説明

微生物数測定用セルおよびこれを備えた微生物数測定装置

【課題】検体中に含まれる微生物数が少ない場合でも、測定時間の短縮を図ることが可能な微生物数測定セルおよびこれを備えた微生物数測定装置を提供する。
【解決手段】本発明の細菌数測定セルは、試料液に含まれる微生物数を測定する測定室6と、この測定室6に設けられた流入口7および流出口8と、測定電極12とを備えている。測定室6の天井部には、流入口7から流出口8に向けての上流側から下流側にかけて、底部方向に突出した突出壁20が設けられている。突出壁20の突出下端の両側は、エッジ部を経由して上方に立ち上がった立ち上がり壁とし、突出壁20の下端面には濃縮電極21が設けられている。濃縮電極21の測定室の底部からの高さは、流入口7から流出口8に向けて低くなるように濃縮電極21を形成した。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、検体中に含まれる微生物数を測定する微生物数測定用セルおよびそれを用いた微生物数測定装置に関するものである。
【背景技術】
【0002】
従来の微生物数測定用セルおよび、それを用いた微生物数測定装置の構成は、以下のような構成となっていた。
【0003】
すなわち、従来の微生物数測定用セルは、試料液に含まれる微生物を測定する測定室と、測定室内に試料液を流入させる流入口と、測定室内から試料液を流出させる流出口と、測定室の底部に設けられた測定電極と、を備えている。
【0004】
また、従来の微生物数測定用セルを用いる微生物数測定装置は、微生物数測定セルの測定電極に接続した測定部および交流電源部を備えている。そして、従来の微生物数測定装置は、交流電源部が、集菌用の交流電圧を測定電極に印加して微生物をトラップし、次にパルス電圧を測定電極に印加して、トラップした微生物を破壊する。その後、交流電源部は、測定用の交流電圧を測定電極に印加して、破壊された微生物からの細胞質の流出によるコンダクタンスの上昇を測定し、微生物数を算出する(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開平11−127846号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
上記従来の構成では、検体中に含まれる微生物数を測定することができるという点で、非常に有益なものであった。一方、測定においては、さらなる高感度化、つまり、検体中に含まれる微生物数が少ない場合でも正確に微生物数を測定したいという要望が高まってきた。
【0007】
この要望に応えるためには、測定時間が長くなるという課題があった。
すなわち、従来の微生物の測定においては、微生物を破壊して、この破壊された微生物の細胞質の流出によるコンダクタンスの上昇を測定し、微生物数を算出する。
【0008】
この時、十分なコンダクタンス上昇を得るためには、適切な微生物数を集める必要があるが、試料液に含まれる微生物数が少ない時には、この収集に多大な時間がかかってしまう。その結果、従来の微生物数測定装置では、全体の測定時間が長くなってしまうという問題があった。
【0009】
そこで本発明は、検体中に含まれる微生物数が少ない場合でも、測定時間の短縮を図ることが可能な微生物数測定セルおよびこれを備えた微生物数測定装置を提供することを目的とするものである。
【課題を解決するための手段】
【0010】
この目的を達成するために本発明の微生物数測定用セルは、測定室と、流入口と、流出口と、測定電極と、突出壁と、立ち上がり壁と、濃縮電極と、を備えている。測定室は、試料液に含まれる微生物数を測定する。流入口は、測定室に試料液を流入させる。流出口は、測定室から試料液を流出させる。測定電極は、測定室における流出口側の底部に設けられている。突出壁は、測定室の天井部に設けられており、流入口から流出口に対応する上流側から下流側にかけて底部の方向に突出している。立ち上がり壁は、突出壁の下端の両側に形成され、エッジ部を経由して上方に立ち上がっている。濃縮電極は、突出壁の下端面において、測定室の底部からの高さが流入口から流出口に向けて低くなるように形成されている。
【発明の効果】
【0011】
本発明によれば、測定に必要な微生物の数を集めるための時間を短くすることができるため、従来よりも測定時間を短縮することができる。
【図面の簡単な説明】
【0012】
【図1】本発明の一実施形態の全体を示すブロック図。
【図2】その測定電極の拡大図。
【図3】その動作時の要部拡大断面図。
【図4】(a)(b)(c)は、その動作時の測定電極の要部拡大図。
【図5】その動作時を横から見た要部断面図。
【図6】その動作時を流入口側から見た要部断面図。
【図7】その測定室の天井の図。
【図8】その測定室の底部の図。
【図9】本発明の他の実施形態の動作時を横から見た要部断面図。
【図10】その測定室の天井を示す図。
【発明を実施するための形態】
【0013】
以下、本発明の一実施形態に係る細菌数測定装置(微生物数測定装置)について、添付図面を用いて説明する。
【0014】
図1は、微生物、例えば、細菌の数を測定するための細菌数測定装置を示している。図1中の1は、細菌数を測定する測定セルである。
【0015】
測定セル1は、長方形状の基板2の上部に、中央に長方形状の貫通孔3を有する薄板状のスペーサ4を積層し、このスペーサ4の上部に、長方形状の蓋体5を積層したものである。これにより、測定セル1の内部には、上下方向に、薄い長方体形状の測定室6が形成される。
【0016】
また、この測定室6の天井部の一端側には、細菌を含んだ試料液を流入させるための流入口7が設けられ、前記測定室6の天井部の他端側には、試料液が流出する流出口8が設けられている。これらの流入口7、流出口8は、それぞれ蓋体5の上部に突き出した構成となっている。
【0017】
さらに、流入口7には、試料液を収納した検体リザーバ9が、送水チューブ10を介して接続されている。一方、流出口8には、ポンプ11および送水チューブ10を介して検体リザーバ9が接続されている。これにより、測定室6の試料液が、検体リザーバ9に戻るための帰還路が形成される。
【0018】
ここで、ポンプ11を動作させると、検体リザーバ9に収納された試料液は、送水チューブ10を通って、蓋体5の上部の流入口7から、測定室6に流入する。そして試料液は、測定室6内において、図1中の左手から右手方向へと流れていき、その後、測定室6から流出口8を通って流れ出した後、ポンプ11を介して検体リザーバ9へと帰還する。
【0019】
なお、測定室6の底部、つまり基板2の上面には、測定液中の細菌数を計測するための測定電極12が設けられており、この測定電極12において、測定液中の細菌を集菌し、細菌を破壊し、試料液中の細菌の数を測定する。
【0020】
また、測定電極12は、基板2の基材として用いたPET上に銀を蒸着させ、例えば、レーザーによって加工形成されている。なお、この測定電極12は、図2に示すように、櫛歯状の電極12a,12bによって構成されている。これら櫛歯状の電極12a,12bは、長い経路に渡って、両者が極めて接近した対向状態となっており、ここに交流電圧を印加することで、両者間に正の誘電泳動を発生させる電界を形成する。そして、電極12a,12bが対向するギャップ部分に、誘電泳動現象によって測定液中の細菌を引きつけてトラップし、集菌することができる。
【0021】
また、櫛歯状の電極12a,12bは、図1に示すように、測定電極12からそれぞれ引き出されて、基板2の端部に設けられた接続部13に接続されている。櫛歯状の電極12a,12bは、この接続部13を介して、測定部14および測定交流電源部(検出交流電源部)15に接続されている。
【0022】
そして、測定交流電源部15が測定セル1の測定電極12に交流電圧を印加し、この測定電極12のコンダクタンスを測定部14にて測定する。次に、この測定データが制御演算部16に送られ、この制御演算部16で細菌数を演算算出する。最後に、その算出結果が、表示部17に表示される。
【0023】
なお、これらの測定の指示を行う操作部18が、制御演算部16に接続されている。そして、この制御演算部16には、測定交流電源部15が接続されている。
【0024】
図3は、測定室6において、測定液が流れる様子を表した図である。
本実施形態においては、図1のスペーサ4の厚さを、例えば、250μmとしているため、測定室6の高さは250μmとなっている。この上下方向に狭い測定室6の中を、図1の流入口7から流出口8方向に向けて、上流側(図3の左手側)から、下流側(図3の右手側)に向かって測定液が流れていく。
【0025】
なお、測定室6の底部には、測定電極12が設けられている。この測定電極12に対して、測定交流電源部15が適切な交流電圧を印加することにより、正の誘電泳動を発生させる電界を形成することで、細菌をトラップするトラップ領域19を形成している。
【0026】
そして、このトラップ領域に進入してくる細菌を、誘電泳動現象によって引きつけてトラップし、集菌していく。
【0027】
図4は、この集菌から測定までの流れを説明するための図である。図4(a)は、測定電極12に細菌をトラップした時の様子を表し、図4(b)は、このトラップした細菌を破壊する時の様子を表し、図4(c)は、図1の測定部14が細菌数を測定している時の様子を表している。
【0028】
この測定方法に関しては、公知のものであり、先行技術文献として挙げた特許文献に記載されているものであるので、詳細な説明は割愛する。
【0029】
細菌数の測定に際しては、まず、制御演算部16の指示によって測定交流電源部15が測定電極12に対して集菌用の交流電圧を印加して、この印加により発生させた電界により、図4(a)に示すように、測定電極12上に細菌をトラップする。
【0030】
次に、測定交流電源部15が測定電極12に対して細菌破壊用のパルス電圧を印加すると、エネルギーの大きいパルス電圧が印加されたことにより、図4(b)に示すように、細菌の外側を覆った細胞膜が破壊されて細胞膜に多数の小孔が形成される。そして、図4(c)に示すように、細菌の中身の細胞質が、この小孔を通じて外部へと溶出していく。
【0031】
この溶出した細菌の細胞質は、そのほとんどが高導電率の細胞質であるため、測定電極12の近傍では一時的に電解質濃度、つまり、コンダクタンスが上昇する。この上昇したコンダクタンスを、測定交流電源部15が測定電極12に対して測定用の交流電圧を印加して、測定部14において測定する。その後、この上昇したコンダクタンス値が制御演算部16に送られ、この上昇したコンダクタンスの最大値から細菌数を推定する。
【0032】
以上の説明により、本実施形態における基本的な構成および動作について説明したが、続いて、本実施形態に係る細菌数測定装置の主な特徴点について説明する。つまり、本実施形態の主な特徴点は、図5に示すように、測定室6の天井部、つまり蓋体5の下面側に、図1の流入口7から流出口8に対応する上流側から下流側にかけて、底部方向、つまり基板2に向けて、突出した突出壁20を設け、この突出壁の下端面に濃縮電極21を設けたことである。
【0033】
つまり、本実施形態では、濃縮電極21に対して交流電圧を印加し、負の誘電泳動を発生させる電界、つまり微生物が突出壁側に進入するのをブロックするブロック電界22を形成する。そして、流入口7から流入する測定液中の細菌を、このブロック電界22でブロックしながら、底部方向に向けて押し下げて集め、この集めた細菌を測定室6底部に設けた測定電極12においてトラップする。
【0034】
これらの内容について、図5〜図8を用いて、さらに詳細に説明を行う。
図5は、測定セル1の流入口7から流出口8に対応する上流側から下流側にかけて、測定セル1を横から見た断面図である。そして、図5中のA1−A2方向から見た断面図を図6に示している。
【0035】
図6に示すように、突出壁20の突出下端は、その両側が直角のエッジ部20Aとなっている。そして、突出壁20の両側面は、このエッジ部20Aを経由して上方に立ち上がった立ち上がり壁となっている。
【0036】
そして、突出壁20の下端面には、濃縮電極21が設けられている。この濃縮電極21は、図5に示すように、突出壁20の下端面全体を覆っている。
【0037】
また、この濃縮電極21は、測定室6の底部からの高さが流入口7から8流出口に向けて低くなる連続的な傾斜面に沿って形成されている。
【0038】
さらに、測定室6の天井部には、上流側から下流側への流れに対して平行に、突出壁20が複数個、並列に設けられている。本実施形態では、これらの突出壁20によって、測定室6の天井部が覆われた構成としており、図6に示すように、スリット状の構成となっている。
【0039】
図7は、測定室6の天井を、測定室6内部から見上げた状態を表した図である。上述したように、突出壁20が、測定室6の天井部において、所定の間隔で、例えば、6個設けられている。そして、その下端面に設けられた濃縮電極21が集合して、濃縮電極部23を形成している。
【0040】
濃縮電極部23では、突出壁20の下端において隣り合う濃縮電極21は、互いに極性が異なるものを配置している。
【0041】
より具体的には、図7の上から1番目、3番目、5番目の濃縮電極21は、図5に示すように、突出壁20の下流側においてその側面を駆け上がった後、図7に示すように、測定室6の天井部で結合され、接続端子24を介してグランドに接続されている。
【0042】
一方、図7の上から2番目、4番目、6番目の濃縮電極21は、その上流側の天井部において結合され、接続端子25を介して濃縮交流電源部26に接続され、その後、グランドに接続されている。
【0043】
従って、濃縮電極部23に交流電圧を印加した際には、突出壁20の下端において隣り合う濃縮電極21は、互いに極性の異なるものとなる。
【0044】
なお、濃縮交流電源部26は、図1に示すように、制御演算部16に接続されており、この制御演算部16の指示を受けて動作する。
【0045】
さて、図8は、測定室6の底部を表した図である。下流側(図8の右手側)には、図2で示した測定部12が設けられている。図8に示すように、測定部2を形成する櫛歯状の電極12aは、接続部13上に設けられた接続端子27を介して測定交流電源部15に接続され、その後グランドに接続されている。
【0046】
また、他方の櫛歯状の電極12bは、接続部13上に設けられた接続端子28を介してグランドに接続される。
【0047】
以上の構成において、その動作について詳細に説明する。
まず、細菌の測定を行うときには、図1のポンプ11を起動し、検体リザーバ9に収納された測定液を、流入口7を介して測定室6に流入させる。すると、図3に示すように、測定室6の底部に設けられた測定電極12上において測定液が流動する。
【0048】
このとき、図1の制御演算部16の指示を受けた測定交流電源部15が、測定電極12に対して集菌用の交流電圧を印加する。すると、測定電極12には、交流電圧の印加によって、正の誘電泳動を発生させる電界が作られ、図3に示すように、トラップ領域19が形成される。これにより、このトラップ領域19に進入してきた細菌を、トラップして集菌することができる。
【0049】
さらに、このとき濃縮交流電源部26は、濃縮電極21に対して、負の誘電泳動を発生させる交流電圧を印加する。
【0050】
すると、図6に示すように、その突出壁20の下端における両側が直角のエッジ部20Aとなっているため、突出壁20の下端面に設けられた濃縮電極21のエッジから底部に向けて負の誘電泳動を発生させる電界、つまり、微生物が突出壁側に進入するのをブロックするブロック電界22が形成される。
【0051】
この電界は、負の誘電泳動を発生させているので、測定電極12が発生させる正の誘電泳動とは反対の性質を持つ。
【0052】
つまり、測定電極12では、測定電極12に細菌を引きつける力が働くが、これとは逆に、濃縮電極21では、細菌を濃縮電極21から遠ざける力が働く。その結果、細菌は電界によってブロックされ、電界内に進入することができない。
【0053】
ここで、本実施形態においては、図7に示すように、測定室6の天井部に、濃縮電極21が集まって濃縮電極部23を形成している。そして、この濃縮電極部23に負の誘電泳動を発生させる交流電圧を印加することにより、濃縮電極部23全体で、負の誘電泳動を発生させる電界が作られる。これにより、複数の電界が連結した状態となり、濃縮電極部23全体を覆うブロック電界面22Aが形成され、ブロック電界面22A内(図6では、ブロック電界面22Aより上側)に細菌を進入させない。
【0054】
すると、図5に示すように、流入口7から流入してきた測定液に含まれる細菌は、このブロック電界面22Aによってブロックされる。
【0055】
この時、図5に示すように、濃縮電極21の、測定室6の底部からの高さは、流入口7から流出口8に向けて低くなる連続的な傾斜面に沿って形成されている。このため、ブロック電界面22Aによってブロックされた細菌は、流出口8に近づいて行くに従って、ブロック電界面22Aにブロックされながら、どんどん底部へと押し下げられて、集められる。
【0056】
そして、集められた先、つまり、濃縮電極21の流出口8側では、測定室6の底部設けられた測定電極12が、細菌をトラップするトラップ領域19を形成している。このため、トラップ領域19に進入してくる細菌(微生物)を、効率よく測定電極12に引きつけてトラップすることができる。
【0057】
その結果、細菌数の測定に必要な細菌の数を集めるための時間を短くすることができるため、試料液中の細菌数が少ない場合でも、全体の測定時間を短縮することができる。
【0058】
さらに、図5に示すように、濃縮電極21は、流出口8側の端部において、測定室6の底部からの高さが、この濃縮電極21の下流側における測定室6の底部に設けられた測定電極12によって形成されるトラップ領域19の高さとほぼ同等になるように形成されている。
【0059】
このため、ブロック電界面22Aによりブロックされて底部へと誘導された細菌は、確実にトラップ領域19へと誘導され、効率よく測定電極12に引きつけてトラップすることができる。
【0060】
その結果、従来よりも細菌数の測定に必要な細菌の数を集めるための時間を短くすることができ、全体の測定時間を短縮することができる。
【0061】
さらに、濃縮電極21が設けられた突出壁20は、図6に示すように、所定の間隔を介して、複数列がスリット構造で配置されている。これにより、隣接する突出壁20と突出壁20との間を試料液が通過することができ、試料液の流量を大きくすることができる。よって、測定室6に送り込む細菌の数を増やすことができる。尚、突出壁20の断面形状は、濃縮電極21側の幅が狭い台形状などにすることもできるが、本実施形態では、突出壁20は長方形状としている。これにより、台形状などに比べ、突出壁20の間を通過する試料液の流量を大きくできる。
【0062】
この場合でも、突出壁20の下端面に設けられた濃縮電極21のエッジから電界が発生し、図5に示すように、ブロック電界面22Aが形成される。このため、細菌だけは、このブロック電界面22Aにブロックされて底部に向けて誘導される。
【0063】
これにより、突出壁20と突出壁20との間に細菌が入り込むことはない。
その結果、試料液の流量を大きくして、測定室6に送り込む細菌の数を増やすことができる。よって、細菌数の測定に必要な細菌の数を集めるための時間を短くすることができ、従来よりも測定時間を短縮することができる。
【0064】
(他の実施形態)
図9は、本発明の他の実施形態に係る細菌数測定セルの構成を示している。ここでは、図6に示す連続的な傾斜面に沿って形成された突出壁20の代わりに、長方形状の突出壁120を設け、その上流側に櫛歯電極で構成された濃縮櫛歯電極部129を設けている。そして、濃縮電極121の測定室106の底部からの高さを、流入口107から流出口108に向けて段階的に低くしている。
【0065】
図10は、濃縮電極121の構成を示しており、この濃縮電極121の流入口107側には、濃縮櫛歯電極部129が設けられている。そして、この濃縮櫛歯電極部129は、櫛歯状の電極129a,129bによって構成されている。
【0066】
また、櫛歯状の電極129a,129bは、流出口108側に設けられた長方形状の突出壁120の下端面120aの濃縮電極121とそれぞれ接続され、濃縮電極部123を形成している。
【0067】
本実施形態においても、図9に示すように、検体液中の細菌は、ブロック電界面122Aにより測定室106底部のトラップ領域119へと誘導され、効率よく測定電極112に引きつけてトラップすることができる。
【0068】
その結果、細菌数の測定に必要な細菌の数を集めるための時間を短くすることができ、全体の測定時間を短縮することができる。
【産業上の利用可能性】
【0069】
本発明は、検体中に含まれる微生物数が少ない場合でも集菌時間を短縮することができるという効果を奏することから、微生物数測定用セルおよびこれを用いた微生物数測定装置として、広く活用が期待されるものである。
【符号の説明】
【0070】
1 測定セル
2 基板
3 貫通孔
4 スペーサ
5 蓋体
6 測定室
7 流入口
8 流出口
9 検体リザーバ
10 送水チューブ
11 ポンプ
12 測定電極
12a,12b 櫛歯状の電極
13 接続部
14 測定部
15 測定交流電源部(検出交流電源部)
16 制御演算部
17 表示部
18 操作部
19 トラップ領域
20 突出壁
20A エッジ部
21 濃縮電極
22 ブロック電界
22A ブロック電界面
23 濃縮電極部
24 接続端子
25 接続端子
26 濃縮交流電源部
27 接続端子
28 接続端子
29 濃縮櫛歯電極部
29a,29b 電極



【特許請求の範囲】
【請求項1】
試料液に含まれる微生物数を測定する測定室と、
前記測定室に前記試料液を流入させる流入口と、
前記測定室から前記試料液を流出させる流出口と、
前記測定室における前記流出口側の底部に設けられた測定電極と、
前記測定室の天井部に設けられており、前記流入口から前記流出口に対応する上流側から下流側にかけて前記底部の方向に突出した突出壁と、
前記突出壁の下端の両側に形成され、エッジ部を経由して上方に立ち上がった立ち上がり壁と、
前記突出壁の下端面において、前記測定室の底部からの高さが前記流入口から前記流出口に向けて低くなるように形成された濃縮電極と、
を備えている微生物数測定用セル。
【請求項2】
前記濃縮電極は、前記測定室の底部からの高さが前記流入口から前記流出口に向けて低くなる連続的な傾斜面に沿って形成されている、
請求項1に記載の微生物数測定用セル。
【請求項3】
前記濃縮電極は、前記流出口側において、前記測定室の底部からの高さが下流側の前記測定電極によって形成されるトラップ領域の高さとほぼ同等となるように形成されている、
請求項2に記載の微生物数測定用セル。
【請求項4】
前記濃縮電極は、前記測定室の底部からの高さが、前記流入口から前記流出口に向けて段階的に低くなるように形成されている、
請求項1に記載の微生物数測定用セル。
【請求項5】
前記天井部には、前記上流側から前記下流側への流れに対して平行に、前記突出壁が複数個設けられている、
請求項1から4のいずれか1つに記載の微生物数測定用セル。
【請求項6】
前記突出壁の下端において隣り合う前記濃縮電極は、互いに極性が異なる、
請求項5に記載の微生物数測定用セル。
【請求項7】
請求項1から6のいずれか一つに記載の微生物数測定用セルと、
前記微生物数測定用セルの前記流入口に接続された検体リザーバと、
前記微生物数測定用セルの流出口に接続された前記検体リザーバへの帰還路と、
前記微生物数測定用セルの前記測定電極に接続された測定部および検出交流電源部と、
前記測定部および前記検出交流電源部に接続された制御演算部と、
前記微生物数測定用セルの前記濃縮電極に接続された濃縮交流電源部と、
を備えている微生物数測定装置。



【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2012−37285(P2012−37285A)
【公開日】平成24年2月23日(2012.2.23)
【国際特許分類】
【出願番号】特願2010−175610(P2010−175610)
【出願日】平成22年8月4日(2010.8.4)
【出願人】(000005821)パナソニック株式会社 (73,050)
【Fターム(参考)】