説明

弁管台を有する配管を備えたプラント及び沸騰水型原子力プラント

【課題】単純な構成で、配管内を流れる気体の低流速時における流力音響共鳴の発生を抑制することができる、弁管台を有する配管を備えたプラントを提供する。
【解決手段】BWRプラントの原子炉に接続された主蒸気配管11に、弁管台13を設置し、弁管台13に蒸気逃し安全弁21が設置される。弁管台13は、直管部14、及び直管部14を取り囲み直管部14の外面に設けられた環状の音波減衰室15を有する。直管部14内に形成された流路27は、主蒸気配管11に連絡され、蒸気逃し安全弁21の弁体24によって開閉される。音波減衰室15の内部に形成された環状の内部空間16と流路27は、直管部14の管壁の一部である隔壁17によって仕切られ、内部空間16と流路27を連通する貫通孔18,19及び20が隔壁17に形成される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、弁管台を有する配管を備えたプラント及び沸騰水型原子力プラントに関する。
【背景技術】
【0002】
沸騰水型原子力プラント(以下、BWRプラントと称する)において、原子炉圧力容器からタービンに供給される主蒸気流量を過度に増加した場合に、主蒸気系での圧力変動が増加し、プラント機器に振動を与える可能性が考えられる。圧力変動を低減するため、主蒸気系の流路形状の適正化等の対策がとられる。このような事例及び対策が、G. Deboo, et al., "Quad cities unit 2 main steam line acoustic source identification and load reduction", Proceedings of ICONE 14, ICONE14-89903 (2006)に開示されている。
【0003】
BWRプラントにおける主蒸気系での圧力変動の原因の一つとして、主蒸気配管に設置されている、蒸気逃し安全弁を取り付ける弁管台等の分岐管における流力音響共鳴現象が考えられている。流力音響共鳴は、主蒸気配管との接合部における分岐管の前縁(上流側縁)で、主蒸気配管内を流れる気体(例えば、蒸気)の流れの剥離により生じた渦が、主蒸気配管との接合部における分岐管の後縁(下流側縁)に衝突した際に圧力変動(音波)を発生し、その音波が上流側へ伝播して分岐管の前縁での流れの剥離を励起することで、さらに渦を発生させる、いわゆるフィードバック機構を有する現象である。
【0004】
流力音響共鳴により発生する音波の波長は、主蒸気配管での蒸気流速が増加するにつれて短くなる。しかし、音波の波長が分岐管長の約4倍に等しくなった時、分岐管付根で発生する音波と閉止された分岐管端部で反射する音波の干渉により、分岐管内に1/4波長の定在波が形成され、通常発生する圧力変動に比べ、大きな圧力変動が発生する。その詳細なメカニズムは、S. Ziada, "A flow visualization study of flow-acoustic coupling at the mouth of a resonant side-branch", Journal of Fluids and Structures, 8, pp.391-416 (1994)に開示されている。BWRプラントで主蒸気流量を増加した際に、主蒸気配管内の蒸気流速が増加し、弁管台内に定在波が形成され、圧力変動が増加すると考えられている。
【0005】
このような流力音響共鳴は、分岐管内径d、分岐管の共鳴周波数f、主管の平均流速Uで定義されるストローハル数Stで整理される。
【0006】
St=f×d/U …(1)
流力音響共鳴の強さは、ストローハル数Stで整理され、一般的には、ストローハル数Stが0.3〜0.6の範囲内になるとき、流力音響共鳴が強くなる(図6参照)。
【0007】
この流力音響共鳴によるBWRプラントの圧力変動を抑制する対策として、例えば、特開2006−153869号公報に圧力センサ及びヘルムホルツ共鳴管を、原子炉圧力容器の蒸気ドーム、または主蒸気配管に設置し、圧力変動を効果的に抑制する方法が開示されている。
【0008】
また、高橋志郎他8名, "沸騰水型原子炉蒸気乾燥器の流力音響振動", 日本機械学会論文集B編, 75, pp.597-603 (2009)は、蒸気逃し安全弁を取り付ける、主蒸気配管に設けられた弁管台にヘルムホルツ共鳴管を設置し、音響共鳴を抑制してその弁管台で発生する圧力変動を低減する方法を記載している。
【0009】
より汎用的には、流力音響共鳴を抑制する方法として、分岐管より上流側に渦発生器またはスポイラーを設ける方法が知られている。また、例えば、特開平7−301386号公報は、音源となる渦の励起周波数を乱すため、気体が流れる配管に接続された分岐管の、その配管側の入口近傍に減音板を設け、これにより流力音響共鳴の発生を防ぐ方法を開示している。
【0010】
特開昭53−86997号公報は、第5図において、主蒸気配管に設置した、蒸気逃し安全弁を取り付ける弁管台に環状の拡大筒を設けることを記載している。この拡大筒の内部空間は、主蒸気配管に連絡されて弁管台内に形成された流路に、開口を通して連絡される。弁管台の軸方向において、内部空間の主蒸気管側の第1面及び蒸気逃し安全弁側の第2面は、共に、平面になっている。内部空間の上記開口の、弁管台の軸方向における寸法は、第1面と第2面の間の間隔の寸法を有し、その開口は弁管台の周方向に連続して形成されている。原子炉の運転中に、主蒸気配管に設けた主蒸気隔離弁等の閉鎖試験を行ったときに発生した圧力波を拡大筒内で減衰させるので、拡大筒の設置により、蒸気逃し安全弁のディスクを押し上げるホッピング現象を防止することができる。
【先行技術文献】
【特許文献】
【0011】
【特許文献1】特開2006−153869号公報
【特許文献2】特開平7−301386号公報
【特許文献3】特開昭53−86997号公報
【非特許文献】
【0012】
【非特許文献1】G. Deboo, et al., "Quad cities unit 2 main steam line acoustic source identification and load reduction", Proceedings of ICONE 14, ICONE14-89903 (2006)
【非特許文献2】S. Ziada, "A flow visualization study of flow-acoustic coupling at the mouth of a resonant side-branch", Journal of Fluids and Structures, 8, pp.391-416 (1994)
【非特許文献3】高橋志郎他8名、"沸騰水型原子炉蒸気乾燥器の流力音響振動"、日本機械学会論文集B編、75、pp.597-603 (2009)
【発明の概要】
【発明が解決しようとする課題】
【0013】
前述のように、特開2006−153869号公報には、ヘルムホルツ共鳴管を利用し、BWRプラントの流力音響共鳴による圧力変動を効果的に抑制する方法が開示されている。しかしながら、ヘルムホルツ共鳴管は、共鳴管内での流力音響共鳴を利用してその圧力変動を抑制するという特性上、共鳴管形状で決まるヘルムホルツ共鳴周波数に一致する周波数の圧力変動に対してのみ抑制効果がある。このため、BWRプラントにおいて流力音響共鳴によって生じる圧力変動を抑制するためにヘルムホルツ共鳴管を適用するためには、発生するその圧力変動の周波数を検知するための圧力センサと、ヘルムホルツ共鳴周波数を圧力変動の周波数に一致させるため、共鳴管形状を調節する装置を組み合わせることが必要になる。ヘルムホルツ共鳴管の適用によって、BWRプラントの主蒸気系の構造が複雑になり、既設のBWRプラントへのヘルムホルツ共鳴管の設置は、原子炉圧力容器の蒸気ドーム、または主蒸気配管を含む主蒸気系の大きな改造が必要となる。
【0014】
前述のように、蒸気逃し安全弁を取り付ける弁管台にヘルムホルツ共鳴管を設置すれば、その共鳴管内での音響共鳴を利用して共鳴周波数をずらし、圧力変動を抑制することができる。しかしながら、分岐管付根とヘルムホルツ共鳴管の端部までの経路の長さが1/4波長となる新たな音響共鳴モードが発生し、その共鳴周波数f’に対してストローハル数が0.3〜0.6となる蒸気流速U’で流力音響共鳴が発生し、圧力変動が増加する。主蒸気配管内を流れる蒸気の流速がUのとき、ヘルムホルツ共鳴管を設置していない状態での弁管台と主蒸気配管の接合部で共鳴周波数fとなる流力音響共鳴が発生したとする。流力音響共鳴が発生したときにおける、ヘルムホルツ共鳴管を設置した場合とそれを設置していない場合のそれぞれの共鳴周波数、及び主蒸気配管内のそれぞれの蒸気の流速を比較すると、共鳴周波数はf>f’の関係にあり、蒸気流速はU>U’の関係にある。
【0015】
前述のように、分岐管の上流側に渦発生器またはスポイラーを設ける方法、及び分岐管入口近傍に減音板を設ける方法は、流力音響共鳴の抑制に効果的であるが、いずれも主蒸気系の構造の複雑化を招くほか、主蒸気配管の主蒸気の流れの中に構造物を設置するため、主蒸気配管の圧力損失が増加する。また、設置する構造物が大きな密度を有する、諸蒸気配管内の主蒸気の流れに晒されるため、構造物の健全性を考慮することが必要となる。
【0016】
また、発明者らは、特開昭53−86997号公報に記載された弁管台に設けられた拡大筒による、流力音響共鳴により発生する圧力変動の抑制効果について検討した。この結果、弁管台に設けられた拡大筒内に形成された内部空間が、弁管台の軸方向における寸法が第1面と第2面の間の間隔の寸法を有して弁管台の周方向に連続して形成された開口により、弁管台内の流路と連絡されるので、拡大筒を経由する新たな音響共鳴モードが発生し、このときの共鳴周波数f”に対してストローハル数が0.3〜0.6となる蒸気流速U”で流力音響共鳴が発生し、その圧力変動を抑制できないという新たな課題を、発明者らが見出した。共鳴周波数f”は、発明者らが見出した、拡大筒の内面に沿って伝播して蒸気逃し安全弁の弁体に到達する音波の共鳴周波数である。
【0017】
主蒸気配管内を流れる蒸気の流速がUのとき、拡大筒を設置していない(ヘルムホルツ共鳴管も設置していない)状態での弁管台と主蒸気配管の接合部で共鳴周波数fとなる流力音響共鳴が発生したとする。流力音響共鳴が発生したときにおける、拡大筒を設置した場合とそれを設置していない場合のそれぞれの共鳴周波数、及び主蒸気配管内のそれぞれの蒸気の流速を比較すると、共鳴周波数はf>f”の関係にあり、蒸気流速はU>U”の関係にある。弁管台への拡大筒の設置は、ヘルムホルツ共鳴管の設置と同様に、拡大筒内での音響共鳴を利用して共鳴周波数をずらし、圧力変動を抑制する。
【0018】
ヘルムホルツ共鳴管及び拡大筒の設置は、いずれも、共鳴周波数をずらして圧力変動を抑制している。しかしながら、ヘルムホルツ共鳴管及び拡大筒の設置によっても、弁管台と主蒸気配管の接合部で発生する音響共鳴モードによっては、上記したように、共鳴周波数に対してストローハル数が0.3〜0.6となる蒸気流速で流力音響共鳴が発生し、その圧力変動を抑制できないという新たな課題が生じる。
【0019】
本発明の目的は、単純な構成で、配管内を流れる気体の流速に関わらず流力音響共鳴の発生を抑制することができる、弁管台を有する配管を備えたプラント及び沸騰水型原子力プラントを提供することにある。
【課題を解決するための手段】
【0020】
上記した目的を達成する本発明の特徴は、弁が取り付けられる弁管台が設置されて内部に蒸気が流れる配管を備えたプラントにおいて、その弁管台が、内部にその配管に連絡される流路を形成し、この流路の外側に配置された音波減衰室を有し、音波減衰室の内部空間と流路を仕切る隔壁が弁管台に設けられ、その流路と内部空間を連通する貫通孔が隔壁に形成されていることにある。
【0021】
音波減衰室の内部空間と弁管台内の流路を仕切る隔壁が弁管台に設けられ、その流路と内部空間を連通する貫通孔が隔壁に形成されているので、弁管台と配管の接合部で発生した音波が、流路から内部空間に伝播されるとき及び内部空間から流路に伝播されるときに、隔壁に形成された貫通孔を通過する。このため、相互に位相差を有する音波の成分をより多く生成することができ、配管と弁管台の接合部の上流側端部で発生する渦を相互に位相差を有する複数の音波の成分によって乱して崩壊させることができ、配管内を流れる気体の流速に関わらず、流力音響共鳴の発生を著しく抑制することができる。したがって、音波減衰室の内部空間と弁管台内の流路を、内部空間とその流路を連通する貫通孔を形成した隔壁で仕切るという単純な構成で、上記したように、流力音響共鳴の発生を著しく抑制することができる。
【発明の効果】
【0022】
本発明によれば、単純な構成で、配管内を流れる気体の流速に関わらず流力音響共鳴の発生を抑制することができる。
【図面の簡単な説明】
【0023】
【図1】本発明の好適な一実施例である実施例1の弁管台を有する配管を備えた沸騰水型原子力プラントの弁管台付近の拡大縦断面図である。
【図2】図1のII−II断面図である。
【図3】実施例1の弁管台を有する配管を備えた沸騰水型原子力プラントの構成図である。
【図4】図1に示す、蒸気逃し安全弁を取り付ける弁管台で発生する圧力変動とストローハル数の関係を示す特性図である。
【図5】図1に示す、蒸気逃し安全弁を取り付ける弁管台で発生する圧力変動の時間変化を示す特性図である。
【図6】従来の沸騰水型原子力プラントの主蒸気配管に設けられた、蒸気逃し安全弁を取り付ける弁管台で発生する圧力変動とストローハル数の関係を示す特性図である。
【図7】従来の沸騰水型原子力プラントの主蒸気配管に設けられた、蒸気逃し安全弁を取り付ける弁管台で発生する圧力変動の時間変化を示す特性図である。
【図8】本発明の他の実施例である実施例2の弁管台を有する配管を備えた沸騰水型原子力プラントの弁管台付近の拡大縦断面図である。
【図9】本発明の他の実施例である実施例3の弁管台を有する配管を備えた沸騰水型原子力プラントの弁管台付近の拡大縦断面図である。
【図10】本発明の他の実施例である実施例4の弁管台を有する配管を備えた沸騰水型原子力プラントの弁管台付近の拡大縦断面図である。
【図11】図10のXI−XI断面図である。
【図12】図10のXII−XII断面図である。
【図13】本発明の他の実施例である実施例5の弁管台を有する配管を備えた沸騰水型原子力プラントの弁管台付近の拡大縦断面図である。
【図14】図13のXVI−XVI断面図である。
【図15】本発明の他の実施例である実施例6の弁管台を有する配管を備えた沸騰水型原子力プラントの弁管台付近の拡大縦断面図である。
【図16】図15のXVIII−XVIII断面図である。
【図17】弁管台を有する配管を備えた従来の沸騰水型原子力プラントの弁管台付近の拡大縦断面図である。
【発明を実施するための形態】
【0024】
BWRプラントの主蒸気配管に設けられた、蒸気逃し安全弁を取り付ける弁管台で発生する流力音響共鳴の発生メカニズムの詳細を、図17に示す、内部に主蒸気28が流れている主蒸気配管11に設けられた、蒸気逃し安全弁21を取り付ける弁管台13Fを対象に詳細に説明する。原子炉圧力容器から吐出されて主蒸気配管11内を流れる蒸気28は、主蒸気配管11と弁管台13Fの直管部14Bとの接合部の上流側端部(上流側縁)25で、流れが剥離して渦が発生する。この渦は蒸気4とともに下流側へ流れ、主蒸気配管11と直管部14Bの接合部の下流側端部(下流側縁)26に衝突する。発生した渦が下流側端部26に衝突することにより音波が発生する。音波は弁管台13F内に形成された流路27を伝播し、弁管台13Fを閉止している、蒸気逃し安全弁21の弁体24で反射される。流路27は主蒸気配管11内の蒸気28が流れる蒸気流路に連絡される。弁体24で反射された音波が、主蒸気配管11と直管部14Bの接合部の上流側端部25へ到達する。上流側端部25に到達した音波は、上流側端部25で発生する渦を強める働きをする。
【0025】
このようにして発生する音波の波長が、長さL(主蒸気配管11と蒸気逃し安全弁21を取り付けた弁管台2との接合部と、弁管台13F内に形成されて主蒸気配管11に連絡される流路27を閉止する弁体24との間の最短距離)の約4倍に等しくなったとき、主蒸気配管11と弁管台13Fの接合部の下流側端部26で発生する音波と、弁管台13Fを閉止する弁体24で反射する音波の干渉により、弁管台13Fの流路27内に1/4波長の定在波が形成され、主蒸気配管11内に、通常発生する圧力変動に比べてより大きな圧力変動が発生する。以上が、蒸気逃し安全弁21の弁管台13Fの主蒸気配管11の接合部での流力音響共鳴の発生メカニズムである。
流力音響共鳴の強さは、弁管台13Fの内径d、弁管台13Fと蒸気逃し安全弁21で構成される流路27の共鳴周波数f、主蒸気28の平均流速Uで定義されるストローハル数Stで整理され、ストローハル数Stが0.3〜0.6の範囲内になるとき、流力音響共鳴が強くなる(図6参照)。
【0026】
主蒸気配管11内を流れる蒸気28の流量を過度に増加した際に、主蒸気配管11と弁管台13Fの接合部の下流側端部26で発生する流力音響共鳴を基に発生するによる圧力変動は、特徴的な周波数を有する正弦波に近い変動である(図7参照)。このような圧力変動を抑制することは、BWRプラントの機器の健全性を保つためにも重要である。
【0027】
発明者らは、このような主蒸気配管と弁管台の接合部で生じる流力音響共鳴により発生する圧力変動を抑制する対策を鋭意検討した。
【0028】
発明者らは、特開昭53−86997号公報に記載された、拡大筒を有する弁管台を配管に設置して、この配管に空気を流し、拡大筒の機能を確認する実験を行った。その拡大筒を有する弁管台では、拡大筒による音波波面の拡大・収縮によって音波のエネルギーを低減させ、弁管台と主蒸気配管の接合部の前縁(上流側端部)での渦発生を弱めることで流力音響共鳴を抑制できる。しかしながら、特開昭53−86997号公報に記載された、拡大筒を有する弁管台を用いた場合には、分岐管の後縁で発生した音波が拡大筒の内部空間内で拡大筒に沿った伝播経路を経由して、弁体へ伝播、反射して弁管台と配管の接合部に到達するという新たな音響モードの存在が確認された。拡大筒の内部空間を経由する音響モードの共鳴周波数f’は、周波数fよりも小さくなる。このため、前述したように、配管内を気体がUよりも低い流速U’で流れているとき、ストローハル数が0.3〜0.6の範囲内となり、流力音響共鳴が発生する。このような流力音響共鳴の発生による圧力変動の増加が、発明者らの実験において確認された。
【0029】
そこで、発明者らは、弁管台を設けた配管内を流れる気体の流速に関わらず、かかわる弁管台と気体が流れる配管の接合部での流力音響共鳴の発生を抑制できる、弁管台を有する配管を備えたプラント、特に、弁管台部分の構造を検討した。この結果、発明者らは、気体が流れる配管に設置された弁管台に、弁管台内に形成されてその配管に連絡される流路の外側に配置された音波減衰室を設け、音波減衰室の内部空間と流路を仕切る隔壁を弁管台に設け、その流路と内部空間を連通する複数の貫通孔(貫通流路)(例えば、図1に示される貫通孔18,19,20)を隔壁に形成することによって、配管内を流れる気体の流速に関わらず、弁管台とその配管の接合部での流力音響共鳴の発生を抑制できることを見出した。
【0030】
弁管台と配管の接合部で生じる流力音響共鳴により発生した音波の一部が、弁管台内の流路を伝播し、隔壁に形成された複数の貫通孔を通って音波減衰室の内部空間に入り、内部空間内で音波減衰室の内面によって反射され、再び、複数の貫通孔を通って弁管台内の流路を経て弁管台と配管の接合部に到達する。このような構造の弁管台では、特開昭53−86997号公報に記載された拡大筒と同様に、音波が音波減衰室の内面によって反射されることにより、音波のエネルギーが低減される。そのような構造の弁管台では、音波が、音波減衰室の内部空間に入るとき、及び音波減衰室の内部空間から外に出るときにおいて、隔壁に形成された複数の貫通孔を通過する。音波がこの複数の貫通孔を通過するときに生じる流体粘性(音波波面の拡大・収縮)により、音波のエネルギーが低減される。また、音波が、複数の貫通孔、すなわち異なった長さを有する複数の経路を通って音波減衰室を出入りするため、音波のエネルギーが複数の周波数に分散され、分散された個々の周波数を有するそれぞれの音波の成分のエネルギーは小さくなる。
【0031】
弁管台内の流路と音波減衰室の内部空間を、貫通孔を有する隔壁で仕切ることによって、音波のその内部空間への出入り時における貫通孔による流体粘性、及び音波減衰室の内面による音波の反射により音波のエネルギーを低減することができる。また、複数の貫通孔により音波のエネルギーが複数の周波数に分散されるため、ある周波数の音波が上流側端部25へ到達し、渦を強める働きをしても、異なった周波数の音波が上流側端部25へ次々と到達し、渦を乱して崩壊させるため、流力音響共鳴の原因となる、下流側端部26に到達する渦が減少し、結果的に流力音響共鳴の発生が抑制される。したがって、弁管台内の流路と音波減衰室の内部空間の間を、複数の貫通孔を形成した隔壁で仕切ることによって、配管内を流れる気体の流速に関わらず、弁管台と配管の接合部における流力音響共鳴の発生を著しく抑制することができる。
【0032】
以上の検討結果を考慮して得られた、本発明の実施例を以下に説明する。
【実施例1】
【0033】
本実施例の好適な一実施例である実施例1の、弁管台を有する配管を備えたプラントを、図1、図2及び図3を用いて説明する。本実施例の弁管台を有する配管を備えたプラントは、BWRプラント1である。BWRプラント1は、原子炉2、主蒸気配管11、タービン12、復水器(図示せず)及び給水配管を備えている。
【0034】
原子炉2は、原子炉圧力容器(以下、RPVという)3、及びRPV3内に配置された炉心を有する。炉心には、多数の燃料集合体(図示せず)が装荷されている。取り外し可能な蓋4がRPV3に取り付けられている。RPV3内には、炉心の上方に気水分離器(図示せず)が設置され、気水分離器の上方に波板6を有する蒸気乾燥器5が設置される。主蒸気配管11は、RPV3に形成されたノズル9に接続され、蒸気乾燥器5よりも上方でRPV3内に形成される蒸気ドーム7に連絡される。タービン12が主蒸気配管11に接続される。弁管台13が直管部14及び音波減衰室15を有し、直管部14が主蒸気配管10に接続されることにより弁管台13が主蒸気配管10に設置される。直管部14内に形成された流路27が主蒸気配管11に連絡される。蒸気逃し安全弁21が弁管台13の端面に取り付けられる。蒸気逃し安全弁21は、弁ケーシング22内に弁体24を設けており、この弁体24は、BWRプラント1の正常な運転時において、流路27を封鎖している。
【0035】
ベント管(図示せず)が、蒸気逃し安全弁21の弁ケーシング22に設けられたフランジ23に接続される。このベント管は、原子炉2を内蔵する原子炉格納容器(図示せず)内に設けられた圧力抑制室(図示せず)内まで伸びており、その先端部が圧力抑制室内のプール水に浸漬されている。
【0036】
流路27を取り囲む環状の音波減衰室15が、弁管台13、すなわち、直管部14の内部に形成される流路27を画定する環状の側壁の外面に設けられている。弁管台13、すなわち、直管部14の側壁の一部である隔壁17が、流路27と、音波減衰室15内に形成された内部空間16を仕切っている。内部空間16は流路27を取り囲んでいる環状の空間である。隔壁17には、複数の貫通孔、すなわち、貫通孔18,19及び20が形成され、これらの貫通孔が流路27と内部空間16を連絡している。貫通孔18,19及び20は、隔壁17の周方向において、異なる位置に配置されている(図2参照)。貫通孔18,19及び20のそれぞれの内径は、等しくなっている。これらの貫通孔は、隔壁17の周方向において、相互の間隔が異なるように、配置される。例えば、その周方向における、貫通孔18と貫通孔19の間の距離と、その周方向における、貫通孔18と貫通孔20の間の距離が異なっている。
【0037】
弁管台13の軸方向において、内部空間16の主蒸気配管11側の第1面及び蒸気逃し安全弁21側の第2面は、共に、平面になっており、貫通孔18,19及び20のそれぞれの内径は、弁管台13の軸方向における内部空間16の第1面と第2面の間の間隔の寸法よりも小さくなっている。本実施例では、貫通孔18,19及び20は、弁管台13の軸方向において、内部空間16の第1面と第2面の間の間隔の1/2の位置に配置されている。
【0038】
再循環ポンプ(図示せず)の駆動によってRPV3内の冷却水が昇圧されてRPV3内に設置されたジェットポンプ(図示せず)のノズルから噴出される。この噴出された冷却水流によって、ノズルの周囲に存在する冷却水が、ジェットポンプ内に吸引されてジェットポンプから吐出される。吐出された冷却水は、炉心に供給される。この冷却水は、炉心を上昇する間に、燃料集合体内の核燃料物質の核分裂で発生する熱によって加熱され、一部が蒸気28になる。蒸気28に含まれた水分が、気水分離器及び蒸気乾燥器5で除去される。水分が除去された蒸気28は、主蒸気配管11を通ってタービン12に導かれ、タービン12を回転させる。タービン12に連結された発電機(図示せず)が回転し、電力が発生する。タービン12から排出された蒸気28は、復水器(図示せず)で凝縮されて水になる。この水は、給水として、給水ポンプ(図示せず)で昇圧され、給水配管(図示せず)を通ってRPV3内に供給される。BWRプラントの原子炉2は蒸気発生装置である。蒸気乾燥器5で分離された水分は、ドレン管8を通って蒸気乾燥器5よりも下方で気水分離器の相互間に形成された領域に導かれる。
【0039】
万が一、RPV3内の圧力が設定値よりも高くなったとき、蒸気逃し安全弁21の弁体24が自動的に押し上げられて、蒸気逃し安全弁21が開く。RPV3内の蒸気28は、主蒸気配管11、管台13内の流路27、及び蒸気逃し安全弁21を通り、ベント管を経て圧力抑制室内のプール水中に放出され、凝縮される。これにより、RPV3内の圧力が設定値以下に抑えられ、原子炉2の安全性が確保される。
【0040】
BWRプラント1の正常な運転状態で、RPV3から吐出された蒸気28が主蒸気配管10内を流れる。主蒸気配管11内を流れる蒸気28の流量が過度に増加した場合には、主蒸気配管11と弁管台13の直管部14との接合部の上流側端部(上流側縁)25で、蒸気28の流れが剥離して渦が発生する。この発生した渦は、蒸気28の流れと共に、主蒸気配管11内を下流に向かって流れ、主蒸気配管11と直管部14との接合部の下流側端部(下流側縁)26に衝突する。発生した渦が下流側端部26に衝突することにより音波が発生する。
【0041】
この発生した音波の一部は、直管部14内に形成された流路27を閉じている弁体24に向かって流路27内を伝播し、その弁体24で反射される。弁体24で反射されてエネルギーが低減された音波は、流路27内を伝播して上流側端部25へ到達する。また、下流側端部26で発生した残りの音波は、貫通孔18,19及び20をそれぞれ通過して内部空間16内に達し、内部空間16を画定する音波減衰室15の内面で反射される。この音波は、再び、貫通孔18,19及び20をそれぞれ通過して流路27内に伝播し、上流側端部25に到達する。
【0042】
流路27を伝播して貫通孔18,19及び20に到達した音波は、それぞれの貫通孔にほぼ同時に到達する。音波は、貫通孔18,19及び20のそれぞれを通って内部空間16へ伝播する。音波が貫通孔18,19及び20のそれぞれを通過する際における音波の波面の収縮及び拡大(貫通孔での流体粘性)により、音波のエネルギーの一部が失われる。例えば、貫通孔18を通って内部空間16内へ伝播した音波は、内部空間16の壁面で反射され、その一部が再び貫通孔18を通って流路27内に戻り、貫通孔18を通って内部空間16内へ伝播した音波の他の成分は、経路29または30に沿って内部空間16内を伝播し、貫通孔19もしくは20を通過して流路27内に戻る。貫通孔18を通過して内部空間16内に伝播した音波のうち、再び貫通孔18を通過した音波が最も短い時間で流路27に戻り、次に、貫通孔20を通過した音波が流路27に戻り、最後に貫通孔19を通過した音波が流路27に戻る。流路27から貫通孔19及び20のそれぞれを通過して内部空間16に到達した音波も、それぞれ同様に、貫通孔18,19及び20のそれぞれを通過して流路27に戻される。
【0043】
このように、貫通孔18,19及び20のそれぞれを通って内部空間16内に伝播した音波の各成分は、それぞれ、貫通孔18,19及び20のそれぞれを通過することにより、3つの周波数の異なる成分に分解される。これらの成分は、伝播距離が異なるため、位相差を持って流路27に戻ることになる。音波は、流路27から内部空間16に向かうときに貫通孔18,19及び20のそれぞれを通過するたびに、及び内部空間16から流路27に向かうときに貫通孔18,19及び20のそれぞれを通過するたびに、音波の波面が収縮、拡大するため(貫通孔18,19及び20のそれぞれの流体粘性によって)、音波のエネルギーの一部が失われる。
【0044】
内部空間16から流路27に戻された、相互に位相差を持った音波の各成分の一部は、上流側端部25に到達する。内部空間16から流路27に戻された、相互に位相差を持った音波の各成分の残りは、弁体24で反射され、再び、貫通孔18,19及び20のそれぞれを通過して、内部空間16に伝播する。前述の内部空間16に到達した音波と同じメカニズムで、相互に位相差を持った、音波の成分がさらに増加して、内部空間16から貫通孔18,19及び20のそれぞれを通過して流路27に戻される。
【0045】
流路27と内部空間16を仕切って貫通孔18,19及び20を形成した隔壁17を有する単純な構成の弁管台13を備えた本実施例において、貫通孔18,19及び20のそれぞれを含む様々な経路を通って上流側端部25に到達した音波の各成分は、流路27と内部空間16を仕切っている隔壁17を有していない弁管台を備えた特開昭53−86997号公報において、拡大筒を有する弁管台と配管の接合部の上流側端部25に到達した音波の各成分に比べ、相当なエネルギーを失っており、さらに、音波の各成分相互に大きな位相差を有している。このため、貫通孔18,19及び20を形成した隔壁17を有する弁管台13を備えた本実施例では、異なったタイミングで周波数が異なるより多くの音波の各成分が上流側端部5へ到達することとなり、これらの音波の成分によって上流側端部5で発生する渦が乱されて崩壊され、特開昭53−86997号公報に比べて渦が相当に弱くなる。この結果、流力音響共鳴の原因となる渦の発生が著しく抑制され、弁管台13と主蒸気配管11の接合部における流力音響共鳴の発生が著しく抑制される。
【0046】
本実施例に用いられる弁管台13で発生する圧力変動とストローハル数の関係は、図4のようになり、図17に示す従来の弁管台13Fの主蒸気配管11への設置によって発生した流力音響共鳴によるストローハル数Stが0.3〜0.6の範囲での圧力変動の増加が、本実施例では生じない。また、蒸気逃し安全弁を設置する弁管台にヘルムホルツ共鳴管を設置することによって生じた異なる蒸気流速(すなわち、異なるストローハル数)における流力音響共鳴も発生しない。
【0047】
流路27と内部空間16を仕切って貫通孔18,19及び20を形成した隔壁17を有する弁管台13を備えた本実施例では、複数の貫通孔の形成により、相互に位相差を有する音波の成分をより多く生成することができるため、弁管台13と主蒸気配管11の接合部で発生する流力音響共鳴により生じる圧力変動(音波)は、図17に示す従来の弁管台13Fの主蒸気配管11への設置によって発生する圧力変動(図7参照)に比べ、図5に示すように乱れた波形となり、圧力変動の大きさも小さくなる。
【0048】
本実施例は、流路27と内部空間16を仕切って流路27と内部空間16を連通する貫通孔18,19及び20を形成した隔壁17を有する弁管台13を設けているので、弁管台13と主蒸気配管11の接合部で生じた音波が、それらの貫通孔を出入りすることによって、相互に位相差を有する音波の成分をより多く生成することができる。このため、前述したように、流力音響共鳴の原因となる上流側端部での渦の生成を弱めることができ、主蒸気配管11内を流れる蒸気28の流速に関わらず、弁管台13と主蒸気配管11との接合部における流力音響共鳴の発生を抑制することができる。隔壁17に形成する貫通孔の個数を多くすればするほど、周波数の異なるより多数の音波成分を生成することができ、上流側端部25での渦の発生をさらに抑制することができる。本実施例は、主蒸気配管11内を流れる蒸気の流速に係らず、弁管台13と主蒸気配管11との接合部における流力音響共鳴の発生を抑制することができる。
【実施例2】
【0049】
本実施例の他の実施例である実施例2の、弁管台を有する配管を備えたプラントを、図8を用いて説明する。本実施例の弁管台を有する配管を備えたプラントも、BWRプラントである。本実施例のBWRプラントは、実施例1のBWRプラント1において、弁管台13を弁管台13Aに替えた構成を有する。本実施例のBWRプラントの他の構成は、BWRプラント1と同じである。本実施例で用いられる弁管台13Aは、実施例1で用いられる弁管台13において、隔壁17に形成された貫通孔18,19及び20を、弁管台13Aの軸方向において、隔壁17の上端部(隔壁17の蒸気逃し安全弁21側の端部)に配置した構成を有する。弁管台13Aの他の構成は弁管台13と同じである。
【0050】
本実施例は、実施例1で生じる各効果を得ることができる。実施例1では、主蒸気配管11内を流れる主蒸気に含まれる非凝縮ガスが貫通孔18,19及び20を通して内部空間16内に流入し、隔壁17が存在する関係上、内部空間16内に滞留する可能性がある。非凝縮ガスは蒸気に比べ軽いため、内部空間16の上部に滞留する。本実施例では、隔壁17に形成された貫通孔18,19及び20が、隔壁17の上端部に存在するので、内部空間16内に非凝縮ガスが流入したとしても、貫通孔18,19及び20を通してこの非凝縮ガスを流路27へ容易に排出することができる。内部空間16内に滞留する非凝縮ガスの量を低減することができる。
【実施例3】
【0051】
本実施例の他の実施例である実施例3の、弁管台を有する配管を備えたプラントを、図9を用いて説明する。本実施例の弁管台を有する配管を備えたプラントも、BWRプラントである。本実施例のBWRプラントは、実施例1のBWRプラント1において、弁管台13を弁管台13Bに替えた構成を有する。本実施例のBWRプラントの他の構成は、BWRプラント1と同じである。本実施例で用いられる弁管台13Bは、実施例1で用いられる弁管台13において、隔壁17に形成された貫通孔18,19及び20を、隔壁17の下端部(隔壁17の主蒸気配管11側の端部)に配置した構成を有する。弁管台13Bの他の構成は弁管台13と同じである。
【0052】
本実施例は、実施例1で生じる各効果を得ることができる。主蒸気配管11内を流れる主蒸気が貫通孔18,19及び20を通して内部空間16内に流入する際に凝縮して、凝縮水を生成し、生成された凝縮水は内部空間16内に溜まる可能性がある。本実施例では、隔壁17に形成された貫通孔18,19及び20が、隔壁17の下端部に存在するので、内部空間16内に凝縮水が溜まったとしても、この凝縮水を貫通孔18,19及び20を通して流路27へ容易に排出することができる。
【実施例4】
【0053】
本実施例の他の実施例である実施例4の、弁管台を有する配管を備えたプラントを、図10、図11及び図12を用いて説明する。本実施例の弁管台を有する配管を備えたプラントも、BWRプラントである。本実施例のBWRプラントは、実施例1のBWRプラント1において、弁管台13を弁管台13Cに替えた構成を有する。本実施例のBWRプラントの他の構成は、BWRプラント1と同じである。本実施例で用いられる弁管台13Cは、実施例1で用いられる弁管台13において、隔壁17に形成された貫通孔18,19及び20を、弁管台13Cの軸方向において、隔壁17の上端部(隔壁17の蒸気逃し安全弁21側の端部)(図10のXII−XII断面を参照)に配置した構成を有する。さらに、弁管台13Cは、他の貫通孔18,19及び20を、弁管台13Cの軸方向において、隔壁17の下端部(隔壁17の主蒸気配管11側の端部)(図10のXI−XI断面を参照)に配置した構成を有する。弁管台13Cの他の構成は弁管台13と同じである。
【0054】
本実施例は、実施例2で生じる各効果を得ることができ、内部空間16内に凝縮水が溜まったとしても、この凝縮水を貫通孔18,19及び20を通して流路27へ容易に排出することができる。本実施例は、実施例1に比べて隔壁17に形成された貫通孔の個数が多くなっているので、周波数の異なる音波成分が実施例1よりも多く生成されるので、実施例1に比べて上流側端部25での生成される渦がより乱されるため、音響共鳴の発生がざらに抑制される。
【実施例5】
【0055】
本実施例の他の実施例である実施例5の、弁管台を有する配管を備えたプラントを、図13及び図14を用いて説明する。本実施例の弁管台を有する配管を備えたプラントも、BWRプラントである。本実施例のBWRプラントは、実施例1のBWRプラント1において、弁管台13を弁管台13Eに替えた構成を有する。本実施例のBWRプラントの他の構成は、BWRプラント1と同じである。本実施例で用いられる弁管台13Eは、実施例1で用いられる弁管台13において、音波減衰室15を音波減衰室15Aに替えた構成を有する。弁管台13Eは直管部14A及び音波減衰室15Aを有する。内部に流路27を形成する直管部14Aが主蒸気配管11に接合され、流路27が主蒸気配管11に連絡される。音波減衰室15Aの、弁管台の軸に垂直な方向での断面積は、音波減衰室15のそれの半分しかない。音波減衰室15Aは、直管部14Aの外面の周方向長さの1/2しか取り囲んでいない。直管部14Aの側壁の一部である隔壁17には、流路27と音波減衰室15A内の内部空間16を連通する貫通孔18及び19が形成されている。貫通孔18及び19は、弁管台13Eの軸方向において、内部空間16の第1面と第2面の間の間隔の1/2の位置に配置される。
【0056】
本実施例は、実施例1で生じる各効果を得ることができる。本実施例は、音波減衰室15Aが実施例1の音波減衰室15よりも小さくなっているので、弁管台13Eを小型化することができる。
【実施例6】
【0057】
本実施例の他の実施例である実施例6の、弁管台を有する配管を備えたプラントを、図15及び図16を用いて説明する。本実施例の弁管台を有する配管を備えたプラントも、BWRプラントである。本実施例のBWRプラントは、実施例1のBWRプラント1において、弁管台13を弁管台13Fに替え、蒸気逃し安全弁21を蒸気逃し安全弁21Aに替えた構成を有する。本実施例のBWRプラントの他の構成は、BWRプラント1と同じである。本実施例で用いられる弁管台13Fは、図17に示す従来のBWRプラントで用いられる弁管台13Fと同じ構成を有し、音波減衰室15を有していない。この音波減衰室15は、蒸気逃し安全弁21Aに設けられる。
【0058】
音波減衰室15は、蒸気逃し安全弁21Aの弁ケーシング22の下端部に設けられ、弁ケーシング22内に形成されて流路27に連絡される流路を取り囲んでいる。隔壁17が、音波減衰室15内に形成された内部空間16と弁ケーシング22内に形成されて流路を仕切っており、内部空間16と弁ケーシング22内に形成された流路を連通する貫通孔18,19及び29が、隔壁17に形成される。
【0059】
弁ケーシング22内に形成された流路と内部空間16を仕切ってこの流路と内部空間16を連通する貫通孔18,19及び20を形成した隔壁17を有する蒸気逃し安全弁21Aが取り付けられた弁管台13Fを有する本実施例は、実施例1で生じる各効果を得ることができる。
【0060】
以上に述べた各実施例は、蒸気発生器(蒸気発生装置)とタービンを連絡する蒸気配管を有する加圧水型原子力プラント、及びボイラ(蒸気発生装置)とタービンを連絡する蒸気配管を有する火力プラント等の弁管台を有して気体(蒸気及び空気等)が流れる配管を備えたプラントに適用することができる。
【符号の説明】
【0061】
1…沸騰水型原子力プラント(BWRプラント)、2…原子炉、3…原子炉圧力容器、5…蒸気乾燥器、11…主蒸気配管、12…タービン、13,13A〜13C,13E,13F…弁管台、14,14A…直管部、15,15A…音波減衰室、16…内部空間、17…隔壁、18,19,20…貫通孔、21…主蒸気逃し安全弁、22…弁ケーシング、24…弁体、25…上流側端部、26…下流側端部、27…流路。

【特許請求の範囲】
【請求項1】
弁が取り付けられる弁管台が設置されて内部に蒸気が流れる配管を備えたプラントにおいて、前記弁管台が、内部に前記配管に連絡される流路を形成し、前記流路の外側に配置された音波減衰室を有し、前記音波減衰室の内部空間と前記流路を仕切る隔壁が前記弁管台に設けられ、前記流路と前記内部空間を連通する貫通孔が前記隔壁に形成されていることを特徴とする弁管台を有する配管を備えたプラント。
【請求項2】
前記貫通孔が、前記弁管台の周方向において、前記隔壁に複数個形成されている請求項1に記載の弁管台を有する配管を備えたプラント。
【請求項3】
前記隔壁に形成された前記複数の貫通孔の、前記弁管台の周方向における相互の間隔が異なっている請求項2に記載の弁管台を有する配管を備えたプラント。
【請求項4】
前記隔壁が前記弁管台の側壁の一部である請求項1ないし3のいずれか1項に記載の弁管台を有する配管を備えたプラント。
【請求項5】
前記貫通孔が、前記隔壁の前記弁側の端部及び前記隔壁の前記配管側の端部の少なくとも1つの端部に形成される請求項1ないし4のいずれか1項に記載の弁管台を有する配管を備えたプラント。
【請求項6】
前記プラントが原子力プラントである請求項1ないし5のいずれか1項に記載の弁管台を有する配管を備えたプラント。
【請求項7】
前記プラントが火力プラントである請求項1ないし5のいずれか1項に記載の弁管台を有する配管を備えたプラント。
【請求項8】
原子炉と、前記原子炉に接続されて前記原子炉で発生した蒸気を導き、蒸気逃し安全弁が取り付けられる弁管台を有する蒸気配管とを備え、
前記弁管台が、内部に前記蒸気配管に連絡される流路を形成し、前記流路の外側に配置された音波減衰室を有し、前記音波減衰室の内部空間と前記流路を仕切る隔壁が前記弁管台に設けられ、前記流路と前記内部空間を連通する貫通孔が前記隔壁に形成されていることを特徴とする沸騰水型原子力プラント。
【請求項9】
前記貫通孔が、前記弁管台の周方向において、前記隔壁に複数個形成されている請求項8に記載の沸騰水型原子力プラント。
【請求項10】
前記隔壁に形成された前記複数の貫通孔の、前記弁管台の周方向における相互の間隔が異なっている請求項9に記載の沸騰水型原子力プラント。
【請求項11】
前記隔壁が前記弁管台の側壁の一部である請求項8ないし10のいずれか1項に記載の沸騰水型原子力プラント。
【請求項12】
前記貫通孔が、前記隔壁の前記蒸気逃し安全弁側の端部及び前記隔壁の前記配管側の端部の少なくとも1つの端部に形成される請求項8ないし11のいずれか1項に記載の沸騰水型原子力プラント。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate


【公開番号】特開2012−112765(P2012−112765A)
【公開日】平成24年6月14日(2012.6.14)
【国際特許分類】
【出願番号】特願2010−261198(P2010−261198)
【出願日】平成22年11月24日(2010.11.24)
【出願人】(507250427)日立GEニュークリア・エナジー株式会社 (858)