、その率はミラーラミネート内のPENおよびPMMAの両方の屈折率よりも低く、大気の屈折率よりも高い。関係n*sinθamax=n*sinθimaxを使用し、この屈折率は、θamaxの正確な値次第で、PMMA材料内のθamaxと対応する、THVフルオロポリマー材料内でおよそ90°の伝播角度θimax、THVフルオロポリマーの正確な屈折率値n、およびPMMA材料の正確な屈折率値nをもたらした。パラメータθimaxは、対象の波長範囲にわたって薄いフィルムスタックが適切な反射率を提供する、媒体「i」内で測定される最大光伝播角度である。それは、スネル法則(Snell’s law)によってθamaxと関連する。θimax≒90°の意義は、これが、THV層の面に対してほとんど平行であるTHV材料内で移動する光と対応していることであり、それは、THV材料内のいずれかのおよびすべての可能な斜角で伝播する光は、ミラーラミネートによって適切に反射されると言うことを意味する。
【0061】
得られた拡散フィルムを、2つの多層ミラーをラミネート加工するために使用されたものと同様の光学的接着剤を使用してミラーラミネートの前側へラミネート加工した。結果は、拡散反射特性およびワイドバンド(化合物)干渉スタックを有するミラーシステムであった。低下された反射率の局所的な領域を、後部多層ミラーの暴露した裏側上の限られた領域、または区域にサンフォード(Sanford)(商標)油性マジックから黒色インクを適用して、ミラーシステムの裏側上に作った。
【0062】
そして、反射率を測定した。記載がない限りは、反射率は、ラムダ(Lambda)19分光分析装置、積分球、および参照目的としてNIST目盛付きランバート(Lambertian)白色拡散反射体を使用して測定した。測定された各波長の光は、所定の試料の限られた部分上で垂直な入射であり、試料から反射されたすべてのそのような光を(立体角の半球にわたり、したがって鏡面的、および拡散的に反射される光の両方を含む)、パーセント反射率を計算するために積分球によって収集した。
【0063】
図13において、曲線Aは、それ自身、すなわち前側に拡散層を持たず、裏側に黒色インクを適用されていない2つのラミネート加工された多層ミラーによりワイドバンドミラーフィルムスタックに対してこの方法で測定された反射率をプロットする。曲線Bは、ワイドバンドミラーおよびフルオロポリマー拡散層の両方を含む、全体的なミラーシステムの反射率プロットである。曲線Bは、対応する裏側に黒色インクが適用されていないミラーシステムの前側上の位置で測定した。曲線Cは、曲線Bと類似であるが、対応する裏側が、上述の黒色インクで完全にコーティングされた全体のミラーシステムの前側上で測定した。図13に示すように、曲線A、BおよびCはすべて、可視スペクトラムを超える高い反射率を示す。曲線Bのミラーシステムへの黒色の裏材層の添加は、可視スペクトラムの反射率を著しく低下しない。
【0064】
ワイドバンドミラーフィルムスタックのみを、人間の観察者が正面から見た場合(図13、曲線A)、ミラーは光沢があり、正反射をもたらす。フルオロポリマー拡散層のみでコーティングされたミラー領域(図13、曲線B)、およびフルオロポリマー拡散層と黒色の裏材の両方でコーティングされたミラー領域(図13、曲線C)を人間の観察者が正面から見た場合、両方のミラー領域は拡散反射をもたらす。正面からは、曲線Bと曲線Cのミラー領域とは見分けがつかず、黒色の裏材が位置されている場所を見るためにはミラーシステムを回転させる必要がある。
【0065】
比較例1
実施例1と類似のミラーシステムが組み立てられたが、第2の多層ミラー(垂直入射反射率バンドが約1000から1700nmに及ぶ)は省略した。すなわち、PEN/PMMAの530層で作製され、約400nmから約1000nmに及ぶ垂直入射反射率バンドを有する第1のミラーのみを使用した。この第1の多層ミラーの前側へ、実施例1の拡散フィルムを適用し、実施例1の黒色インクを裏側の部分へ適用した。反射率を同様の方法で測定した。
【0066】
実施例1のミラーラミネートと比較して、第1のミラーのみの反射率バンドの低下されたスペクトル幅のため、この比較例1に対するθamaxの値は、実施例1の65°の値よりも実質的に小さく、拡散フィルムに対する対応するθimaxは、90°よりも実質的に小さい。これは、拡散フィルム内で斜め伝播する光のかなりの割合が、この比較例1の多層ミラーによって適切に反射されないことを意味する。
【0067】
図14の曲線Aは、それ自体によって、第1の多層ミラーのための反射率をプロットする。曲線Bは、前側へ適用された第1の多層ミラースタックおよびフルオロポリマー拡散層から成るミラーシステムのための反射率をプロットするが、後部へ黒色インクの適用はなかった。曲線Cは、曲線Bと類似であるが、ミラーシステムの後部は黒色のインク層を含む。図14に示すように、拡散ミラーシステムに黒色の裏材層を追加することによって、可視スペクトル内の反射率を著しく低下させた。
【0068】
人間の観察者が見た場合、曲線Aのミラーは光沢があり、正反射をもたらし、実施例1のコーティングされていないワイドバンドミラーフィルムスタックのように見える(図13、曲線A)。曲線Bおよび曲線Cのミラー領域は、拡散反射をもたらす。前側から見た場合、曲線C領域は、曲線B領域よりも明らかに暗く、2つの領域を区別するためにミラーを回転する必要はない。
【0069】
比較例2
実施例1に類似のミラーシステムを組み立てたが、THVベースの拡散フィルムは異なる拡散フィルムと置き換えられた。この比較例2において、実施例1のワイドバンドミラーフィルムスタックの前側へ、ミネソタ州セントポールの3M社から市販の白色の3M(商標)スコッチカル(Scotchcal)(商標)3635−70拡散フィルムの層を適用することによって、代替のミラーシステムが作製された。この拡散フィルムは、約60%の光透過率を有し、ポリ塩化ビニル(1.54の等方性の屈折率)マトリックスで分散した二酸化チタン粒子を含有する。スコッチカル(商標)製品はまた、ポリ塩化ビニル拡散層と接触する透明な感圧性接着剤層も含む。この接着層を、ポリ塩化ビニル拡散フィルムをワイドバンドミラーフィルムスタックの前側へ接着するために使用した。接着層と拡散層の両方を含むスコッチカル(商標)製品の厚さは、約3ミル(約75ミクロン)である。
【0070】
拡散層の屈折率を1.35から1.54へ増加することによって、この比較例2の拡散媒体は、多層反射体内でPMMAミクロ層の屈折率その屈折率を上回るため、厳密に言えばもはや「中間」ではない。さらに、屈折率の増加は、限定する値θimaxを、実施例1の値およそ90°から約61°へ低下させる。これは、ここでも、拡散フィルム内で斜め伝播する光のかなりの割合が、この比較例2の多層ミラーによって適切に反射されないことを意味する。
【0071】
図15の曲線Aは、図12の曲線Aと同様である、それ自体によってミラーフィルムスタックのための反射率をプロットする。曲線Bは、ワイドバンドミラーフィルムスタックの前側へ適用されたスコッチカル(商標)拡散層を含み、対応する裏側へ黒色のインクを適用のない、代替のミラーシステムのための反射率をプロットする。曲線Cは、曲線Bと類似であるが、黒色のインクを、ミラーシステムの前側テスト領域と対応する暴露した裏側へ使用した。図15に示すように、曲線Bのミラーに黒色の裏材層を追加することによって、可視スペクトル反射率を著しく低下させた。
【0072】
人間の観察者が見た場合、曲線C領域は、B領域よりも明らかに暗く、(比較例1のミラーシステムの対応する(曲線C)領域に対する事例よりもさらに)2つの領域を区別するためにミラーを回転する必要がない。
【0073】
比較例3
比較例2と類似のミラーシステムを組み立てたが、第2の多層ミラー(垂直入射反射率バンドが約1000から1700nmに及ぶ)を省略した。すなわち、PEN/PMMAの530層で作製され、約400nmから約1000nmに及ぶ垂直入射反射率バンドを有する第1のミラーのみを使用した。提供された透明な感圧性接着層を使用して第1の多層ミラーの前側へ、比較例2のスコッチカル(商標)拡散層を適用し、実施例1の黒色のインクを裏側の選択した部分へ適用した。
【0074】
比較例1で論じたように、第2の多層ミラーを除くことによって、実施例1の(ラミネート加工された)干渉スタックと比較して、薄いフィルム干渉スタック反射率バンドのスペクトル幅を低下した。したがって、この比較例3のθamaxの値は、実施例1の実質的に65°未満の値であり、値θimaxを実質的に90°未満へ低下する。比較例1に関連するここでのさらなる問題は、拡散層の屈折率も1.35から1.54へ増加したことで、θimaxの値をより一層低下し、拡散フィルム内で斜め伝播する光のより大きな部分が、多層ミラーによって不適切に反射されることを可能にすることである。
【0075】
図16の曲線Aは、図14の曲線Aと同様の、それ自体によって第1のミラーフィルムスタックのための反射率をプロットする。曲線Bは、第1のミラーフィルムの前側へ適用されたスコッチカル(商標)拡散層を有するミラーシステムに対する反射率をプロットする。曲線Cは、曲線Bと類似であるが、黒色のインクをミラーシステムの対応する裏側に適用した。図16に示すように、曲線Bのミラーに黒色の裏材層を追加することによって、可視スペクトル反射率を著しく低下させた。
【0076】
人間の観察者が見た場合、曲線C領域は、(比較例1および比較例2のミラーの対応する領域に対する場合よりもさらに)曲線B領域よりも明らかに暗く、2つの領域を区別するためにミラーを回転する必要がない。
【0077】
開示されたミラーシステムの少なくとも一部の実施形態は、(1)干渉反射体のミクロ層中での超臨界的な伝播角度と対応する極めて斜光に対する反射率を含む、高い前側反射率、さらにそれが、(2)ミラーシステムの裏側の一部またはすべてが、裏側で低下された反射率を引き起こす、吸収材料または他の媒体と接触する、組み合せを提供することができる。これらの特性は、ミラーシステムの裏側での他の構成要素への取り付けと、非常に高い均一な前側の反射率を必要とする用途における利点であり得る。例えば、上述の拡散性反射ミラーシステムのいずれもが、ミラーシステムの前側反射表面を妨げるあらゆる取付機構を使用することなく、ミラーシステムの裏側への取り付けによって完全に、壁または他の支持構造へ固定することができる。さらに、これを、裏側上の取付領域または点を直接対向する領域であってさえ、ミラーシステムの前側反射率を低下することなく達成することができる。
【0078】
そのような設計能力から利益を得る1つの適用または最終用途は、液晶ディスプレイ(LCD)装置を含むがこれに限らない、サインまたはディスプレイ用のバックライトキャビティである。大きな黒色表面およびより小さな側面を含む、ブラックライトの構造的な壁は、射出成形プラスチックまたは湾曲したシート状金属などの粗悪な光学特性ではなく、良質な構造特性を有する材料によって加工することができる。その結果、少なくとも前側表面から優れた光学的特性を有するが、粗悪な構成特性(例えば、乏しい剛性)をもつ可能性がある本明細書に記載の拡散性反射ミラーシステムを、前側の妨害がほとんどまたは全くなしに、また取り付け点に関連する前側の反射率の低下がほとんどまたは全くなしに、ミラーシステムの裏側へ取り付けることによって構造的な構成要素だけに固定することができ、それによってバックライトキャビティの反射率を最大限にする。
【0079】
指示がない限り、本明細書および請求項で使用される特性となる大きさ、量、および物理特性を示すすべての数字は、「約」と言う用語によって修飾されることを理解されたい。それ故に、別の指示がない限りは、本明細書および添付の請求項に説明される数字のパラメータは近似値であり、本明細書に開示された教示を使用して当業者が獲得しようとする所望の特性に応じて変化し得る。
【0080】
本発明の様々な修正および変更は、本発明から逸脱することなく行えることが、当業者に明白であるが、本明細書に記載された実施形態に制限されるべきではないことを理解すべきである。
【0081】
本明細書全体を通して、添付の図面を参照し、ここで、同じ参照番号は同じ要素を示す。

【特許請求の範囲】
【請求項1】
ミラーシステムであって、
対象の波長範囲および対象のミクロ層の角度範囲にわたって実質的に光を反射するために選択された屈折率および厚さを有する複数のミクロ層と、
前記ミクロ層と結合し、そして大気の屈折率より大きいが前記ミクロ層の屈折率より小さい屈折率を有する光学的に厚い層と、
前記光学的に厚い層および前記ミクロ層中に超臨界的な伝播角度で光を注入するための手段と、を備え、
前記光学的に厚い層が、前記対象のミクロ層の角度範囲に前記対象の波長範囲内の前記注入された光を制限するか、または前記対象の波長範囲内かつ前記対象のミクロ層の角度範囲外の前記注入された光を、前記光学的に厚い層の組み込まれた境界面で完全に内部に反射させる、ミラーシステム。
【請求項2】
前記ミクロ層の屈折率が、隣接するミクロ層間の境界面でブルースター(Brewster)角を除くために選択される、請求項1に記載のミラーシステム。
【請求項3】
前記ミクロ層の屈折率が、最小屈折率nminを含み、nminが、ミクロ層の第1の群と関連する、請求項1に記載のミラーシステム。
【請求項4】
前記注入手段が、屈折率n>nを有する光学体を含む、請求項3に記載のミラーシステム。
【請求項5】
前記光学体が、ディスプレイ中で使用するための導光体である、請求項4に記載のミラーシステム。
【請求項6】
前記光学体が、少なくとも1つのプリズムを含む、請求項4に記載のミラーシステム。
【請求項7】
前記注入手段が、前記光学的に厚い層中に分散する散乱体を含む、請求項1に記載のミラーシステム。
【請求項8】
前記注入手段が、前記光学的に厚い層の平滑でない表面を含む、請求項1に記載のミラーシステム。
【請求項9】
ミラーシステムであって、
複数のミクロ層であって、前記ミクロ層が、基準軸線に概して垂直に位置し、そして対象の波長範囲および対象のミクロ層の角度範囲にわたって光を実質的に反射するために選択される屈折率および厚さを有する、ミクロ層と、
前記ミクロ層と結合し、そして大気の屈折率より大きいが前記ミクロ層の屈折率より小さい屈折率を有する光学的に厚い層と、
実質的に90°の角度で前記光学的に厚い層中を伝播する光を含む、前記光学的に厚い層および前記ミクロ層中に光を注入する構造と、を備え、
前記対象の角度範囲が、前記ミクロ層の1つの媒体に対応する参照媒体中で測定される角度θamaxにまで及び、そして前記参照媒体中でのθamaxが、前記光学的に厚い層中での実質的に90度の伝播角度と対応する、ミラーシステム。
【請求項10】
前記構造が、前記光学的に厚い層中に分散する散乱体を含む、請求項9に記載のミラーシステム。
【請求項11】
前記構造が、前記光学的に厚い層の平滑でない表面を含む、請求項9に記載のミラーシステム。
【請求項12】
屈折率および厚さが、対象の波長範囲および対象のミクロ層の角度範囲にわたって光を反射する複数のミクロ層と、前記ミクロ層と結合し、そして大気の屈折率より大きいが前記ミクロ層の屈折率より小さい屈折率を有する光学的に厚い層と、前記光学的に厚い層内の、または前記光学的に厚い層と結合する1つ以上の拡散要素と、を備え、ミラーの裏側領域で反射率が局部的に低下するにも関わらず、前記ミラーシステムが人間の観察者に可視光を均一に反射するように見えるように、前記ミクロ層の反射バンドが、近赤外にまで充分及ぶ、ミラーシステム。
【請求項13】
前記ミラーシステムが、前記ミラーの裏側領域が吸収性材料に接触する場合でも、可視光を均一に反射する、請求項12に記載のミラーシステム。
【請求項14】
前記ミクロ層が、すべてポリマーである、請求項12に記載のミラーシステム。
【請求項15】
前記ミクロ層の屈折率が、隣接するミクロ層間の境界面でブルースター角を除くために選択される、請求項12に記載のミラーシステム。
【請求項16】
前記ミクロ層の屈折率が、最小屈折率nminを含み、そしてnminはミクロ層の第1の群と関連する、請求項12に記載のミラーシステム。
【請求項17】
前記拡散要素が、前記光学的に厚い層中に分散する散乱体を含む、請求項12に記載のミラーシステム。
【請求項18】
前記拡散要素が、二酸化チタン粒子を含む、請求項12に記載のミラーシステム。
【請求項19】
前記拡散要素が、前記光学的に厚い層の平滑でない表面を含む、請求項12に記載のミラーシステム。
【請求項20】
前記拡散要素が、少なくとも1つのプリズムを含む、請求項12に記載のミラーシステム。
【請求項21】
前記ミクロ層の垂直入射反射バンドが、約400nmから少なくとも約1600nmに及ぶ、請求項12に記載のミラーシステム。

【図1】
image rotate

【図2a】
image rotate

【図2b】
image rotate

【図2c】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図9a】
image rotate

【図9b】
image rotate

【図9c】
image rotate

【図10】
image rotate

【図10a】
image rotate

【図10b】
image rotate

【図10c】
image rotate

【図11】
image rotate

【図11a】
image rotate

【図11b】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate


【公開番号】特開2012−198576(P2012−198576A)
【公開日】平成24年10月18日(2012.10.18)
【国際特許分類】
【外国語出願】
【出願番号】特願2012−154778(P2012−154778)
【出願日】平成24年7月10日(2012.7.10)
【分割の表示】特願2009−503247(P2009−503247)の分割
【原出願日】平成19年3月28日(2007.3.28)
【出願人】(505005049)スリーエム イノベイティブ プロパティズ カンパニー (2,080)
【Fターム(参考)】