説明

撮像装置

【課題】ベイヤ配列の撮像信号を、混色させること無く、解像度の低下を最小限に、撮像装置の感度を大きくする。
【解決手段】ノイズ低減回路(40)でノイズ低減された撮像信号に基づいて、各注目画素について、各注目画素とその周囲の同じ色成分の光を検出する画素で形成される領域のうち、相関の高い領域を選択し(50)、撮像部(2)から出力された各注目画素の撮像信号について、領域選択回路(50)で選択された画素領域に含まれる画素の撮像信号を加算して加算画素信号として出力する(30)。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、低照度の撮像環境において、より高感度な撮像画像が得られる撮像装置に関する。
【背景技術】
【0002】
従来の撮像装置として、N画素前までのデジタル信号を全て加算する機能を実行することにより、固体撮像素子の高感度化やS/N向上を図るように構成したものが知られている(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2000−184274号公報(第4頁、段落0010)
【発明の概要】
【発明が解決しようとする課題】
【0004】
従来の撮像装置は、連続する隣接画素からの撮像信号を加算しているため、カラー撮像素子を用いた場合には色が混ざりカラー信号を再生できないという問題があった。
【0005】
この発明は、上述のような課題を解決するためになされたもので、カラー撮像素子から読み出した撮像信号を画素加算しても、色が混ざることなく、カラー信号を高感度化できる撮像装置を得ることを目的とする。
【課題を解決するための手段】
【0006】
本発明の撮像装置は、
それぞれ異なる色成分の光を検出して対応する撮像信号を出力する複数種の画素を有する撮像部と、
前記撮像部から出力された撮像信号のノイズを低減するノイズ低減回路と、
前記ノイズ低減回路でノイズが低減された撮像信号に基づいて、各注目画素について、各注目画素とその周囲の同じ色成分の光を検出する画素で形成される領域のうち、相関の高い領域を選択する領域選択回路と、
前記撮像部から出力された各注目画素の撮像信号について、前記領域選択回路で選択された画素領域に含まれる画素の撮像信号を加算して加算結果を加算画素信号として出力する選択加算回路と
を備えることを特徴とする。
【発明の効果】
【0007】
本発明によれば、カラー撮像素子から読み出した撮像信号でも感度を例えば4倍に向上させ、極めて暗い低照度環境においても被写体を視認できるという効果が得られる。
【図面の簡単な説明】
【0008】
【図1】本発明の実施の形態1の撮像装置を示すブロック構成図である。
【図2】図1の画素加算回路の一例を示すブロック構成図である。
【図3】撮像素子から出力される注目画素を中心とした画素空間配置を示す図である。
【図4】図2のノイズ低減回路の一例を示すブロック構成図である。
【図5】図4の画素抽出部の一例を示すブロック構成図である。
【図6】図4の加重加算部の一例を示すブロック構成図である。
【図7】図3の画素空間配置で注目画素がG画素のときの色配列情報を示す図である。
【図8】図3の画素空間配置で注目画素がG画素のときのノイズ低減回路の演算対象画素を示す図である。
【図9】図3の画素空間配置で注目画素がR画素のときの色配列情報を示す図である。
【図10】図3の画素空間配置で注目画素がR画素のときのノイズ低減回路の演算対象画素を示す図である。
【図11】図3の画素空間配置で注目画素がB画素のときの色配列情報を示す図である。
【図12】図3の画素空間配置で注目画素がB画素のときのノイズ低減回路の演算対象画素を示す図である。
【図13】図2の領域選択回路の一例の一部を示すブロック構成図である。
【図14】図13の画素抽出部50Aの構成例を示すブロック構成図である。
【図15】図13の相関判定部50Bの構成例及び画素指定回路590を示すブロック構成図である。
【図16】(a)〜(d)は、画素加算回路の注目画素がG画素の時の第1から第4の加算パターンを示す図である。
【図17】(a)〜(d)は、画素加算回路の注目画素がG画素の時の第5から第8の加算パターンを示す図である。
【図18】(a)〜(d)は、画素加算回路の注目画素がG画素の時の第9から第12の加算パターンを示す図である。
【図19】(a)〜(d)は、画素加算回路の注目画素がR画素の時の第1から第4の加算パターンを示す図である。
【図20】(a)〜(d)は、画素加算回路の注目画素がB画素の時の第1から第4の加算パターンを示す図である。
【図21】図2の選択加算回路の一例を示すブロック構成図である。
【図22】本発明の実施の形態1の撮像装置の別の構成を示すブロック構成図である。
【図23】本発明の実施の形態2の撮像装置を示すブロック構成図である。
【図24】(a)〜(e)は、被写体照度と、レンズの絞り、プログラマブル利得増幅回路の増幅利得、画素加算回路の増感倍率、撮像部の露光時間、及び画素加算回路の出力信号の振幅との関係を示す図である。
【図25】本発明の実施の形態3の撮像装置を示すブロック構成図である。
【発明を実施するための形態】
【0009】
以下、第1、第2及び第3の色成分の光がそれぞれ赤色、緑色、及び青色の光であり、これらの色成分の光を検出して、対応する信号を出力する画素がベイヤ配列された撮像部が用いられる場合について詳しく説明する。
【0010】
実施の形態1.
図1は本発明の実施の形態1による撮像装置を示す。図1において、レンズ1は、被写体像をCCD撮像素子2の撮像面上に合焦させる。
【0011】
CCD撮像素子(CCD)2は、後述の図8〜図11に示すように、赤色の光(第1の色成分の光)を検出するR画素、緑色の光(第2の色成分の光)を検出するG画素、及び青色の光(第3の色成分の光)を検出するB画素がベイヤ配列されたものであり、これらにより、赤色の光、緑色の光、青色の光(第1の色成分の光、第2の色成分の光、第3の色成分の光)が検出され、即ち光電変換されて、光電変換により生成された電荷が素子内部を転送されて、電気信号(撮像信号)として出力される。
【0012】
この撮像信号は、R画素からの画素信号であるR信号(第1の色成分値を表す信号)、G画素からの画素信号であるG信号(第2の色成分値を表す信号)、及びB画素からの画素信号であるB信号(第3の色成分値を表す信号)を含む。
【0013】
R画素、G画素、B画素は、例えば、それぞれ赤色の光のみを透過させる色フィルタを備えた光電変換素子、緑色の光のみを透過させる色フィルタを備えた光電変換素子、青色の光のみを透過させる色フィルタを備えた光電変換素子で構成される。
【0014】
CCD撮像素子2から信号された撮像信号は、相関二重サンプリング処理回路(CDS)3でノイズ等が除去される。
プログラマブル利得増幅回路(PGA)4は、相関二重サンプリング処理回路3の出力信号を制御回路12から出力された制御信号によって制御された利得で増幅して出力する。
A/D変換回路(ADC)5は、プログラマブル利得増幅回路4の出力信号を、デジタル信号に変換する。
【0015】
画素加算回路6は、A/D変換回路5から出力される撮像信号Pcを受け、各画素位置を順次注目画素位置として選択し、該注目画素と、その周囲の画素のうち注目画素同じ色の画素(同じ色成分の光を検出する画素)の信号を選択的に加算する。このような処理が撮像画面内のすべての画素位置について行われる。
【0016】
映像信号処理回路7は、画素加算回路6の出力信号に、色同時化処理、階調補正処理、ノイズ低減処理、輪郭補正処理、白バランス調整処理、信号振幅調整処理、及び色補正処理などを加えた映像信号を映像信号出力端子8から出力する。
【0017】
同期信号発生回路11は、垂直同期信号及び水平同期信号を生成して画素加算回路6、映像信号処理回路7及びタイミング発生回路10に供給する。
【0018】
タイミング発生回路10は、CCD撮像素子2の駆動タイミング信号DRTを発生して駆動回路9に供給する。駆動回路9は、タイミング発生回路10から出力された駆動タイミング信号DRTに基づいてCCD撮像素子2の駆動信号DRSを生成する。CCD撮像素子2は、駆動回路9から出力された駆動信号DRSに基づいて、光電変換及び電荷転送を行う。
【0019】
制御回路12は、レンズ1の絞りの制御、タイミング発生回路10が発生するCCD撮像素子2の光電変換素子からの電荷読出しタイミング及び電荷強制排出タイミングの制御(従って、電荷蓄積時間、即ち露光時間の制御)、プログラマブル利得増幅回路4の増幅利得の制御、並びに画素加算回路6の画素加算処理の制御を行う。
【0020】
画素加算回路6は、図2に示すように、ノイズ低減回路40と、領域選択回路50と、遅延回路19と、選択加算回路30とを有する。
【0021】
上記のように、A/D変換回路5からはベイヤ配列されたR画素、G画素、B画素からの撮像信号Pcが出力され、画素加算回路6は、撮像画面内の各画素位置を順次注目画素として加算を行う。
【0022】
撮像素子2の撮像画面上の画素は、図3に示すように水平方向(行方向)H及び垂直方向(列方向)Vに整列し、全体としてマトリクス状に配置されている。各画素の画面上の位置は水平座標h、及び垂直座標vの組合せ(h,v)で表され、座標(h,v)の画素は符号Phvで表される。水平方向に隣接する画素間ではhの値が1だけ異なり、垂直方向に隣接する画素間ではvの値が1だけ異なる。即ち隣接画素間の距離(画素ピッチ)は1で表される。
【0023】
図3には、注目画素P33を中心とした水平5画素、垂直5画素の5範囲(5×5画素の範囲)及びその周辺に位置する画素の配置が示されている。
【0024】
A/D変換回路5からの撮像信号Pcは、入力端子15に印加され、遅延回路19とノイズ低減回路40へ供給される。
【0025】
ノイズ低減回路40は、撮像部2から出力され、相関二重サンプリング処理回路3、プログラマブル利得増幅回路4、A/D変換回路5を介して画素加算回路6に供給された撮像信号Pcを受けて、例えば、注目画素と、その周囲の画素のうちの注目画素と同じ色成分の撮像信号を発生する画素からの撮像信号に対して二次元フィルタリング、例えば低域通過型フィルタリングを行うことにより、撮像信号のノイズを低減する。
【0026】
領域選択回路50は、ノイズ低減回路40でノイズが低減された撮像信号Pfに基づいて、各注目画素について、各注目画素とその周囲の同じ色成分の光を検出する画素で形成される領域のうち、相関の高い領域を選択し、選択した領域内の画素の画素位置を選択加算回路30に通知する。
【0027】
遅延回路19は、撮像信号Pcを所定時間遅延させ、遅延された撮像信号Pdを出力する。
選択加算回路30は、遅延された撮像信号Pdを受け、各注目画素の撮像信号について、領域選択回路50で選択された画素領域に含まれる画素の撮像信号を加算して加算結果を加算画素信号Peとして出力する。加算画素信号Peは、出力端子16を介して映像信号処理回路7へ供給される。
【0028】
領域選択回路50からの、選択した領域内の画素の画素位置の選択加算回路30への通知のタイミングに同期して、遅延回路19の出力(遅延された撮像信号Pd)が選択加算回路30に供給される必要がある。遅延回路19はそのために設けられたものであり、その遅延時間は、ノイズ低減回路40と領域選択回路50での処理遅延時間に基づいて決められる。
【0029】
ノイズ低減回路40は、図4に示されるように、画素抽出部40Aと、加重加算部40Bと、係数設定部40Cとを有する。
【0030】
画素抽出部40Aは、例えば、図5に示すように構成されている。図5で「1L−DL」は1ライン遅延回路を示し、「1D−DL」は1画素遅延回路を示す。画素抽出部40Aは、1ライン遅延回路422〜425と、1画素遅延回路432〜435、437〜440、442〜445、447〜450、452〜455とを図示のように接続して構成されており、注目画素とその周囲の画素の画素値を示す画素信号を同時に出力する。例えば、注目画素が図3のP33であるとき、注目画素P33とその周囲の画素P11〜P55の画素値を表す画素信号を同時に出力する。
【0031】
A/D変換回路5から出力された画素信号Pcは、画素加算回路6の入力端子401に印加され、ノイズ低減回路40の画素抽出部40Aへ供給される。
【0032】
入力された画素信号Pcは、画素信号P55として、1ライン遅延回路422〜425で順次1ライン遅延されて、画素信号P55に対して、それぞれ1、2、3、4ライン遅延した画素信号P54、P53、P52、P51が出力される。
画素信号P55はまた、1画素遅延回路432〜435で順次1画素遅延されて、画素信号P55に対してそれぞれ1、2、3、4画素遅延した画素信号P45、P35、P25、P15が出力される。
【0033】
1ライン遅延回路422から出力された画素信号P54は、1画素遅延回路437〜440で順次1画素遅延されて、画素信号P54に対してそれぞれ1、2、3、4画素遅延した画素信号P44、P34、P24、P14が出力される。
1ライン遅延回路423から出力された画素信号P53は、1画素遅延回路442〜445で順次1画素遅延されて、画素信号P53に対してそれぞれ1、2、3、4画素遅延した画素信号P43、P33、P23、P13が出力される。
【0034】
1ライン遅延回路424から出力された画素信号P52は、1画素遅延回路447〜450で順次1画素遅延されて、画素信号P52に対してそれぞれ1、2、3、4画素遅延した画素信号P42、P32、P22、P12が出力される。
1ライン遅延回路425から出力された画素信号P51は、1画素遅延回路452〜455で順次1画素遅延されて、画素信号P51に対してそれぞれ1、2、3、4画素遅延した画素信号P41、P31、P21、P11が出力される。
【0035】
画素信号P55〜P11は、それぞれ図3の画素P55〜P11の画素値を表すものであり、画素信号P55が入力されたタイミングで、画素抽出部40Aから同時に出力される。
画素信号P55〜P11は、それぞれ、乗算回路461〜485に供給される。
【0036】
ノイズ低減回路40の加重加算回路40Bは、例えば、図6に示すように、乗算回路461〜485と加算回路490とを図示のように接続して構成されており、画素抽出部40Aで抽出された画素の画素値に対して、係数を掛けて、加算することにより、二次元フィルタリング、例えば低域通過型フィルタリングを行う。
【0037】
加重加算回路40Bのフィルタ特性FCHは、制御回路12により決定され、該フィルタ特性を表す係数が画素加算回路6の制御端子17を経て、ノイズ低減回路40の制御端子417に印加され、係数設定回路40Cに設定され、加重加算回路40Bは、係数設定回路40Cに設定された係数を用いて加重加算を行う。
同期信号発生回路11から出力された水平同期信号HDと垂直同期信号VDは、画素加算回路6の同期信号入力端子18を経て、ノイズ低減回路40の制御端子418に印加され、係数設定回路40Cに供給される。
【0038】
係数設定回路40Cは水平同期信号HDと垂直同期信号VDに基づいて注目画素P33の画素位置を判断して、注目画素の色フィルタ配列上の画素位置を特定する。
係数設定回路40Cはまた、水平同期信号HDと垂直同期信号VDに基づいて注目画素が、R画素かG画素かB画素かをも特定する。
そして、特定した画素位置と前記フィルタ係数に基づいて、加重加算部40Bの乗算回路461〜485各々へ独立に25個のフィルタ係数K11〜K55を供給する。
【0039】
乗算回路461〜485は、入力される画素値P11〜P55とフィルタ係数K11〜K55を乗算する。加算回路490は乗算回路461〜485の出力値を加算して、加算結果をノイズ低減された画素値Pfとして出力端子402から出力する。
【0040】
図7、図9及び図11は、R画素、G画素及びB画素の配列を示す。この配列においては、R画素、G画素、B画素が市松模様状に配列され、水平2画素、垂直2画素の4画素の配列を基本単位として繰り返している。この基本単位においては、2つのG画素が一方の対角線に並び、R画素とB画素が他方の対角線上に並んでいる。
【0041】
図7は、図3の画素空間配置で注目画素の色フィルタがG画素の時の5×5画素の領域及びその周囲の画素の色フィルタ配置を示す。
R12、R32、R52、R14、R34、R54はR画素を示す。G11、G31、G51、G22、G42、G13、G33、G53、G24、G44、G15、G35、G55はG画素を示す。B21、B41、B23、B43、B25、B45はB画素を示す。
【0042】
例えば、R32、G33、B43、G42の水平2画素、垂直2画素の4画素の配列を基本単位として繰り返す配列で、色フィルタ配列は構成されている。
【0043】
図7は、G33の同じライン上の隣接画素(1画素前及び1画素後の画素)がB画素の場合を例に説明したが、G22のように同じライン上の隣接画素がR画素である配列パターンも存在する。その場合は、R画素とB画素が入れ替わった色配置となるが、注目画素がG画素の時の加算対象画素はG画素のみなので、一方の色配置についての説明は他方にも若干の修正のみで当てはまる。
【0044】
図8は、画素加算回路6のノイズ低減回路40で注目画素がG画素の時の、演算対象画素の配列を示す。このとき、ノイズ低減回路40の出力は次式で求める。
G=K22×G22+K42×G42
+K33×G33
+K24×G24+K44×G44
係数設定回路40Cは、フィルタ係数K11〜55のうち、上式で使わない係数を「0」に設定する。
【0045】
係数設定回路40Cは、制御回路12からの設定に基づいて、よりノイズが低減されるフィルタ係数を設定する。例えば以下のフィルタ係数を設定する。
K22=1/8
K24=1/8
K33=4/8
K42=1/8
K44=1/8
上記フィルタ係数は、低照度時で信号振幅が小さい場合は、例えば各々8倍の係数とし、これにより、微弱な信号成分が少しでも失われることを防ぐため、各係数が1以上となるようにする。
【0046】
あるいは、係数設定回路40Cは、制御回路12からの設定に基づいて、例えば以下のフィルタ係数を設定する。
K22=1/5
K24=1/5
K33=1/5
K42=1/5
K44=1/5
上記フィルタ係数は、低照度時で信号振幅が小さい場合は、例えば各々5倍の係数とし、これにより、微弱な信号成分が少しでも失われることを防ぐため、各係数を1以上となるようにする。
【0047】
上記の例では、ノイズ低減回路40は、周辺の5画素を対象としたノイズ低減フィルタとしたが、さらにノイズが多い低照度時の撮像信号の場合は、周辺の9画素を対象としたノイズ低減フィルタとするように構成したほうが良い。このとき、ノイズ低減回路40の出力は次式で求める。
G=K31×G31
+K22×G22+K42×G42
+K13×G13+K33×G33+K53×G53
+K24×G24+K44×G44
+K35×G35
【0048】
図9は、図3の画素空間配置で注目画素の色フィルタがR画素の時の5×5画素の領域及びその周囲の画素の色フィルタ配置を示す。
R11、R31、R51、R13、R33、R53、R15、R35、R55はR画素を示す。G21、G41、G12、G32、G52、G23、G43、G14、G34、G54、G25、G45はG画素を示す。B22、B42、B24、B44はB画素を示す。
【0049】
例えば、R33、G34、B44、G43の水平2画素、垂直2画素の4画素の配列を基本単位として繰り返す配列で、色フィルタ配列は構成されている。
【0050】
図10は、画素加算回路6のノイズ低減回路40で注目画素がR画素の時の、演算対象画素の配列を示す。このとき、ノイズ低減回路40の出力は次式で求める。
R=K31×R31
+K13×R13+K33×R33+K53×R53
+K35×R35
係数設定回路40Cは、フィルタ係数K11〜55のうち、上式で使わない係数を「0」に設定する。
【0051】
係数設定回路40Cは、制御回路12からの設定に基づいて、よりノイズが低減されるフィルタ係数を設定する。例えば以下のフィルタ係数を設定する。
K31=1/8
K13=1/8
K33=4/8
K53=1/8
K35=1/8
上記フィルタ係数は、低照度時で信号振幅が小さい場合は、例えば各々8倍の係数とし、これにより、微弱な信号成分が少しでも失われることを防ぐため、各係数が1以上となるようにする。
【0052】
あるいは、係数設定回路40Cは、制御回路12からの設定に基づいて、例えば以下のフィルタ係数を設定する。
K31=1/5
K13=1/5
K33=1/5
K53=1/5
K35=1/5
上記フィルタ係数は、低照度時で信号振幅が小さい場合は、例えば各々5倍の係数とし、これにより、微弱な信号成分が少しでも失われることを防ぐため、1以上となるようにする。
【0053】
上記の例では、ノイズ低減回路40は、周辺の5画素を対象としたノイズ低減フィルタとしたが、さらにノイズが多い低照度時の撮像信号の場合は、周辺の9画素を対象としたノイズ低減フィルタとするように構成したほうが良い。このとき、ノイズ低減回路40の出力は次式で求める。
R=K11×R11+K31×R31+K51×R51
+K13×R13+K33×R33+K53×R53
+K15×R15+K35×R35+K55×R55
【0054】
図11は、図3の画素空間配置で注目画素の色フィルタがB画素の時の5×5画素の領域及びその周囲の画素の色フィルタ配置を示す。
R22、R42、R24、R44はR画素を示す。G21、G41、G12、G32、G52、G23、G43、G14、G34、G54、G25、G45はG画素を示す。B11、B31、B51、B13、B33、B53、B15、B35、B55はB画素を示す。
【0055】
例えば、R22、G23、B33、G32の水平2画素、垂直2画素の4画素の配列を基本単位として繰り返す配列で、色フィルタ配列は構成されている。
【0056】
図12は、画素加算回路6のノイズ低減回路40で注目画素がB画素の時の、演算対象画素の配列を示す。このとき、ノイズ低減回路40の出力は次式で求める。
B=K31×B31
+K13×B13+K33×B33+K53×B53
+K35×B35
係数設定回路40Cは、フィルタ係数K11〜55のうち、上式で使わない係数を「0」に設定する。
【0057】
係数設定回路40Cは、制御回路12からの設定に基づいて、よりノイズが低減されるフィルタ係数を設定する。例えば以下のフィルタ係数を設定する。
K31=1/8
K13=1/8
K33=4/8
K53=1/8
K35=1/8
上記フィルタ係数は、低照度時で信号振幅が小さい場合は、例えば各々8倍の係数とし、これにより、微弱な信号成分が少しでも失われることを防ぐため、各係数が1以上となるようにする。
【0058】
あるいは、係数設定回路40Cは、制御回路12からの設定に基づいて、例えば以下のフィルタ係数を設定する。
K31=1/5
K13=1/5
K33=1/5
K53=1/5
K35=1/5
上記フィルタ係数は、低照度時で信号振幅が小さい場合は、例えば各々5倍の係数とし、これにより、微弱な信号成分が少しでも失われることを防ぐため、1以上となるようにする。
【0059】
上記の例では、ノイズ低減回路40は、周辺の5画素を対象としたノイズ低減フィルタとしたが、さらにノイズが多い低照度時の撮像信号の場合は、周辺の9画素を対象としたノイズ低減フィルタとするように構成したほうが良い。このとき、ノイズ低減回路40の出力は次式で求める。
B=K11×B11+K31×B31+K51×B51
+K13×B13+K33×B33+K53×B53
+K15×B15+K35×B35+K55×B55
【0060】
上記の例では、ノイズ低減回路40は、例えばノイズが高域周波数に分布する仮定から、低域通過型フィルタの構成としたが、撮像信号に含まれるノイズの特性に応じたノイズ低減フィルタとしたほうが良い。
【0061】
上記の例では、ノイズ低減回路40を設け、ノイズによる誤判定を防ぎ、より相関の高い画素を特定できるように構成したので、画素加算画像の解像度が低下することなく高画質化できる。
【0062】
次に、図13〜図15を参照して、領域選択回路50の動作を説明する。
領域選択回路50は、ノイズ低減回路40でノイズが低減された撮像信号Rfに基づいて、各注目画素について、各注目画素とその周囲の同じ色成分の光を検出する画素で形成される領域のうち、相関の高い領域を選択する。
【0063】
領域選択回路50は、より具体的には、ノイズ低減回路40から出力された撮像信号を所定の時間だけ遅延させて注目画素及びその周囲に位置し、注目画素と同じ色成分の撮像信号を出力する画素(参照画素)の各画素値を同時に抽出し、各々、注目画素と、その周囲の参照画素のうちの注目画素に対して特定の相対位置にある複数の画素から成る組合せで構成される複数の画素領域の各々について最大画素値と最小画素値の差を変化幅として算出し、複数の上記画素領域の中から上記変化幅が最小の画素領域を判別して上記相関の高い画素領域として選択加算回路30へ通知する。即ち、上記相関の高い画素領域を示す情報Spを選択加算回路30へ供給する。
【0064】
領域選択回路50は、図13に示すように、画素抽出部50Aと、相関判定部50Bとを有する。
【0065】
画素抽出部50Aは、ノイズ低減回路40から出力された撮像信号を所定の時間だけ遅延させて、注目画素及びその周囲の画素の画素値を表す信号を同時に抽出する。
相関判定部50Bは、画素抽出部50Aで抽出された画素のうちの、注目画素と、該注目画素と同じ色成分の光を検出する複数の画素とから成る組合せを複数個形成し、該複数個の組合せのうち、当該組合せを構成する画素の画素値の最大値と最小値の差が最小である組合せを前記相関の高い画素領域を構成するものと判定する。
【0066】
画素抽出部50Aは、例えば図14に示されるように構成されている。図14で、「2L−DL」は2ライン遅延回路を示し、「1L−DL」は1ライン遅延回路を示し、「4D−DL」は4画素遅延回路を示し、「2D−DL」は2画素遅延回路を示し、「1D−DL」は1画素遅延回路を示す。
【0067】
画素抽出部50Aは、2ライン遅延回路511、512と、1ライン遅延回路522〜525と、4画素遅延回路530、531と、2画素遅延回路532〜537と、1画素遅延回路542〜545、547〜550、552〜555、557〜560、562〜565とを図示のように接続して構成されており、注目画素とその周囲の画素の画素値を示す画素信号を同時に出力する。
【0068】
例えば、注目画素が図3のP33であるとき、注目画素P33とその周囲の画素P11〜P55、PL3、P3T、P3B、PR1〜PR5の画素値を表す画素信号を同時に出力する。なお、図5の画素抽出部40Aの説明の際と同じ符号P11〜P55が用いられているが、図5では、画素信号Pcを遅延したものであるのに対して、図14では、画素信号Pfを遅延したものである点で異なる。
【0069】
ノイズ低減回路40から出力された画素信号Pfは、領域選択回路50の入力端子501に印加される。
入力端子501に印加された画素信号Pfは、画素信号PRBとして、2ライン遅延回路511、1ライン遅延回路522〜525、2ライン遅延回路512で順次遅延されて、画素信号PRBに対して、それぞれ2、3、4、5、6、8ライン遅延した画素信号PR5、PR4、PR3、PR2、PR1、PRTが出力される。
画素信号PRBはまた、4画素遅延回路530で遅延されて、画素信号P3Bとして出力される。
【0070】
2ライン遅延回路511から出力された画素信号PR5は、2画素遅延回路532で2画素遅延され、さらに、1画素遅延回路542〜545で順次1画素遅延されて、画素信号PR5に対してそれぞれ2、3、4、5、6画素遅延した画素信号P55、P45、P35、P25、P15が出力される。
1ライン遅延回路522から出力された画素信号PR4は、2画素遅延回路533で2画素遅延され、さらに、1画素遅延回路547〜550で順次1画素遅延されて、画素信号PR4に対してそれぞれ2、3、4、5、6画素遅延した画素信号P54、P44、P34、P24、P14が出力される。
1ライン遅延回路523から出力された画素信号PR3は、2画素遅延回路534で2画素遅延され、さらに、1画素遅延回路552〜555で順次1画素遅延され、さらに、2画素遅延回路535で2画素遅延されて、画素信号PR3に対してそれぞれ2、3、4、5、6、8画素遅延した画素信号P53、P43、P33、P23、P13、PL3が出力される。
【0071】
1ライン遅延回路524から出力された画素信号PR2は、2画素遅延回路536で2画素遅延され、さらに、1画素遅延回路557〜560で順次1画素遅延されて、画素信号PR2に対してそれぞれ2、3、4、5、6画素遅延した画素信号P52、P42、P32、P22、P12が出力される。
1ライン遅延回路525から出力された画素信号PR1は、2画素遅延回路537で2画素遅延され、さらに、1画素遅延回路562〜565で順次1画素遅延されて、画素信号PR1に対してそれぞれ2、3、4、5、6画素遅延した画素信号P51、P41、P31、P21、P11が出力される。
2ライン遅延回路512から出力された画素信号PRTは、4画素遅延回路531で遅延されて画素信号P3Tとして出力される。
【0072】
画素信号P55〜P11、P3B、PR3、PL3、P3Tは、それぞれ図3の画素P55〜P11、P3B、PR3、PL3、P3Tの画素値を表すものであり、画素信号PRBが入力されたタイミングで、画素抽出部50Aから同時に出力される。
画素信号P55〜P11、P3B、PR3、PL3、P3Tは、相関判定部50B内の画素選択回路570に供給される。
【0073】
相関判定部50Bは、例えば図15に示されるように、画素選択回路570と、変化幅算出回路571〜582と、最小値算出回路585と、画素指定回路590とを有する。
【0074】
図15において、同期信号発生回路11から出力された水平同期信号HDと垂直同期信号VDは、画素加算回路6の同期信号入力端子18を経て、領域選択回路50の同期信号入力端子518に印加され、画素選択回路570、最小値算出回路585及び画素指定回路590に供給される。
【0075】
画素選択回路570は水平同期信号HDと垂直同期信号VDに基づいて注目画素P33の画素位置を判断して、注目画素の色フィルタ配列上の画素位置を特定する。画素選択回路570は、注目画素が、R画素かG画素かB画素かをも特定する。
そして、画素抽出部50Bから供給された画素信号P55〜P11、P3B、PR3、PL3、P3Tを受け、注目画素と、その周囲の参照画素のうちの注目画素に対して特定の相対位置にある複数の画素の画素値の組合せを生成する。各注目画素についてそのような組合せは複数個生成される。
【0076】
選択加算回路30における画素加算に使う画素に、注目画素と相関の高い画素を正しく選択できれば、画素加算後の画像の解像度劣化を小さくすることができる。そこで、注目画素と注目画素に対して特定の相対位置にある周辺画素との組合せを複数個形成し、各組合せについて相関の高さを求め、最も相関の高い組合せに属する画素を用いて画素加算を行う。
【0077】
各組み合わせについて相関の高さを求めるために、各組み合わせに属する画素の画素値の最大値と最小値の差を変化幅として求め、変化幅が最小の組合せを、相関の最も高い組合せと判定する。相関の最も高い組合せに属する画素は画素加算に用いられるので、該組合せを加算パターンと呼ばれる。
【0078】
図3の画素空間配置で注目画素の色フィルタがG画素の時の4画素加算の加算パターンを図16(a)から図18(d)に示す。G画素の4画素加算の場合は、12個の加算パターンから最も相関の高い最適な加算パターンを求める。
【0079】
図16(a)は、注目画素とその上側の周辺画素、即ち、注目画素G33、注目画素の2ライン前の画素G31、注目画素の1ライン前の1画素前の画素G22、及び注目画素の1ライン前の1画素後の画素G42の組合せで構成される上側ブロックパターンGP1を示す。
【0080】
図16(b)は、注目画素とその右側の周辺画素、即ち、注目画素G33、注目画素の2画素後の画素G53、注目画素の1ライン前の1画素後の画素G42、及び注目画素の1ライン後の1画素後の画素G44の組合せで構成される右側ブロックパターンGP2を示す。
【0081】
図16(c)は、注目画素とその左側の周辺画素、即ち、注目画素G33、注目画素の2画素前の画素G13、注目画素の1ライン前の1画素前の画素G22、及び注目画素の1ライン後の1画素前の画素G24の組合せで構成される右側ブロックパターンGP2を示す。
【0082】
図16(d)は、注目画素とその下側の周辺画素、即ち、注目画素G33、注目画素の2ライン後の画素G35、注目画素の1ライン後の1画素前の画素G24、及び注目画素の1ライン後の1画素後の画素G44の組合せで構成される上側ブロックパターンGP4を示す。
【0083】
図17(a)は、注目画素とその上側の周辺画素、即ち、注目画素G33、注目画素の4ライン前の画素G3T、注目画素の2ライン前の画素G31、及び注目画素の2ライン後の画素G35の組合せで構成される上側縦ラインパターンGPを示す。
【0084】
図17(b)は、注目画素とその下側の周辺画素、即ち、注目画素G33、注目画素の4ライン後の画素G3B、注目画素の2ライン後の画素G35、及び注目画素の2ライン前の画素G31の組合せで構成される下側縦ラインパターンGP6を示す。
【0085】
図17(c)は、注目画素とその左側の周辺画素、即ち、注目画素G33、注目画素の4画素前の画素GL3、注目画素の2画素前の画素G13、及び注目画素の2画素後の画素G53の組合せで構成される左側横ラインパターンGP7を示す。
【0086】
図17(d)は、注目画素とその右側の周辺画素、即ち、注目画素G33、注目画素の4画素後の画素GR3、注目画素の2画素後の画素G53、及び注目画素の2画素前の画素G13の組合せで構成される右側横ラインパターンGP8を示す。
【0087】
図18(a)は、注目画素とその左上側の周辺画素、即ち、注目画素G33、注目画素の2ライン前の2画素前の画素G11、注目画素の1ライン前の1画素前の画素G22、及び注目画素の1ライン後の1画素後の画素G44の組合せで構成される左上側斜めラインパターンGP9を示す。
【0088】
図18(b)は、注目画素とその右下側の周辺画素、即ち、注目画素G33、注目画素の2ライン後の2画素後の画素G55、注目画素の1ライン後の1画素後の画素G44、及び注目画素の1ライン前の1画素前の画素及びG22の組合せで構成される右下側斜めラインパターンGP10を示す。
【0089】
図18(c)は、注目画素とその右上側の周辺画素、即ち、注目画素G33、注目画素の2ライン前の2画素後の画素G51、注目画素の1ライン前の1画素後の画素G42、及び注目画素の1ライン後の1画素前の画素G24の組合せで構成される右上側斜めラインパターンGP11を示す。
【0090】
図18(d)は、注目画素とその左下側の周辺画素、即ち、注目画素G33、注目画素の2ライン後の2画素前の画素G15、注目画素の1ライン後の1画素前の画素G24、及び注目画素の1ライン前の1画素後の画素G42の組合せで構成される左下側斜めラインパターンGP12を示す。
【0091】
画素選択回路570は、上記のパターンGP1〜GP12を構成する画素の画素値を、それぞれ第1乃至第12の加算パターンAP1〜AP12を構成する画素値として、それぞれ第1乃至第12の変化幅算出回路571〜582へ供給する。
【0092】
図3の画素空間配置で注目画素の色フィルタがR画素の時の4画素加算の加算パターンを図19(a)〜(d)に示す。R画素の4画素加算の場合は、4個の加算パターンから最も相関の高い最適な加算パターンを求める。
【0093】
図19(a)は、注目画素とその左上側の周辺画素、即ち、注目画素R33、注目画素の2ライン前の画素R31、注目画素の2ライン前の2画素前の画素R11、及び注目画素の2画素前の画素R13の組合せで構成される左上側ブロックパターンRP1を示す。
【0094】
図19(b)は、注目画素とその右上側の周辺画素、即ち、注目画素R33、注目画素の2ライン前の画素R31、注目画素の2ライン前の2画素後の画素R51、及び注目画素の2画素後の画素R53の組合せで構成される右上側ブロックパターンRP2を示す。
【0095】
図19(c)は、注目画素とその左下側の周辺画素、即ち、注目画素R33、注目画素の2画素前の画素R13、注目画素の2ライン後の画素R35、及び注目画素の2ライン後の2画素前の画素R15の組合せで構成される左下側ブロックパターンRP3を示す。
【0096】
図19(d)は、注目画素とその右下側の周辺画素、即ち、注目画素R33、注目画素の2画素後の画素R53、注目画素の2ライン後の画素R35、及び注目画素の2ライン後の2画素後の画素R55の組合せで構成される右下側ブロックパターンRP4を示す。
【0097】
画素選択回路570は、上記のパターンPR1〜PR4をそれぞれ第1乃至第4の加算パターンAP1〜AP4として、それぞれ第1乃至第4の変化幅算出回路571〜574へ供給する。
【0098】
図3の画素空間配置で注目画素の色フィルタがB画素の時の4画素加算の加算パターンを図20(a)〜(d)に示す。B画素の4画素加算の場合は、4個の加算パターンから最も相関の高い最適な加算パターンを求める。B画素の4画素加算の場合の加算パターンを図20に示す。
【0099】
図20(a)は、注目画素とその左上側の周辺画素、即ち、注目画素B33、注目画素の2ライン前の画素B31、注目画素の2ライン前の2画素前の画素B11、及び注目画素の2画素前の画素B13の組合せで構成される左上側ブロックパターンBP1を示す。
【0100】
図20(b)は、注目画素とその右上側の周辺画素、即ち、注目画素B33、注目画素の2ライン前の画素B31、注目画素の2ライン前の2画素後の画素B51、及び注目画素の2画素後の画素B53の組合せで構成される右上側ブロックパターンBP2を示す。
【0101】
図20(c)は、注目画素とその左下側の周辺画素、即ち、注目画素B33、注目画素の2画素前の画素B13、注目画素の2ライン後の画素B35、及び注目画素の2ライン後の2画素前の画素B15の組合せで構成される左下側ブロックパターンBP3を示す。
【0102】
図20(d)は、注目画素とその右下側の周辺画素、即ち、注目画素B33、注目画素の2画素後の画素B53、注目画素の2ライン後の画素B35、及び注目画素の2ライン後の2画素後の画素B55の組合せで構成される右下側ブロックパターンBP4を示す。
【0103】
画素選択回路570は、上記のパターンPB1〜PB4をそれぞれ第1乃至第4の加算パターンAP1〜AP4として、それぞれ第1乃至第4の変化幅算出回路571〜574へ供給する。
【0104】
第1乃至第12の変化幅算出回路571〜582は、各々、入力された第1乃至第12の加算パターンAP1〜AP12を構成する画素値、即ち注目画素とその周囲の参照画素のうちの注目画素に対して特定の相対位置にある複数の画素の画素値の組合せで構成される複数の画素領域(加算パターン)の各々について最大画素値と最小画素値の差を変化幅として算出する。
【0105】
即ち、変化幅算出回路571〜582は、入力される4画素の画素値同士を比較して、最大画素値と最小画素値を求める。次に最大画素値と最小画素値の差分を求め当該加算パターン(画素領域)の変化幅として最小値算出回路585へ供給する。
【0106】
注目画素がG画素の場合、
変化幅算出回路571は、第1の加算パターンAP1として入力された上側ブロックパターンGP1の画素間の変化幅を算出し、第1の変化幅WP1として出力し、
変化幅算出回路572は、第2の加算パターンAP2として入力された右側ブロックパターンGP2の画素間の変化幅を算出し、第2の変化幅WP2として出力し、
変化幅算出回路573は、第3の加算パターンAP3として入力された左側ブロックパターンGP3の画素間の変化幅を算出し、第3の変化幅WP3として出力し、
変化幅算出回路574は、第4の加算パターンAP4として入力された下側ブロックパターンGP4の画素間の変化幅を算出し、第4の変化幅WP4として出力し、
変化幅算出回路575は、第5の加算パターンAP5として入力された上側縦ラインパターンGP5の画素間の変化幅を算出し、第5の変化幅WP5として出力し、
変化幅算出回路576は、第6の加算パターンAP6として入力された下側縦ラインパターンGP6の画素間の変化幅を算出し、第6の変化幅WP6として出力し、
変化幅算出回路577は、第7の加算パターンAP7として入力された左側横ラインパターンGP7の画素間の変化幅を算出し、第7の変化幅WP7として出力し、
変化幅算出回路578は、第8の加算パターンAP8として入力された右側横ラインパターンGP8の画素間の変化幅を算出し、第8の変化幅WP8として出力し、
変化幅算出回路579は、第9の加算パターンAP9として入力された左上側斜めラインパターンGP9の画素間の変化幅を算出し、第9の変化幅WP9として出力し、
変化幅算出回路580は、第10の加算パターンAP10として入力された右下側斜めラインパターンGP10の画素間の変化幅を算出し、第10の変化幅WP10として出力し、
変化幅算出回路581は、第11の加算パターンAP11として入力された右上側斜めラインパターンGP11の画素間の変化幅を算出し、第11の変化幅WP11として出力し、
変化幅算出回路582は、第12の加算パターンAP12として入力された左下側斜めラインパターンGP12の画素間の変化幅を算出し、第12の変化幅WP12として出力する。
【0107】
注目画素がR画素或いはB画素の場合、
変化幅算出回路571は、第1の加算パターンAP1として入力された左上側ブロックパターンRP1或いはBP1の画素間の変化幅を算出し、第1の変化幅WP1として出力し、
変化幅算出回路572は、第2の加算パターンAP2として入力された右上側ブロックパターンRP2或いはBP2の画素間の変化幅を算出し、第2の変化幅WP2として出力し、
変化幅算出回路573は、第3の加算パターンAP3として入力された左下側ブロックパターンRP3或いはBP3の画素間の変化幅を算出し、第3の変化幅WP3として出力し、
変化幅算出回路574は、第4の加算パターンAP4として入力された右下側ブロックパターンRP4或いはBP4の画素間の変化幅を算出し、第4の変化幅WP4として出力する。
変化幅算出回路575〜582は変化幅算出の動作を行わない。
【0108】
最小値算出回路585の注目画素がG画素の場合の動作について説明する。
最小値算出回路585は、変化幅算出回路571〜582から出力される第1乃至第12の変化幅WP1〜WP12を受け、そのうちの最小のものを求め、変化幅が最小の加算パターンAPMを画素指定回路590へ通知する。
画素指定回路590は、最小値算出回路585から通知された加算パターン(選択された加算パターン)APMを構成する画素の画素位置(該画素を構成する画素領域)を示す情報Spを出力端子502を介して選択加算回路30へ供給する。
【0109】
このような処理により、最小値算出回路585と画素指定回路590とで構成される相関領域検出部595は、変化幅算出回路571〜582から出力される第1乃至第12の変化幅WP1〜WP12を受け、変化幅が最小の加算パターンを構成する画素から成る画素領域を、相関の高い画素領域と判定し、該領域を識別する情報Spを選択加算回路30へ供給する。
【0110】
上側ブロックパターンGP1の構成画素が最小の変化幅の場合は、画素G31、G22、G42、G33の画素位置情報Spが選択加算回路30へ供給される。
右側ブロックパターンGP2の構成画素が最小の変化幅の場合は、画素G42、G33、G53、G44の画素位置情報Spが選択加算回路30へ供給される。
左側ブロックパターンGP3の構成画素が最小の変化幅の場合は、画素G22、G13、G33、G24の画素位置情報Spが選択加算回路30へ供給される。
下側ブロックパターンGP4の構成画素が最小の変化幅の場合は、画素G33、G24、G44、G35の画素位置情報Spが選択加算回路30へ供給される。
【0111】
上側縦ラインパターンGP5の構成画素が最小の変化幅の場合は、画素G3T、G31、G33、G35の画素位置情報Spが選択加算回路30へ供給される。
下側縦ラインパターンGP6の構成画素が最小の変化幅の場合は、画素G31、G33、G35、G3Bの画素位置情報Spが選択加算回路30へ供給される。
左側横ラインパターンGP7の構成画素が最小の変化幅の場合は、画素GL3、G13、G33、G53の画素位置情報Spが選択加算回路30へ供給される。
右側横ラインパターンGP8の構成画素が最小の変化幅の場合は、画素G13、G33、G53、GR3の画素位置情報Spが選択加算回路30へ供給される。
【0112】
左上側斜めラインパターンGP9の構成画素が最小の変化幅の場合は、画素G11、G22、G33、G44の画素位置情報Spが選択加算回路30へ供給される。
右下側斜めラインパターンGP10の構成画素が最小の変化幅の場合は、画素G22、G33、G44、G55の画素位置情報Spが選択加算回路30へ供給される。
右上側斜めラインパターンGP11の構成画素が最小の変化幅の場合は、画素G51、G42、G33、G24の画素位置情報Spが選択加算回路30へ供給される。
左下側斜めラインパターンGP12の構成画素が最小の変化幅の場合は、画素G42、G33、G24、G15の画素位置情報Spが選択加算回路30へ供給される。
【0113】
最小値算出回路585の注目画素がR画素の場合の動作について説明する。
最小値算出回路585は、変化幅算出回路571〜574から出力される第1乃至第4の変化幅WP1〜WP4を受け、そのうちの最小のものを求め、変化幅が最小の加算パターンAPMを画素指定回路590へ通知する。
画素指定回路590は、最小値算出回路585から通知された加算パターン(選択された加算パターン)APMを構成する画素の画素位置(該画素を構成する画素領域)を示す情報Spを出力端子502を介して選択加算回路30へ供給する。
【0114】
このような処理により、相関領域検出部595は、変化幅算出回路571〜574から出力される第1乃至第4の変化幅WP1〜WP4を受け、変化幅が最小の加算パターンを構成する画素から成る画素領域を、相関の高い画素領域と判定し、該領域を識別する情報Spを選択加算回路30へ供給する。
【0115】
左上側ブロックパターンRP1の構成画素が最小の変化幅の場合は、画素R11、R31、R13、R33の画素位置情報Spが選択加算回路30へ供給される。
右上側ブロックパターンRP2の構成画素が最小の変化幅の場合は、画素R31、R51、R33、R53の画素位置情報Spが選択加算回路30へ供給される。
左下側ブロックパターンRP3の構成画素が最小の変化幅の場合は、画素R13、R33、R15、R35の画素位置情報Spが選択加算回路30へ供給される。
右下側ブロックパターンRP4の構成画素が最小の変化幅の場合は、画素R33、R53、R35、R55の画素位置情報Spが選択加算回路30へ供給される。
【0116】
最小値算出回路585の注目画素がB画素の場合の動作について説明する。
最小値算出回路585は、変化幅算出回路571〜574から出力される第1乃至第4の変化幅WP1〜WP4を受け、そのうちの最小のものを求め、変化幅が最小の加算パターンAPMを画素指定回路590へ通知する。
画素指定回路590は、最小値算出回路585から通知された加算パターン(選択された加算パターン)APMを構成する画素の画素位置(該画素を構成する画素領域)を示す情報Spを出力端子502を介して選択加算回路30へ供給する。
【0117】
このような処理により、相関領域検出部595は、変化幅算出回路571〜574から出力される第1乃至第4の変化幅WP1〜WP4を受け、変化幅が最小の加算パターンを構成する画素から成る画素領域を、相関の高い画素領域と判定し、該領域を識別する情報Spを選択加算回路30へ供給する。
【0118】
左上側ブロックパターンBP1の構成画素が最小の変化幅の場合は、画素B11、B31、B13、B33の画素位置情報Spが選択加算回路30へ供給される。
右上側ブロックパターンBP2の構成画素が最小の変化幅の場合は、画素B31、B51、B33、B53の画素位置情報Spが選択加算回路30へ供給される。
左下側ブロックパターンBP3の構成画素が最小の変化幅の場合は、画素B13、B33、B15、B35の画素位置情報Spが選択加算回路30へ供給される。
右下側ブロックパターンBP4の構成画素が最小の変化幅の場合は、画素B33、B53、B35、B55の画素位置情報Spが選択加算回路30へ供給される。
【0119】
上記のようにG画素の場合は12個の加算パターンから、R画素、B画素の場合は4個の加算パターンから、最も相関の高い最適な加算パターンを求めるように構成したので画素加算に使う画素に、注目画素と相関の高い画素を正しく選択することができ、画素加算後の画像の解像度劣化を小さくすることができる。
【0120】
次に、図21を参照して、選択加算回路30について説明する。
選択加算回路30は、撮像部2から出力され、相関二重サンプリング処理回路3、プログラマブル利得増幅回路4、A/D変換回路5を介し、さらに画素加算回路6内の遅延回路19を介して供給される各注目画素の撮像信号Pdを受け、そのうち、領域選択回路50で選択された画素領域に含まれる画素の撮像信号を加算し、加算結果を加算画素信号Peとして出力する。
【0121】
選択加算回路30は、例えば図21に示すように構成されている。
図21で、「2L−DL」は2ライン遅延回路を示し、「1L−DL」は1ライン遅延回路を示し、「4D−DL」は4画素遅延回路を示し、「2D−DL」は2画素遅延回路を示し、「1D−DL」は1画素遅延回路を示す。
【0122】
2ライン遅延回路311、331と、1ライン遅延回路322〜325と、4画素遅延回路330、331と、2画素遅延回路332〜337と、1画素遅延回路342〜345、347〜350、352〜355、357〜360、及び362〜365は図示のように接続さており、注目画素とその周囲の画素の画素値を示す画素信号を同時に出力する。
【0123】
例えば、注目画素が図3のP33であるとき、注目画素P33とその周囲の画素P11〜P55、PL3、P3T、P3B、PR1〜PR5の画素値を表す画素信号を同時に出力する。なお、図5の画素抽出部40Aの説明、図14の画素抽出部50Aの説明の際と同じ符号P11〜P55、PL3、P3T、P3B、PRT、PR1〜PR5、PRBが用いられているが、図5では、画素信号Pcを遅延したものであり、図14では、画素信号Pfを遅延したものであるのに対し、図21では、画素信号Pdを遅延したものである点で異なる。
【0124】
遅延回路19から出力された撮像信号Pdは、選択加算回路30の入力端子301に印加される。
入力された画素信号Pdは、画素信号PRBとして、2ライン遅延回路311、1ライン遅延回路322〜325、2ライン遅延回路312で順次遅延されて、画素信号PRBに対して、それぞれ2、3、4、5、6、8ライン遅延した画素信号PR5、PR4、PR3、PR2、PR1、PRTが出力される。
画素信号PRBはまた、4画素遅延回路330で遅延されて、画素信号P3Bとして出力される。
【0125】
2ライン遅延回路311から出力された画素信号PR5は、2画素遅延回路332で2画素遅延され、さらに、1画素遅延回路342〜345で順次1画素遅延されて、画素信号PR5に対してそれぞれ2、3、4、5、6画素遅延した画素信号P55、P45、P35、P25、P15が出力される。
1ライン遅延回路322から出力された画素信号PR4は、2画素遅延回路333で2画素遅延され、さらに、1画素遅延回路347〜350で順次1画素遅延されて、画素信号PR4に対してそれぞれ2、3、4、5、6画素遅延した画素信号P54、P44、P34、P24、P14が出力される。
1ライン遅延回路323から出力された画素信号PR3は、2画素遅延回路334で2画素遅延され、さらに、1画素遅延回路352〜355で順次1画素遅延され、さらに、2画素遅延回路335で2画素遅延されて、画素信号PR3に対してそれぞれ2、3、4、5、6、8画素遅延した画素信号P43、P33、P23、P13、PL3が出力される。
【0126】
1ライン遅延回路324から出力された画素信号PR2は、2画素遅延回路336で2画素遅延され、さらに、1画素遅延回路357〜360で順次1画素遅延されて、画素信号PR2に対してそれぞれ2、3、4、5、6画素遅延した画素信号P52、P42、P32、P22、P12が出力される。
1ライン遅延回路325から出力された画素信号PR1は、2画素遅延回路337で2画素遅延され、さらに、1画素遅延回路362〜365で順次1画素遅延されて、画素信号PR1に対してそれぞれ2、3、4、5、6画素遅延した画素信号P51、P41、P31、P21、P11が出力される。
2ライン遅延回路312から出力された画素信号PRTは、4画素遅延回路331で遅延されて画素信号P3Tとして出力される。
【0127】
画素信号P55〜P11、P3B、PR3、PL3、P3Tは、それぞれ図3の画素P55〜P11、P3B、PR3、PL3、P3Tの画素値を表すものであり、画素信号PRBが入力されたタイミングで、同時に出力され、画素選択回路370に供給される。
【0128】
図21において、同期信号発生回路11から出力される水平同期信号HDと垂直同期信号VDは、画素加算回路6の同期信号入力端子18を経て、選択加算回路30の同期信号入力端子318へ印加され、画素選択回路370へ供給される。
領域選択回路50の画素指定回路590から通知される加算パターンに属する画素の画素位置を示す情報Spは、選択加算回路30の画素位置入力端子319を介して画素選択回路370へ供給される。
【0129】
画素選択回路370は水平同期信号HDと垂直同期信号VDに基づいて注目画素P33の画素位置を判断して、注目画素の色フィルタ配列上の画素位置を特定する。
画素選択回路370は、注目画素が、R画素かG画素かB画素かをも特定する。そして画素指定回路590からの情報Spで示される加算パターン(注目画素との相関が最も高いものとして選択された加算パターン)を構成する画素の画素位置も特定する。
【0130】
画素選択回路370は、選択した加算パターンを構成する4個の画素の画素値Ps1〜Ps4を加算回路390へ供給する。制御回路12から出力される1倍から4倍の増感倍率Lは、画素加算回路6の制御端子17を経て、選択加算回路30の制御端子317へ印加され、加算回路390へ供給される。
【0131】
加算回路390は、画素選択回路370から供給された4画素の画素値を加算して、加算結果を加算画素信号Peとして、出力端子302を介して映像信号処理回路7へ供給する。この加算に当たり、加算前の画素値に対して加算結果が所定の増感倍率Lを有するように、加算係数が掛けられる。即ち該加算係数を用いた加重加算が行われる。
例えば、4画素の画素値をPs1、Ps2、Ps3、Ps4、増感倍率をLとすると、
Pe=(Ps1+Ps2+Ps3+Ps4)×L/4
で表される演算により、加算画素値Peを求める。以下の説明で、G画素についての加算画素値はGeで、R画素についての加算画素値はReで、B画素についての加算画素値はBeで示される。
【0132】
増感倍率Lは、例えば、被写体照度との関係で定められる。例えば、被写体照度が第1の所定の値(高照度側基準値)以上では、増感倍率Lは1と設定され、上記第1の所定の値よりも低い第2の所定の値(低照度側基準値)以下では、増感倍率を4とし、高照度側基準値よりも低く、低照度側基準よりも高い範囲(中照度範囲)では、照度の低下とともに、増感倍率を次第に大きくする。
加重加算に当たり、各画素の画素値に掛けられる加算係数は、増感倍率に依存する。
画素毎に異なる加算係数を用いることとしても良い。例えば、増感倍率が1のときは、注目画素に対する加算係数を1とし、他の画素に対する加算係数を0とし、増感倍率が最大値、例えば4のときは、すべての画素に対する加算係数を同じ値としても良い。
増感倍率が1と4の間では、増感倍率が1のときの値から、増感倍率が最大値のときの値へ、加算係数を連続的に変化させるようにしても良い。
【0133】
注目画素がG画素の時の動作を説明する。
第1の加算パターンAP1としての上側ブロックパターンGP1が選択された場合、加算回路390は、次式の演算を行う。
Ge=(G31+G22+G42+G33)×L/4
第2の加算パターンAP2としての右側ブロックパターンGP2が選択された場合、加算回路390は、次式の演算を行う。
Ge=(G42+G33+G53+G44)×L/4
第3の加算パターンAP3としての左側ブロックパターンGP3が選択された場合、加算回路390は、次式の演算を行う。
Ge=(G22+G13+G33+G24)×L/4
第4の加算パターンAP4としての下側ブロックパターンGP4が選択された場合、加算回路390は、次式の演算を行う。
Ge=(G33+G24+G44+G35)×L/4
【0134】
第5の加算パターンAP5としての上側縦ラインパターンGP5が選択された場合、加算回路390は、次式の演算を行う。
Ge=(G3T+G31+G33+G35)×L/4
第6の加算パターンAP6としての下側縦ラインパターンGP6が選択された場合、加算回路390は、次式の演算を行う。
Ge=(G31+G33+G35+G3B)×L/4
第7の加算パターンAP7としての左側横ラインパターンGP7が選択された場合、加算回路390は、次式の演算を行う。
Ge=(GL3+G13+G33+G53)×L/4
第8の加算パターンAP8としての右側横ラインパターンGP8が選択された場合、加算回路390は、次式の演算を行う。
Ge=(G13+G33+G53+GR3)×L/4
【0135】
第9の加算パターンAP9としての左上側斜めラインパターンGP9が選択された場合、加算回路390は、次式の演算を行う。
Ge=(G11+G22+G33+G44)×L/4
第10の加算パターンAP10としての右下側斜めラインパターンGP10が選択された場合、加算回路390は、次式の演算を行う。
Ge=(G22+G33+G44+G55)×L/4
第11の加算パターンAP11としての右上側斜めラインパターンGP11が選択された場合、加算回路390は、次式の演算を行う。
Ge=(G51+G42+G33+G24)×L/4
第12の加算パターンAP12としての左下側斜めラインパターンGP12が選択された場合、加算回路390は、次式の演算を行う。
G=(G42+G33+G24+G15)×L/4
【0136】
注目画素がR画素の時の動作を説明する。
第1の加算パターンAP1としての左上側ブロックパターンRP1が選択された場合、加算回路390は、次式の演算を行う。
Re=(R11+R31+R13+R33)×L/4
第2の加算パターンAP2としての右上側ブロックパターンRP2が選択された場合、加算回路390は、次式の演算を行う。
Re=(R31+R51+R33+R53)×L/4
第3の加算パターンAP3としての左下側ブロックパターンRP3が選択された場合、加算回路390は、次式の演算を行う。
Re=(R13+R33+R15+R35)×L/4
第4の加算パターンAP4としての右下側ブロックパターンRP4が選択された場合、加算回路390は、次式の演算を行う。
Re=(R33+R53+R35+R55)×L/4
【0137】
注目画素がB画素の時の動作を説明する。
第1の加算パターンAP1としての左上側ブロックパターンBP1が選択された場合、加算回路390は、次式の演算を行う。
Be=(B11+B31+B13+B33)×L/4
第2の加算パターンAP2としての右上側ブロックパターンBP2が選択された場合、加算回路390は、次式の演算を行う。
Be=(B31+B51+B33+B53)×L/4
第3の加算パターンAP3としての左下側ブロックパターンBP3が選択された場合、加算回路390は、次式の演算を行う。
Be=(B13+B33+B15+B35)×L/4
第4の加算パターンAP4としての右下側ブロックパターンBP4が選択された場合、加算回路390は、次式の演算を行う。
Be=(B33+B53+B35+B55)×L/4
【0138】
上記の例では、G画素について、画素加算を、縦、横、斜めラインパターン、ブロックパターンなど、解像度の高い被写体を含む画像を想定した加算パターンを使うように構成したので、相関の高い画素同士が加算できる。解像度の高い被写体を含むシーンを画素加算した場合でも、高解像度部分がぼやけることを防ぐ効果がある。
【0139】
上記の例ではR画素とB画素については、ブロックパターンのみを用いているが、R画素とB画素の加算パターンとして、G画素同様に、縦、横、斜めラインパターンをも用い、これらについて相関を判定するように構成しても良い。
但し、R画素とB画素の場合は、G画素よりも加算対象の画素間の距離が長くなることから相関判定の誤判定の危険性が高まること、また回路規模が大きくなること、また人間の色の変化に対する感度が輝度よりも低いこと等を総合的に判断して加算パターンを決める。
【0140】
さらに、G画素についても、上記の12の加算パターンのすべてを用いず、その一部のみを用いても良い。例えば、図16(a)〜(d)に示す4つのパターンのみを用いても良く、図17(a)〜(d)に示す4つのパターンのみを用いても良く、図18(a)〜(d)に示す4つのパターンのみを用いても良い。
【0141】
上記の例で説明したように、注目画素に最も近い相関の高い画素を使って画素加算を行うので画像解像度の劣化を最小限に抑えつつ感度向上を実現することができる。
【0142】
上記の例で説明したように、画素加算を撮像素子から出力された直後に(即ち映像信号処理回路7による処理の前に)行うことにより、映像信号処理の影響を受けずに、画素加算による高感度信号が生成できる。映像信号処理の後段で行う画素加算は、近傍に位置する画素を使った演算である色同時化処理や、フィルタ処理が施されているので、水平解像度や垂直解像度の低下が想定よりも大きい。また、小振幅信号のまま、映像信号処理を行うので階調落ちの可能性がある。画素加算を撮像素子から出力された直後に行うことにより、画像情報が損なわれる前に、画素加算して信号振幅を回復できるので、細部の画像情報が視認できる効果がある。
【0143】
また映像信号処理では非線形なフィルタ処理や階調変換処理が行われているので、低振幅信号を入力した場合、信号振幅が失われている場合がある。このため、映像信号処理の出力信号を2画素加算しても、2倍の画像信号にならない可能性がある。上記した例では映像信号処理前に画素加算するように構成したので、2画素加算したら、2倍の画像信号になる効果がある。
【0144】
上記の例では、4倍までの増感倍率Lを設定した場合について説明したが、4倍以上に設定しても良い。4倍以上の増感倍率Lの設定は、階調落ちに注意して使う必要がある。
【0145】
上記の例で説明したように、同じフィルタ色の画素を加算するので、混色することなく高感度なカラー画像が得られる。
【0146】
低照度時の撮像画像をアナログアンプで増幅すると信号よりもノイズが大きくなる。またデジタルアンプで増幅すると階調落ちが発生する。上記の例で説明したように本発明は、周辺画素の画素加算で高感度化をはかるので信号よりもノイズが小さくなる。例えば2画素加算すると信号成分は2倍になり、ノイズ成分は二乗根倍になり、相対的に純粋の信号成分が大きくなる。また、画像の性質として近傍に位置する画素同士は相関が高いことから、注目画素に最も近い位置の複数画素を加算することで実効性の高い感度向上を実現している。
【0147】
上記の例において、固体撮像素子の一構成例として図1のようにCCD撮像素子2を使った構成について説明したが、2次元イメージセンサであればCCD撮像素子に限らず、CMOS撮像素子でも、どのようなものでも良い。またインターライントランスファーCCDに限らず、フレームトランスファーCCDでもフレームインターライントランスファーCCDであっても良い。
図22に、CMOS撮像素子20を使った構成を示す。CMOS撮像素子は、撮像機能単体のデバイスの場合もあるし、周辺機能を集積したデバイスの場合もある。
図22は、周辺機能を集積したCMOS撮像素子の場合について示す。
図1のCCD撮像素子2、相関二重サンプリング処理回路3、プログラマブル利得増幅回路4、A/D変換回路5、タイミング発生回路10の持つ機能は、CMOS撮像素子20の中に含まれている。
【0148】
実施の形態2.
図23は本発明の実施の形態2による撮像装置を示す。図23において、検波回路13が付加されていること、及び図1の制御回路12の代わりに制御回路12bが設けられている点を除き、実施の形態1の説明と同様であり、同様な効果を奏する。
【0149】
検波回路13は、画素加算回路6から供給された信号の大きさを検波し、信号振幅のレベル、例えば平均レベルの検出値ASAを求め、照度情報として出力する。
【0150】
検波回路13は、上記の検波において、信号振幅の平均レベルの算出値ASAを、全有効画素の画素値の総和を全有効画素数で除算して求める。
このような平均レベルの算出は、例えば垂直走査周期毎に行われ、例えば積分処理と割算処理とにより実行される。上記のようにして求められる信号振幅の平均レベルの「算出値」を、信号振幅の平均レベルの「検出値」と言うことがある。
【0151】
なお、上記の信号振幅の平均レベル算出における全有効画素数での除算は、画素数が2のn乗(nは整数)で与えられるときは、デジタル値のビットシフト処理で実現しても良い。また全有効画素数は、同じシステムでは定数であるので全有効画素数の除算を省略しても良い。
【0152】
制御回路12bは、実施の形態1の制御回路12と同様であるが、以下のように付加的な機能を有する。即ち、制御回路12bは、検波回路13から供給された信号振幅の平均レベルの検出値ASAに基づいて、レンズ1の絞りの制御、タイミング発生回路10が発生するCCD撮像素子2の光電変換素子からの電荷読出しタイミング及び電荷強制排出タイミングの制御(従って、電荷蓄積時間、即ち露光時間の制御)、プログラマブル利得増幅回路4の増幅利得の制御、並びに画素加算回路6の画素加算処理の制御を行う。
さらに、映像信号処理回路7は、垂直走査周期毎に画素加算回路6の出力に含まれるノイズのレベルを算出し、制御回路12bへ供給する。
【0153】
なお、上記の例では、上記の信号振幅の平均レベルの算出及びノイズレベルの算出を、垂直走査周期毎に行うものとして説明したが、検波回路13及び映像信号処理回路7内部の信号処理時間並びに検波回路13及び映像信号処理回路7から制御回路12bへの伝送時間を考慮して、数回の垂直走査に1回だけ行うようにしても良い。
【0154】
上記の例では、検波回路13は、信号振幅の平均レベルを算出したが、信号振幅のピーク検波とする場合もある。検波回路13の出力は、着目する被写体の視認性が高くなるように生成する。例えば、ハイライト部分を白く飽和させたくない場合は、ピーク検波とし、ハイライト部分が白く飽和しても中間階調がはっきり見えれば良い場合は、平均値検波とする。
【0155】
以下で詳しく述べるように、画素加算回路6による感度制御も露光制御の一環として制御できるので照度環境が変化しても、常に最適な条件で被写体を視認できる画像が得られる効果がある。また、画素加算回路6は、加算係数を変えることで、信号振幅を調整する。
【0156】
制御回路12bは、検波回路13から得られる信号振幅の平均レベルの検出値ASAが一定となるように自動露光制御を行う。明るい環境での撮像で上記信号振幅が大きい時、制御回路12bは、レンズ1の開口を絞るように制御してCCD撮像素子2への入射光量を減らしたり、タイミング発生回路10による電荷強制排出タイミングの調整で、CCD撮像素子2の光電変換素子に蓄積される電荷を強制排出するように制御して露光時間を減らしたりする。
【0157】
暗い環境での撮像で上記信号振幅が小さくなってきた時、制御回路12bは、プログラマブル利得増幅回路4の増幅利得を増やすように制御して撮像信号を増幅する。しかしながら、上記増幅利得が大き過ぎるとノイズが目立つようになり視認性の悪い画像となる。他の方法として、制御回路12bは、CCD撮像素子2の光電変換素子からの電荷読出しを垂直走査周期単位で間引くように制御することにより露光時間を延ばすこともできる。しかしながら、露光時間が長すぎると動く被写体が残像となり視認性の悪い画像となる。さらに垂直走査周期単位で欠落する画像の補間(フレーム補間)を行なう回路が必要になる。
【0158】
実施の形態1と同様に、本実施の形態の制御回路12bは、画素加算回路6への増感倍率Lを1倍から4倍に設定する。増感倍率Lの設定(調整)は、検波回路13からの照度情報並びに露光パラメータに基づいて行われる。実施の形態1で述べたように、増感倍率Lの変更により加算係数KR、KG、KBが調整される。従って、照度情報に基づいて加算係数が調整される。
また、注目画素と、注目画素の近傍領域内に位置し、注目画素に対して特定の位置にある画素から成る組合せを複数個形成して、形成した組合せの各々について変化幅を算出して、変化幅が最小の組合せに属する画素を加算する。
注目画素の近傍領域内に位置し、最も相関の高い4画素を加算することにより、4倍の感度向上を実現でき、極めて暗い環境での撮像でも大幅に視認性を改善することができる。また、フレーム周波数の低下を防止乃至抑制することができるので、動解像度の劣化はなく、水平解像度、垂直解像度の劣化は最小に抑えることができる。
【0159】
以下、被写体照度が変化したときの感度調整のための手順の一例を説明する。まず、露光時間は一定値(標準露光時間)Trに維持するものとして説明する。
被写体照度が徐々に暗くなり、信号振幅の平均レベルの検出値ASAが下がってくると、レンズ1の絞りを開放方向に制御して(図24(a)の範囲Sa)、信号振幅の平均レベルを維持する。ここで、「信号振幅の平均レベルを維持する」とは、画素加算回路6の出力の信号振幅の平均レベル、従って検波回路13の出力で表される、信号振幅の平均レベルを維持することを意味する。
【0160】
レンズ1の絞りが開放(全開)になった後は、プログラマブル利得増幅回路4の増幅利得を増やすように制御して(図24(b)の範囲Sb)、信号振幅の平均レベルを維持する。プログラマブル利得増幅回路4の増幅利得が大きくなり、増幅利得の所定の上限値UGLよりも大きくなった後は、画素加算回路6の増感倍率Lを大きくなるように制御して(図24(c)の範囲Sc)、信号振幅の平均レベルを維持する。
【0161】
増感倍率Lの制御による平均レベルASAの維持は、増感倍率Lが最大値(L=4)となるまで可能である。それよりもさらに被写体照度が低下すると、平均レベルASAは低下を開始する。
【0162】
標準露光時間Trにおいて、レンズ絞りを開放とし、増幅利得を最大とし、増感倍率Lが1であるときに画素加算回路6の出力が所定のレベルとなる照度HLを高照度側基準値とし、高照度基準値HLの1/4の照度、即ち、標準露光時間Trにおいて、レンズ絞りを開放とし、増幅利得を最大とし、増感倍率Lが4であるときに画素加算回路6の出力が所定のレベルとなる照度LLを、低照度側基準値とする。
【0163】
被写体照度が徐々に明るくなって、低照度側基準値LL以上となり、信号振幅の平均レベルの検出値ASAが上がろうとすると、画素加算回路6の増感倍率Lを減らすように制御して(図24(c)の範囲Sc)、信号振幅の平均レベルを維持する。増感倍率Lが1倍まで小さくなると、次にプログラマブル利得増幅回路4の増幅利得を減らすように制御して、信号振幅の平均レベルを維持する。プログラマブル利得増幅回路4の増幅利得が減少し(図24(b)の範囲Sb)、所定の下限値LGLよりも小さくなった後は、レンズ1の絞りを遮光方向に制御して(図24(a)の範囲Sa)、信号振幅の平均レベルを維持する(図24(e))。さらに照度が高くなると、平均レベルASAは上昇する。
【0164】
以上の制御を行う結果、図24(e)に実線で示すように、下限LLから上限ULまでの範囲において、信号振幅の平均レベルASAを一定に保つことができる。
なお、露光時間を一定としたが、被写体の照度に応じて露光時間をも制御しても良い。例えば、照度が低下して、増感倍率Lが最大値になってもなおも、信号振幅が十分な値とならないときに、露光時間を長くすることとしても良い(図24(d)の範囲Sd)。逆に、照度が高くなり、絞りを最大に絞っても(F値を最も高くしても)、信号振幅が大きすぎる場合には、露光時間を短くしても良い(図24(d)の範囲Se)。
このような露光時間の制御を加えると、図24(e)に点線で示すように、下限LLeから上限ULeまでの範囲において、信号振幅の平均レベルASAを一定に保つことができる。
【0165】
上記増幅利得の所定の上限値UGLは、映像信号処理回路7で検出されるノイズレベルの検出値ANLに基づいて決まる。(被写体照度が低下し、それに伴い撮像素子2の出力のS/Nが低下した場合に増幅利得を増加させる必要があることを考慮し、)ノイズレベルの検出値ANLが信号振幅の平均レベルの検出値ASAに対して所定のノイズ割合(第1の所定のノイズ割合、即ち許容上限値)NPR1に達したときのプログラマブル利得増幅回路4の増幅利得を上記所定の上限値UGLとする。上記第1の所定のノイズ割合NPR1は例えば1/50と定められる。
【0166】
ノイズレベルの算出値ANLは、ノイズ低減処理によりノイズ成分を抽出し、全有効画素範囲のノイズ成分の絶対値の総和を全有効画素数で除算することで求まる。ノイズ低減処理により、入力信号のノイズを低減したノイズ低減信号NRSが得られる。上記入力信号(映像信号処理回路7内でノイズ低減処理を行う前の信号)から上記ノイズ低減信号NRSを減算することでノイズ成分を抽出できる。上記のようにして求められるノイズレベルの「算出値」を、「検出値」と言うことがある。
【0167】
用途によって被写体の視認にあたり許容できるノイズレベルは異なるため、上記第1の所定のノイズ割合NPR1は、S/Nを重視するか、画像解像度を重視するか等、撮像装置の用途によって変わる。制御回路12bは、プログラマブル利得増幅回路4に設定している利得、及び検波回路13から制御回路12bへ供給されるノイズレベルの検出値ANLを観測しながらダイナミックに上記増幅利得の所定の上限値UGLを決めてプログラマブル利得増幅回路4及び画素加算回路6を制御することとしても良く、撮像装置を工場から出荷する前にノイズレベルの検出値ANLが信号振幅の平均レベルの検出値ASAに対して第1の所定のノイズ割合NPR1に達する増幅利得を測定し、上記所定の上限値UGLとして撮像装置の電源を切っても記憶内容を保持できる記憶部(不揮発性のメモリ、電池でバックアップされた揮発性のメモリなど)16に書込み、制御回路12bは上記増幅利得の所定の上限値UGLを参照してプログラマブル利得増幅回路4及び画素加算回路6を制御するようにしても良い。
【0168】
上記増幅利得の所定の下限値LGLは、映像信号処理回路7から制御回路12bへ供給されるノイズレベルの検出値ANLに基づいて決まる。ノイズレベルの検出値ANLが信号振幅の平均レベルの検出値ASAに対して所定のノイズ割合(第2の所定のノイズ割合)NPR2を下回ったときのプログラマブル利得増幅回路4の増幅利得を上記所定の下限値LGLとする。上記第2の所定のノイズ割合は、上記第1の所定のノイズ割合NPR1と画素加算回路6による感度倍率(4倍)に基づいて決める。例えば、上記第2の所定のノイズ割合NPR2は、1/200(={(1/50)×(1/4)})と定められる。
【0169】
用途によって被写体の視認にあたり許容できるノイズレベルは異なるため、上記第2の所定のノイズ割合NPR2は、S/Nを重視するか、画像解像度を重視するか等、撮像装置の用途によって変わる。制御回路12bは、プログラマブル利得増幅回路4に設定している利得、及び検波回路13から制御回路12bへ供給されるノイズレベルの検出値ANLを観測しながらダイナミックに上記増幅利得の所定の下限値LGLを決めてプログラマブル利得増幅回路4及び画素加算回路6を制御することとしても良く、撮像装置を工場から出荷する前にノイズレベルの検出値ANLが信号振幅の平均レベルの検出値ASAに対して第2の所定のノイズ割合NPR2に達する増幅利得を測定し、上記所定の下限値LGLとして撮像装置の電源を切っても記憶内容を保持できる記憶部16に書込み、制御回路12bは上記増幅利得の所定の下限値LGLを参照してプログラマブル利得増幅回路4及び画素加算回路6を制御するようにしても良い。
【0170】
制御回路12bは、レンズ1の絞り、CCD撮像素子2の露光時間、プログラマブル利得増幅回路4の増幅利得、画素加算回路6における画素加算による信号振幅調整機能を制御して信号振幅の平均レベル(画素加算回路6の出力の信号振幅の平均レベル)を維持する。
【0171】
以上のような制御を行っているので、検波回路13で得られる信号の振幅ASAと、そのときの露光制御パラメータ(絞り、増幅利得、増感感度、露光時間)とに基づいて、被写体の照度を求めることができる。
言い換えれば、検波回路の出力に対し、露光制御パラメータに基づく逆算を行うことで得られる換算値は、被写体の照度に対応した値である。即ち、そのようなに逆算によって得られた照度が高照度側基準値以上か、低照度側輝度値以下か、それらの基準値の間の範囲にあるかを判断し、判断結果に応じ画素加算の制御(増感感度)を行うことができる。
【0172】
上記のように構成したので、露光制御の中で、絞り制御、増幅利得制御、画素加算制御、露光時間制御を順番に切替えることで、視認性の良い最適な明るさの画像を出力することができる効果がある。
【0173】
また、画素加算回路において、加算する画素の数ではなく加算係数で増感倍率を設定できるように構成し、増感倍率Lを整数に限らず小数を含む値で設定できることとしたので、露光制御の中で、画素加算制御も加算係数を小数点以下の値をも使ってシームレスに切替えられ、照度変化の過程で、画像の明るさが急変することなく見やすい画像が出力できる効果がある。
【0174】
実施の形態3.
図25は本発明の実施の形態3による撮像装置を示す。図25において、測光部14が付加されている点、及び制御回路12の代わりに制御回路12cが設けられている点を除き、実施の形態1と同様であり、同様な効果を奏する。
【0175】
測光部14は、レンズ1への光の入射方向の被写体照度を測光する。測光部14の照度センサ(図示せず)の取り付け及び位置決めはレンズの光軸に基づいて決められ、レンズ1が撮像する被写体の照度を測光する。
【0176】
制御回路12cは、実施の形態1の制御回路12と同様であるが、以下のように付加的な機能を有する。即ち、制御回路12cは、測光部14から供給された照度値に基づいて、レンズ1の絞りの制御、タイミング発生回路10が発生するCCD撮像素子2の光電変換素子からの電荷読出しタイミング及び電荷強制排出タイミングの制御(従って、電荷蓄積時間、即ち露光時間の制御)、プログラマブル利得増幅回路4の増幅利得の制御、並びに画素加算回路6の画素加算処理の制御を行う。
【0177】
制御回路12cは、記憶部16内に保持されている設定値テーブルに従って、レンズ1の絞り、CCD撮像素子2の露光時間、プログラマブル利得増幅回路4の増幅利得、画素加算回路6の増感倍率の設定を行う。
設定値テーブルには、照度値ごとにレンズ1の絞り、CCD撮像素子2の露光時間、プログラマブル利得増幅回路4の増幅利得、画素加算回路6の増感倍率が登録されている。
【0178】
照度が明るいときは、撮像素子2の露光時間はフレームレートに基づく標準露光時間Trに、プログラマブル利得増幅回路4の増幅利得は1倍に、画素加算回路6の増感倍率Lは1倍に設定してレンズ1の絞りを絞っていく(図24(a)の範囲Sa)。レンズ1が最大絞りになって照度がさらに明るくなると、撮像素子2の露光時間を標準露光時間Trから短く制御する(図24(d)の範囲Se)。
【0179】
照度が暗くなると、撮像素子2の露光時間はフレームレートに基づく標準露光時間Trに、プログラマブル利得増幅回路4の増幅利得は1倍に、画素加算回路6の増感倍率は1倍に設定してレンズ1の絞りを開いていく(図24(a)の範囲Sa)。レンズ1が絞り開放になって照度がさらに暗くなると、プログラマブル利得増幅回路4の増幅利得を1倍から大きくしていく(図24(b)の範囲Sb)。プログラマブル利得増幅回路4の増幅利得が、上記の上限値(画素加算回路6の出力に含まれるノイズのレベルが上記の第1の所定の割合に達したときの増幅利得の値、即ち、該ノイズレベルが上記の第1の所定の割合(許容範囲の上限値)を超えないという制約条件を満たす最大利得値)となって照度がさらに暗くなると、画素加算回路6の増感倍率を1倍から大きくしていく(図24(c)の範囲Sc)。さらに暗くなると、露光時間を長くする(図24(d)の範囲Sd)。
【0180】
上記のように構成したので、露光制御の中で、絞り制御、増幅利得制御、画素加算制御及び露光時間制御を順番に切替えることで、視認性の良い最適な明るさの画像を出力することができる効果がある。
【0181】
また、画素加算回路において、加算する画素の数ではなく加算係数で増感倍率を設定できるように構成し、増感倍率Lを整数に限らず小数を含む値で設定できることとしたので、露光制御の中で、画素加算制御も加算係数を小数点以下の値をも使ってシームレスに切替えられ、照度変化の過程で、画像の明るさが急変することなく見やすい画像が出力できる効果がある。
【0182】
なお、実施の形態2及び3において、増感倍率を最大にしても信号振幅が十分でない場合に露光時間を長くする旨説明したが、これはフレームレートが変わらないようにすることを優先した結果である。フレームレートよりも解像度を重視する場合には、露光時間を長くする制御を先に行い、露光時間を(例えば所定の値まで)長くしても信号振幅が十分でない場合に増感倍率を大きくすることとしても良く、増感倍率を大きくする制御と露光時間を長くする制御を平行して行っても良い。
【符号の説明】
【0183】
1 レンズ、 2 CCD撮像素子、 3 相関二重サンプリング処理回路、 4 プログラマブル利得増幅回路、 5 A/D変換回路、 6 画素加算回路、 7 映像信号処理回路、 8 映像信号出力端子、 9 駆動回路、 10 タイミング発生回路、 11 同期信号発生回路、 12 制御回路、 13 検波回路、 14 測光部、 15 入力端子、 16 出力端子、 17 制御端子、 18 同期信号入力端子、 19 遅延回路、 20 CMOS撮像素子、 30 選択加算回路、 40 ノイズ低減回路、 40A 画素抽出部、 40B 加重加算部、 40C 係数設定回路、 50 領域選択回路、 50A 画素抽出部、 50B 相関判定部、 301 入力端子、 302 出力端子、 311〜312 2ライン遅延回路、 317 制御端子、 318 同期信号入力端子、 319 画素位置入力端子、 322〜325 1ライン遅延回路、 330〜331 4画素遅延回路、 332〜337 2画素遅延回路、 342〜365 1画素遅延回路、 370 画素選択回路、 390 加算回路、 401 入力端子、 402 出力端子、 417 制御端子、 418 同期信号入力端子、 422〜425 1ライン遅延回路、 432〜455 1画素遅延回路、 461〜485 乗算回路、 490 加算回路、 501 入力端子、 502 出力端子、 511〜512 2ライン遅延回路、 518 同期信号入力端子、 522〜525 1ライン遅延回路、 530〜531 4画素遅延回路、 532〜537 2画素遅延回路、 542〜565 1画素遅延回路、 570 画素選択回路、 571〜582 変化幅算出回路、 585 最小値算出回路、 590 画素指定回路、 595 相関領域検出部。

【特許請求の範囲】
【請求項1】
それぞれ異なる色成分の光を検出して対応する撮像信号を出力する複数種の画素を有する撮像部と、
前記撮像部から出力された撮像信号のノイズを低減するノイズ低減回路と、
前記ノイズ低減回路でノイズが低減された撮像信号に基づいて、各注目画素について、各注目画素とその周囲の同じ色成分の光を検出する画素で形成される領域のうち、相関の高い領域を選択する領域選択回路と、
前記撮像部から出力された各注目画素の撮像信号について、前記領域選択回路で選択された画素領域に含まれる画素の撮像信号を加算して加算結果を加算画素信号として出力する選択加算回路と
を備えることを特徴とする撮像装置。
【請求項2】
前記複数の色成分が第1、第2及び第3の色成分を含み、
前記複数種の画素が、
第1の色成分の光を検出して対応する撮像信号を発生する第1種の画素と、第2の色成分の光を検出して対応する撮像信号を発生する第2種の画素と、第3の色成分の光を検出して対応する撮像信号を発生する第3種の画素と、前記第2の色成分の光を検出して対応する撮像信号を発生する第4種の画素とを含み、
前記第1乃至第4種の画素が、水平2画素、垂直2画素の組み合わせを基本単位として画面内に規則的に配列されており、
前記基本単位内の1つの対角線の方向に前記第2種及び第4種の画素が並んで配置され、他の対角線の方向に前記第1種及び第3種の画素が並んで配置されている
ことを特徴とする請求項1に記載の撮像装置。
【請求項3】
前記第1の色成分が赤、前記第2の色成分が緑、前記第3の色成分が青であることを特徴とする請求項2に記載の撮像装置。
【請求項4】
前記第1種の画素が、前記第1の色成分の光を透過させる第1の色フィルタを設けた画素であり、
前記第2種の画素及び第4種の画素が、前記第2の色成分の光を透過させる第2の色フィルタを設けた画素であり、
前記第3種の画素が、前記第3の色成分の光を透過させる第3の色フィルタを設けた画素である
ことを特徴とする請求項2又は3に記載の撮像装置。
【請求項5】
前記ノイズ低減回路は、注目画素と、その周囲の画素のうちの注目画素と同じ色成分の光を検出する画素からの撮像信号に対して二次元フィルタリングを行うことにより、前記ノイズの低減を行うことを特徴とする請求項1乃至4のいずれかに記載の撮像装置。
【請求項6】
前記フィルタリングが低域通過フィルタリングであることを特徴とする請求項5に記載の撮像装置。
【請求項7】
前記領域選択回路は、
前記ノイズ低減回路から出力された撮像信号を所定の時間だけ遅延させて
注目画素及びその周囲の画素の画素値を表す信号を同時に抽出する画素抽出部と、
前記画素抽出部で抽出された画素のうちの、注目画素と、該注目画素と同じ色成分の光を検出する複数の画素とから成る組合せを複数個形成し、該複数個の組合せのうち、当該組合せを構成する画素の画素値の最大値と最小値の差が最小である組合せを前記相関の高い画素領域を構成するものと判定する相関判定部とを備える
ことを特徴とする請求項2に記載の撮像装置。
【請求項8】
前記相関判定部は、
前記画素抽出部で抽出された画素のうちの、注目画素と、該注目画素と同じ色成分の光を検出する複数の画素とから成る組合せを複数個形成し、該複数個の組合せを出力する選択回路と、
前記選択回路から出力される複数個の組合せにそれぞれについて、前記最大値と最小値の差を変化幅として算出する変化幅算出回路と、
前記変化幅算出回路で算出された変化幅のうちの最小のものを生じさせた組合せが、前記相関の高い画素領域を構成するものであると判定する相関領域検出部とを備える
ことを特徴とする請求項7に記載の撮像装置。
【請求項9】
第2の色成分の撮像信号を出力する画素を注目画素として、前記相関判定部で形成される組合せが、
注目画素、注目画素の2ライン前に位置する画素、注目画素の1ライン前の1画素前に位置する画素、及び注目画素の1ライン前の1画素後に位置する画素から成る組合せと、
注目画素、注目画素の1ライン前の1画素後に位置する画素、注目画素の2画素後に位置する画素、及び注目画素の1ライン後の1画素後に位置する画素から成る組合せと、
注目画素、注目画素の1ライン前の1画素前に位置する画素、注目画素の2画素前に位置する画素、及び注目画素の1ライン後の1画素前に位置する画素から成る組合せと、
注目画素、注目画素の1ライン後の1画素前に位置する画素、注目画素の1ライン後の1画素後に位置する画素、及び注目画素の2ライン後に位置する画素から成る組合せとを含む
ことを特徴とする請求項7又は8に記載の撮像装置。
【請求項10】
第2の色成分の撮像信号を出力する画素を注目画素として、前記相関判定部で形成される組合せが、
注目画素、注目画素の2ライン前に位置する画素、注目画素の4ライン前に位置する画素、及び注目画素の2ライン後に位置する画素から成る組合せと、
注目画素、注目画素の2ライン前に位置する画素、注目画素の2ライン後に位置する画素、及び注目画素の4ライン後に位置する画素から成る組合せと、
注目画素、注目画素の2画素前に位置する画素、注目画素の4画素前に位置する画素、及び
注目画素の2画素後に位置する画素から成る組合せと、
注目画素、注目画素の2画素前に位置する画素、注目画素の2画素後に位置する画素、及び注目画素の4画素後に位置する画素から成る組合せとを含む
ことを特徴とする請求項7乃至9のいずれかに記載の撮像装置。
【請求項11】
第2の色成分の撮像信号を出力する画素を注目画素として、前記相関判定部で形成される組合せが、
注目画素、注目画素の2ライン前の2画素前に位置する画素、注目画素の1ライン前の1画素前に位置する画素、及び注目画素の1ライン後の1画素後に位置する画素から成る組合せと、
注目画素、注目画素の1ライン前の1画素前に位置する画素、注目画素の1ライン後の1画素後に位置する画素、及び注目画素の2ライン後の2画素後に位置する画素から成る組合せと、
注目画素、注目画素の2ライン前の2画素後に位置する画素、注目画素の1ライン前の1画素後に位置する画素、及び注目画素の1ライン後の1画素前に位置する画素から成る組合せと、
注目画素、注目画素の1ライン前の1画素後に位置する画素、注目画素の1ライン後の1画素前に位置する画素、及び注目画素の2ライン前の2画素前に位置する画素から成る組合せとを含む
ことを特徴とする請求項7乃至10のいずれかに記載の撮像装置。
【請求項12】
第1又は第3の色成分の撮像信号を出力する画素を注目画素として、前記相関判定部で形成される組合せが、
注目画素、注目画素の2ライン前に位置する画素、注目画素の2ライン前の2画素前に位置する画素、及び注目画素の2画素前に位置する画素から成る組合せと、
注目画素、注目画素の2ライン前に位置する画素、注目画素の2ライン前の2画素後に位置する画素、及び注目画素の2画素後に位置する画素から成る組合せと、
注目画素、注目画素の2画素前に位置する画素、注目画素の2ライン後に位置する画素、及び注目画素の2ライン後の2画素前に位置する画素から成る組合せと、
注目画素、注目画素の2画素後に位置する画素、注目画素の2ライン後に位置する画素、及び注目画素の2ライン後の2画素後に位置する画素から成る組合せとを含む
ことを特徴とする請求項7乃至11のいずれかに記載の撮像装置。
【請求項13】
前記選択加算回路における加算は、増感倍率に基づいて定められた加算係数を用いた加重加算により行われ、
被写体の照度を表す照度情報を生成する照度情報生成部と、
前記照度情報に基づいて前記増感倍率を決定する制御回路とをさらに備える
ことを特徴とする請求項1乃至12のいずれかに記載の撮像装置。
【請求項14】
前記照度情報で示される照度が所定の値以下になると前記増感倍率を1よりも大きな値とすることを特徴とする請求項13に記載の撮像装置。
【請求項15】
前記撮像部のレンズ絞り及び露光時間を制御する制御回路と、前記撮像部から出力された撮像信号を増幅する信号増幅部とをさらに備え、
前記所定の照度は、レンズ絞りを開放とし、前記露光時間を標準露光時間とし、信号増幅部の増幅利得を、前記画素加算回路に含まれるノイズのレベルが所定値を超えないとの制約条件を満たす最大利得値とし、前記選択加算回路の増感倍率を1としたときに、前記選択加算回路の出力が、所定のレベルとなる照度であることを特徴とする請求項14に記載の撮像装置。
【請求項16】
前記照度情報生成部が、被写体からの光に基づいて前記照度を測定して、前記照度情報を生成する測光部を有する
ことを特徴とする請求項13乃至15のいずれかに記載の撮像装置。
【請求項17】
前記照度情報生成部は、前記選択加算回路で生成された前記加算画素信号のレベル及び露光制御パラメータに基いて前記照度情報を生成することを特徴とする請求項13乃至15のいずれかに記載の撮像装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate