説明

最適解検出装置及び最適解検出プログラム

【課題】実行可能解の最適解を短時間で検出することができる最適解検出装置及び最適解検出プログラムを提供する。
【解決手段】最適解検出装置100は、置局設計により収容すべきトラヒック需要を満たす解である実行可能解と、収容すべきトラヒック需要を満たさない解である実行不可能解との間を、トラヒック需要に影響する第1パラメータ群、及び費用に影響する第2パラメータ群を変更することにより、解が遷移した場合、直近の実行不可能解に対してのみ、第1パラメータ群を変更することにより、実行可能解の最適解を検出する最適化部140を備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、最適解検出装置及び最適解検出プログラムに関する。
【背景技術】
【0002】
無線通信システム、特に携帯電話に代表される移動体通信システムでは、通信エリアを実際に構築する前に、基地局を設置する位置を設計者が事前に検討する置局設計が行われる。置局設計では、通信エリアを構築する対象とされた範囲を含む地図が、予め定められたサイズの領域(以下、「BIN」という)により複数に分割される。基地局を設置する位置は、これらBIN毎の受信電力等に基づいて、制約条件(例えば、トラヒック需要)を満たすよう検討される。
【0003】
このような置局設計において、トラヒック需要を満たすマクロ基地局の配置と、そのパラメータの設定とを行うことを目的とした置局設計方法が、特許文献1に開示されている。
【0004】
また、近年、スマートフォンなどの登場により、移動体通信システムのトラヒック需要は、急激な増加傾向にある。そこで、マクロ基地局のカバレッジエリア内のBINに、送信電力が小さい小型基地局をさらに設置することによって、マクロ基地局の負荷を分散することができる「ヘテロジニアスネットワーク(Heterogeneous Network:HetNet)」が注目されている。
【0005】
さらに、ヘテロジニアスネットワークにおいて、より高い負荷分散効果を得るための技術として、Cell Range Expansion(CRE)が検討されている。CREのパラメータの一つである、受信電力に対するバイアス(以下、「CREバイアス」という)に応じて、小型基地局がカバレッジエリアを拡大することにより、ヘテロジニアスネットワークは、より高い負荷分散効果を得る。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2004−201269号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、特許文献1に開示された置局設計方法では、ヘテロジニアスネットワークに特有であるCREのパラメータは、まったく考慮されていない。このため、特許文献1に開示された様な置局設計方法により定められるパラメータに、例えば、CREのパラメータ等が追加された場合、トラヒック需要を収容し且つ費用が最小となる実行可能解の最適解を検出するための処理時間は、指数関数的に増加してしまうという問題がある。
【0008】
本発明は、前記の点に鑑みてなされたものであり、実行可能解の最適解を短時間で検出することができる最適解検出装置及び最適解検出プログラムを提供することを目的とする。
【課題を解決するための手段】
【0009】
本発明は、上記の課題を解決するためになされたものであり、置局設計により収容すべきトラヒック需要を満たす解である実行可能解と、前記収容すべきトラヒック需要を満たさない解である実行不可能解との間を、トラヒック需要に影響する第1パラメータ群、及び費用に影響する第2パラメータ群を変更することにより、解が遷移した場合、直近の実行不可能解に対してのみ、前記第1パラメータ群を変更することにより、実行可能解の最適解を検出する最適化部、を備えることを特徴とする最適解検出装置である。
【0010】
また、本発明は、前記最適化部が、直近で得られている解が実行可能解である場合、予め定められた回数だけ前記第2パラメータ群を費用が増加する方向に変更することにより、実行可能解の最適解を検出することを特徴とする最適解検出装置である。
【0011】
また、本発明は、前記最適化部が、前記実行可能解の最適解として、トラヒック需要を収容し且つ費用が最小となる最適解を検出することを特徴とする最適解検出装置である。
【0012】
また、本発明は、前記最適化部が、トラヒック需要に影響し且つ費用に影響しない予め定められたパラメータ群を、前記第1パラメータ群として変更することにより、前記実行可能解の最適解を検出することを特徴とする最適解検出装置である。
【0013】
また、本発明は、前記最適化部が、ヘテロジニアスネットワークを構成する第1無線基地局における受信電力に対するバイアス値、前記ヘテロジニアスネットワークを構成する第2無線基地局が送信するサブフレームがミュートされる率、及び、前記第2無線基地局の送信電力のうち少なくとも一つを、前記第1パラメータ群として変更することにより、前記実行可能解の最適解を検出することを特徴とする最適解検出装置である。
【0014】
また、本発明は、前記最適化部が、ヘテロジニアスネットワークを構成する第1無線基地局の設置台数及び設置位置のうち少なくとも一つを、前記第2パラメータ群として変更することを特徴とする最適解検出装置である。
【0015】
また、本発明は、前記最適化部が、タブーサーチ又は局所探索を実行することを特徴とする最適解検出装置である。
【0016】
また、本発明は、コンピュータに、置局設計により収容すべきトラヒック需要を満たす解である実行可能解と、前記収容すべきトラヒック需要を満たさない解である実行不可能解との間を、トラヒック需要に影響する第1パラメータ群、及び費用に影響する第2パラメータ群を変更することにより、解が遷移した場合、直近の実行不可能解に対してのみ、前記第1パラメータ群を変更することにより、実行可能解の最適解を検出する手順、を実行させるための最適解検出プログラムである。
【発明の効果】
【0017】
本発明によれば、最適化部は、解が遷移した場合の直近の実行不可能解に対してのみ、前記第1パラメータ群を変更する。これにより、最適解検出装置は、実行可能解の最適解を短時間で検出することができる。
【図面の簡単な説明】
【0018】
【図1】本発明の一実施形態における、最適解検出装置の構成を示すブロック図である。
【図2】本発明の一実施形態における、ヘテロジニアスネットワークの構成例を示す図である。
【図3】本発明の一実施形態における、CREを適用していない場合のカバレッジエリアの例を示す図である。
【図4】本発明の一実施形態における、CREを適用した場合のカバレッジエリアの例を示す図である。
【図5】本発明の一実施形態における、最適化処理を行う対象エリアを示す地図の情報の例を示す図である。
【図6】本発明の一実施形態における、MCS(Modulation and Coding Scheme)テーブルの例を示す表である。
【図7】本発明の一実施形態における、周波数帯域幅と、サブキャリア数と、RB数との関係の例を示す表である。
【図8】本発明の一実施形態における、ミューティング・サブフレームの例を示す図である。
【図9】本発明の一実施形態における、ミューティング・サブフレームの送信タイミングと、小型基地局の通信タイミングとの例を示す図である。
【図10】本発明の一実施形態における、解が実行可能解から実行不可能解に遷移した場合の最適化処理の例を示す図である。
【図11】本発明の一実施形態における、解が実行不可能解から実行可能解に遷移した場合の最適化処理の例を示す図である。
【図12】本発明の一実施形態における、直近で得られた解が実行可能解である場合の近傍操作の例を示す図である。
【図13】本発明の一実施形態における、費用に影響しないパラメータについての近傍操作の例を示す図である。
【図14】本発明の一実施形態における、最適化処理の手順を表すフローチャートである。
【発明を実施するための形態】
【0019】
本発明の一実施形態について図面を参照して詳細に説明する。図1には、最適解検出装置の構成がブロック図により示されている。また、図2には、ヘテロジニアスネットワークの構成例が示されている。
【0020】
以下では、ヘテロジニアスネットワークの通信システムにOFDMA(Orthogonal Frequency Division Multiple Access)が用いられているものとして説明を続けるが、通信システムは、OFDMAに限らなくてよい。例えば、通信システムは、CDMA(Code Division Multiple Access)システムでもよい。
【0021】
ヘテロジニアスネットワークは、無線基地局であるマクロ基地局400及び小型基地局500−p(pは、1以上の整数)を含んで構成される。ここで、カバレッジエリア800は、マクロ基地局400によって既に構築されているものとする。また、マクロ基地局400のカバレッジエリア800には、複数の無線端末600−m(mは、1以上の整数)が存在可能であるものとする。
【0022】
図3には、CREを適用していない場合のカバレッジエリアの例が示されている。また、図4には、CREを適用した場合のカバレッジエリアの例が示されている。CREを適用した場合、無線端末600−mは、カバレッジエリア800に設置された小型基地局500−pのうちから、通信接続する小型基地局を選択するため、小型基地局500−pからの受信電力510に、予め定められたCREバイアス値を加算することで、CREバイアス値が加算された受信電力520を算出する。
【0023】
無線端末600−mは、マクロ基地局400からの受信電力410と、CREバイアス値が加算された受信電力520とを比較し、最も受信電力が高い小型基地局500−pに通信接続する。このようにして、例えば、小型基地局500−1のカバレッジエリア900−1は、予め定められたCREバイアス値に応じて、カバレッジエリア910−1に拡張される(カバレッジ拡張)。
【0024】
したがって、小型基地局500−1からの受信電力510が、マクロ基地局400からの受信電力410よりも実際には小さいエリアに在る無線端末600−mでも、その小型基地局は、CREバイアス値に応じて、小型基地局500−1に通信接続することとなる。このため、その小型基地局は、信号対干渉比(Signal to Interference Ratio:SIR)が悪く、十分な通信速度を確保することが出来ない場合がある。そこで、信号対干渉比を改善するため、マクロ基地局400は、通信を制限(ミューティング)する領域(サブフレーム)を、無線リソースの周波数方向又は時間方向に設ける。
【0025】
以下、ミューティングするサブフレームを、「ミューティング・サブフレーム」という。また、ミューティングしないサブフレームを、「ノーマル・サブフレーム」という。また、予め定められたノーマル・サブフレーム数とミューティング・サブフレーム数との比率を、「ミューティング比率」という。
【0026】
小型基地局500−1は、CREにより通信接続している無線端末600−mと、マクロ基地局400が通信を制限(ミューティング)しているタイミングに通信する。このため、ヘテロジニアスネットワークにおける置局設計では、トラヒック需要を収容し、且つ、費用(費用合計)が最小となる小型基地局500−pの設置台数及び設置位置(最適解)を検出するだけでなく、CREバイアス値及びミューティング比率が、最適に定められる必要がある。
【0027】
図1に戻り、最適解検出装置の構成の説明を続ける。入力装置300は、ヘテロジニアスネットワークの置局設計における条件を示す情報として、最適化処理を行う対象エリアにおいて収容すべきトラヒック需要を示す情報(トラヒック需要情報)を、最適解検出装置100に入力する。以下では、最適化処理を行う対象エリアに1台のマクロ基地局400による一つのカバレッジエリア800があるものとして説明を続けるが、最適化処理を行う対象エリアには、複数のマクロ基地局400のそれぞれによる、複数のカバレッジエリア800が含まれていてもよい。
【0028】
入力装置300は、マクロ基地局400の送信電力を示す情報、マクロ基地局400のアンテナ高を示す情報、マクロ基地局400のアンテナパターンを示す情報、小型基地局500−pの装置費用及び設置費用を示す情報、マクロ基地局400の周波数帯を示す情報、カバレッジエリア800の範囲を示す情報、BINのサイズを示す情報、伝搬ロスのモデル式を示す情報、信号対干渉雑音比(SINR)−パケットエラーレート(PER)変換テーブルデータ、及び、MCS(Modulation and Coding Scheme)テーブルデータを、最適解検出装置100に入力してもよい。MCSテーブルデータの詳細については、図6を用いて後述する。
【0029】
また、入力装置300は、小型基地局500−pの最適な設置台数及び設置位置(実行可能解)を検出する最適化処理におけるパラメータ及び終了条件(閾値)を、最適解検出装置100に入力してもよい。また、入力装置300は、カバレッジエリア800を含む地図の情報、BIN毎の土地区分情報、及び、カバレッジエリア800に対するトラヒック需要情報又はその予測情報を、最適解検出装置100に入力する。また、入力装置300は、地図の情報に含まれる範囲における、建物高データ、及び土地の標高データを、最適解検出装置100に入力してもよい。
【0030】
次に、最適解検出装置100の概要について説明する。
最適解検出装置100は、ヘテロジニアスネットワークを構成する小型基地局500−pの最適な設置台数及び設置位置、並びに、最適なCREバイアス値及びミューティング比率を定める。ここで、最適な設置台数及び設置位置とは、ヘテロジニアスネットワークがトラヒック需要を収容し、且つ、小型基地局500−pを設置するために必要な費用合計が最小となる、設置台数及び設置位置である。なお、最適解検出装置100は、小型基地局500−pの送信電力及びアンテナチルト角等を定めてもよい。
【0031】
最適解検出装置100は、領域設定部110と、特性算出部120と、記憶部130と、最適化部140と、出力部150とを備える。領域設定部110には、地図の情報と、BINのサイズを示す情報とが、入力装置200から入力される。領域設定部110は、BINのサイズで地図をメッシュ状に分割することにより、複数のBINを地図に定める。図5には、最適化処理を行う対象エリアを示す地図の情報の例が表されている。図5では、一例として、15×15個の矩形状のBINにより、地図が分割されている。
【0032】
領域設定部110には、トラヒック需要情報又はトラヒック需要予測情報が、入力装置300から入力される。領域設定部110は、地図に定めたBINに基づいて、トラヒック需要(積算値)をBIN毎に算出する。領域設定部110は、BIN毎のトラヒック需要値を示す情報と、カバレッジエリア800を含む地図の情報とを、記憶部130に記憶させる。
【0033】
また、領域設定部110には、BIN毎の土地区分情報が、入力装置300から入力される。ここで、土地区分情報とは、例えば、住宅地、森林などの区分情報であり、BINにおいて最も面積率が高い土地区分が、そのBINの土地区分情報と定められる。領域設定部110は、BIN毎の土地区分情報に基づいて、小型基地局500−pの設置費用をBIN毎に定め、小型基地局500−pのBIN毎の設置費用を記憶部130に記憶させる。
【0034】
特性算出部120には、伝搬ロスのモデル式を示す情報が、入力装置200から入力される。また、特性算出部120は、カバレッジエリア800を含む地図の情報を、記憶部130から読み出す。特性算出部120は、伝搬ロスのモデル式を示す情報と、カバレッジエリア800を含む地図の情報とに基づいて、マクロ基地局400から送出された電波の伝搬ロスを、BIN毎に算出する。また、特性算出部120は、算出した伝搬ロスを示す情報をマクロ基地局400及びBINに対応付けて、記憶部130に記憶させる。
【0035】
記憶部130は、BIN毎のトラヒック需要値を示す情報と、カバレッジエリア800を含む地図の情報と、BIN毎の伝搬ロスを示す情報と、マクロ基地局400の送信電力を示す情報と、マクロ基地局400のアンテナパターンを示す情報と、信号対干渉雑音比(SINR)−パケットエラーレート(PER)変換テーブルデータと、MCSテーブルデータと、小型基地局500−pのBIN毎の設置費用と、小型基地局500−pの装置費用とを記憶する。
【0036】
最適化部140は、BIN毎のトラヒック需要値を示す情報と、カバレッジエリア800を含む地図の情報と、BIN毎の伝搬ロスを示す情報と、マクロ基地局400の送信電力を示す情報と、マクロ基地局400のアンテナパターンを示す情報と、信号対干渉雑音比(SINR)−パケットエラーレート(PER)変換テーブルデータと、MCSテーブルデータと、小型基地局500−pのBIN毎の設置費用と、小型基地局500−pの装置費用とを記憶部130から読み出す。
【0037】
最適化部140は、カバレッジエリア800(図2を参照)のトラヒック需要を収容可能であり、且つ、小型基地局500−pの費用合計が最小となる、小型基地局500−pの最適な設置台数及び設置位置と、最適なCREバイアス値及びミューティング比率とを検出する。また、最適化部140は、小型基地局500−pの最適な送信電力及びチルト角を検出してもよい。最適化部140は、例えば、タブーサーチ(タブー探索)又は局所探索といったヒューリスティック(試行錯誤)な最適化手法により、これらを検出する。
【0038】
以下では、iは、BINの識別子を表す。また、その集合は、Iと表記される。また、jは、マクロ基地局400の設置位置の識別子を表す。また、その集合は、Jと表記される。また、Iは、位置jに設置されたマクロ基地局400にカバーされるBINの集合を表す。また、Tは、マクロ基地局400の送信電力を表す。また、cは、小型基地局500毎の装置費用(機器費用)を表す。また、cは、位置jに小型基地局500を設置した場合における小型基地局500毎の設置費用を表す。また、wは、BINにおけるトラヒック需要値を表す。また、ηは、ノイズを表す。また、gijは、jに設置されたマクロ基地局400からBINまでの伝搬ロスを表す。また、dijは、BINに在る無線端末が、位置jに設置されたマクロ基地局400に接続した場合に、無線リソースが全て割当てられたと仮定された場合のスループット値を表す。また、xの値が1である場合、xは、jに基地局が配置されていることを表す。一方、xの値が0である場合、xは、jに基地局が配置されていないことを表す。
【0039】
最適化部140は、小型基地局500−pの設置に関する費用合計を算出する。ここで、費用合計とは、小型基地局500−pの装置費用と、小型基地局500−pの設置費用との合計である。費用合計には、土地区分毎の設置費用の違いを反映させることができる。費用合計は、式(1)により示される。
【0040】
【数1】

【0041】
最適化部140は、BIN毎の伝搬ロスを示す情報と、マクロ基地局400の送信電力を示す情報と、マクロ基地局400のアンテナパターンを示す情報とに基づいて、マクロ基地局400から送出された電波の受信電力をBIN毎に算出する。
【0042】
最適化部140は、地図の情報に示された範囲にマクロ基地局400が複数在る場合、受信電力が最も高いマクロ基地局400を、そのBINをカバーするマクロ基地局400であると定める。
【0043】
また、最適化部140は、地図の情報に示された範囲に含まれるマクロ基地局400に対するトラヒック需要の負荷量を、マクロ基地局400毎に算出する。ここで、最適化部140は、CREバイアス値、ミューティング比率、及びBIN毎に算出したスループット値に基づいて、マクロ基地局400に対するトラヒック需要の負荷量を算出する。
【0044】
比較のため、まず、CREバイアス値及びミューティング比率を考慮しない場合のトラヒック需要の負荷量の算出方法について説明する。
【0045】
マクロ基地局400に対する(収容される)トラヒック需要の負荷量は、BIN毎に算出したスループット値に基づいて算出される。位置jに設置されたマクロ基地局400にカバーされるBINの信号対干渉雑音比SINRijは、式(2)により表される。
【0046】
【数2】

【0047】
ここで、式(2)の分母の第1項は、他の基地局からの干渉を表す。また、式(2)の分母の第2項は、雑音成分を表す。
【0048】
また、マクロ基地局400のカバレッジエリア800に含まれるBIN毎のスループット値は、BIN毎の信号対干渉雑音比(SINR)に基づいて算出される。より具体的には、BIN毎のスループット値は、信号対干渉雑音比(SINR)−パケットエラーレート(PER)変換テーブルデータ、及びMCS(Modulation and Coding Scheme)テーブルデータに基づいて算出される。
【0049】
信号対干渉雑音比−パケットエラーレート変換テーブルには、信号対干渉雑音比と、パケットエラーレートとが対応付けられて登録されている。また、MCSテーブルには、変調方式と、符号化率と、SINR閾値とが対応付けられて登録されている。図6には、MCSテーブルの例が示されている。変調方式には、例えば、QPSK (2)、16QAM (4)及び64QAM (6)がある。
【0050】
以下、下り方向の通信にOFDMAを採用するLTE(Long Term Evolution)を例に、スループット値の算出方法を説明する。LTEでは、時間×周波数の無線リソースは、リソースブロック(Resource Block,RB)単位で構成されている。また、リソースブロックは、7OFDMシンボル(0.5[ms])×12サブキャリアで構成されている。1リソースブロックにより送信可能であるビット数は、式(3)により表わされる。
【0051】
【数3】

【0052】
式(3)において、[MIMO efficiency] は、そのBINにおけるMIMOの効率を表す。また、[Modulation]は、変調方式(図6を参照)を表す。また、 [Coding rate]は、符号化率を表す。また、[# of subcarrier/RB]は、1リソースブロックあたりのサブキャリア数を表す。この例では、[# of subcarrier/RB]=12とする。また、[# of OFDM symbol/RB]は、1リソースブロックあたりのOFDMシンボル数を表す。この例では、[# of subcarrier/RB]=7とする。また、PERは、パケットエラーレートを表す。PERは、信号対干渉雑音比(SINR)−パケットエラーレート(PER)変換テーブルにより、SINR値を用いて算出される。
【0053】
1リソースブロックは0.5[ms]であることから、対象とするシステムの周波数方向のリソースブロック数を#RBとして、位置jに設置されたマクロ基地局400がカバーするBINに、リソースブロックが全て割り当てられた場合、スループットdijは、式(4)により表される。
【0054】
【数4】

【0055】
なお、割り当てられるリソースブロックは、その個数(リソース量)が制限されてもよい。例えば、フェージング等の変動要因に対するマージンとして、全無線リソースの80[%]まで無線リソースが割り当てられるようにする場合、式(4)の#RBは、例えば、0.8×#RBに置き換えられてもよい。
【0056】
図7には、周波数帯域幅と、サブキャリア数と、RB数との関係の例が示されている。 周波数方向のリソースブロック数は、対象とするシステムの周波数帯域幅に依存する。例えば、LTEでは、周波数帯域幅1.4[MHz]に対応するサブキャリア数は、76であり、対応するリソースブロック数は、6である。
【0057】
位置jに設置されたマクロ基地局400がカバーするBINに対して必要な無線リソース量の割合は、式(5)により表される。
【0058】
【数5】

【0059】
また、以下に示す式(6)の値が1以下である場合、そのことは、位置jに設置されたマクロ基地局400がカバーする全てのBINにおけるトラヒック需要を、マクロ基地局400が全て収容することができることを表す。
【0060】
【数6】

【0061】
一方、式(6)の値が1を超えている場合、そのことは、位置jに設置されたマクロ基地局400がカバーする全てのBINにおけるトラヒック需要を、マクロ基地局400が全ては収容することができないことを表す。したがって、マクロ基地局400に対するトラヒック需要の負荷量の条件式は、式(7)により表される。
【0062】
【数7】

【0063】
ここで、ξは、カバレッジエリア800の各BINにおいて収容されるべきトラヒック需要の比率(0<ξ≦1)を表す係数である。なお、ξの値は、パラメータとして予め定められているものとする。
【0064】
式(6)の値が1以下である場合、位置jに設置されたマクロ基地局400がカバーする全てのBINにおけるトラヒック需要を、マクロ基地局400は全て収容することができる、と判定される。
【0065】
一方、式(6)の値が1を超えている場合、位置jに設置されたマクロ基地局400がカバーする全てのBINにおけるトラヒック需要を、マクロ基地局400が全ては収容することができない、と判定される。
【0066】
以上に説明した、CREバイアス値及びミューティング比率を考慮しない場合に対し、最適化部140は、CREバイアス値、ミューティング比率、及びBIN毎に算出したスループット値に基づいて、マクロ基地局400に対するトラヒック需要の負荷量を、以下のように算出する。ここで、CREバイアス値は、小型基地局500−pに対して定められるパラメータである。また、時間方向の干渉を回避するためのミューティング比率は、マクロ基地局400に対して定められるパラメータである。
【0067】
図8には、ミューティング・サブフレームの例が示されている。ミューティング・サブフレームによるミューティング比率は、全てのマクロ基地局400で共通であるものとする。つまり、ノーマル・サブフレームの送信タイミング、及び、ミューティング・サブフレームの送信タイミングは、全てのマクロ基地局400で同期しているものとする。
【0068】
CREバイアス値及びミューティング比率を考慮した場合の信号対干渉雑音比(SINR)は、各マクロ基地局400に対する干渉源が小型基地局500及び他のマクロ基地局400であるため、CREバイアス値及びミューティング比率を考慮しない場合の信号対干渉雑音比(SINR)と同じである。したがって、CREバイアス値及びミューティング比率を考慮した場合の信号対干渉雑音比(SINR)は、上記の式(2)により表される。
【0069】
マクロ基地局400は、ミューティング・サブフレーム(=オールモスト・ブランク・サブフレーム(Almost Blank Subframes))に、所定データを含めて送信しないよう通信を制限する。したがって、位置jに設置されたマクロ基地局400によりカバーされるBINに対する全てのリソースブロック(RB)に、ノーマル・サブフレームを割り当てた場合、BIN毎のスループット値は、式(8)により表される。
【0070】
【数8】

【0071】
以上より、ミューティング比率を考慮した場合における、マクロ基地局400の負荷量は、式(9)により表される。
【0072】
【数9】

【0073】
一方、小型基地局500−pは、ノーマル・サブフレームの送信タイミングと、ミューティング・サブフレームの送信タイミングとの両方で、無線端末600−mと通信する。図9には、ミューティング・サブフレームの送信タイミングと、小型基地局の通信タイミングとの例が示されている。図9では、一例として、マクロ基地局400のトラヒックと、小型基地局500−1のトラヒックとが示されている。
【0074】
小型基地局500−1は、CREによらずに通信接続している無線端末600−mと、ノーマル・サブフレームの送信タイミング及びミューティング・サブフレームの送信タイミングで通信する。また、小型基地局500−1は、CREにより通信接続している無線端末600−mとも、ノーマル・サブフレームの送信タイミング及びミューティング・サブフレームの送信タイミングで通信する。
【0075】
また、小型基地局500にカバーされたBINにおける信号対干渉雑音比(SINR)は、ノーマル・サブフレームに対する干渉源と、ミューティング・サブフレームに対する干渉源とが異なるため、サブフレームの種別毎に算出される。
【0076】
具体的には、ミューティング・サブフレームの送信タイミングにおける信号対干渉雑音比は、他の小型基地局のみを干渉源として算出される。一方、ノーマル・サブフレームの送信タイミングにおける信号対干渉雑音比は、他の小型基地局500−p及びマクロ基地局400を干渉源として算出される。
【0077】
位置jに設置された小型基地局500(ピコ基地局)にカバーされるBINに対して、ミューティング・サブフレームの全てのリソースブロック(RB)を割り当てた場合のスループット値dijpico(mute)、及びノーマル・サブフレームの全てのリソースブロック(RB)を割り当てた場合のスループット値dijpico(normal)は、それぞれ式(10)により表される。
【0078】
【数10】

【0079】
以上より、BINのスループット値dijpicoは、式(11)により表される。
【0080】
【数11】

【0081】
よって、ミューティング比率を考慮した場合の小型基地局500のトラヒック需要の負荷量は、式(12)により表される。
【0082】
【数12】

【0083】
また、小型基地局500−1が、CREによらずに通信接続している無線端末600−mとはノーマル・サブフレームの送信タイミングで通信し、且つ、CREにより通信接続している無線端末600−mとはミューティング・サブフレームの送信タイミングで通信する、と仮定することにより(図9を参照)、小型基地局500のトラヒック需要の負荷量は、以下のように算出されてもよい。
【0084】
小型基地局500にカバーされたBINにおける信号対干渉雑音比(SINR)は、ノーマル・サブフレームに対する干渉源と、ミューティング・サブフレームに対する干渉源とが異なるため、サブフレームの種別毎に算出される。
【0085】
具体的には、ミューティング・サブフレームの送信タイミングにおける信号対干渉雑音比は、他の小型基地局のみを干渉源として算出される。ここで、ミューティング・サブフレームの送信タイミングにおける信号対干渉雑音比は、小型基地局500がCREによりカバーするBINのみを対象に算出される。一方、ノーマル・サブフレームの送信タイミングにおける信号対干渉雑音比は、他の小型基地局500及びマクロ基地局400を干渉源として算出される。ここで、ノーマル・サブフレームの送信タイミングにおける信号対干渉雑音比は、小型基地局500がCREによらずにカバーするBINを対象に算出される。
【0086】
したがって、スループット値、及びトラヒック需要の負荷量は、小型基地局500がCREによりカバーするBINと、小型基地局500がCREによらずにカバーするBINとに分けて、それぞれ算出される。
【0087】
以下、位置jに設置された小型基地局500がカバーするBINのうち、小型基地局500がCREによりカバーするBINの集合を、Ij,CREBINと表記する。また、小型基地局500がCREによらずにカバーするBINの集合を、Ij,normalBINと表記する。
【0088】
BINの集合Ij,CREBINを構成するBINに対して、ミューティング・サブフレームの全てのリソースブロックを割り当てた場合、スループット値dijpico(mute)は、式(13)により表される。
【0089】
【数13】

【0090】
一方、BINの集合Ij,normalBINを構成するBINに対して、ノーマル・サブフレームの全てのリソースブロックを割り当てた場合、スループット値dijpico(normal)は、式(14)により表される。
【0091】
【数14】

【0092】
以上より、CREバイアス値及びミューティング比率を考慮した場合の小型基地局500に対するトラヒック需要の負荷量は、式(15)により表される。
【0093】
【数15】

【0094】
式(15)に表された二つの式のうち、いずれか一方の式でも値が1以上である場合、最適化部140は、その小型基地局500がオーバロードしている、すなわち、その小型基地局500のトラヒック需要を、その小型基地局500が全ては収容することができない、と判定する。
【0095】
タブーサーチ又は局所探索による最適化処理によって最適化される予め定められたパラメータ群には、費用に影響するパラメータ群と、費用に影響しないパラメータ群(トラヒック需要に影響するパラメータ群)とがある。費用に影響するパラメータには、例えば、小型基地局500の設置台数、及び小型基地局500の設置位置がある。一方、費用に影響しないパラメータ群(トラヒック需要に影響するパラメータ群)には、例えば、CREバイアス値、ミューティング比率、小型基地局500の送信電力、及び小型基地局500のチルト角がある。
【0096】
費用に影響するパラメータを変更する段階と、費用に影響しないパラメータのみを変更する段階との2段階に分けて、タブーサーチ又は局所探索による最適化処理を実行する。
【0097】
以下、最適化処理における予め定められた制約条件を満たす、費用に影響するパラメータ値と、費用に影響しないパラメータ値との組を、「実行可能解」という。また、最適化処理における予め定められた制約条件を満たさない、費用に影響するパラメータ値と、費用に影響しないパラメータ値との組を、「実行不可能解」という。ここで、予め定められた制約条件とは、例えば、所要の受信電力、所要の信号対干渉雑音比(所要SINR)、及び、収容すべきトラヒック需要(トラヒック量)を満たすという条件である。
【0098】
最適化部140は、直近で得られた解(現在の解)が実行可能解であるか又は実行不可能解であるかに応じて、費用に影響するパラメータを変更する最適化処理を主に実行する。
【0099】
図10には、解が実行可能解から実行不可能解に遷移した場合の最適化処理の例が示されている。直近で得られた解が実行可能解である場合、最適化部140は、費用に影響するパラメータを変更することにより、小型基地局500の設置費用が少なくなる方向に、探索を進める。ここで、小型基地局500の設置費用が少なくなる方向に探索を進めることにより、直近で得られた解が実行不可能解(図10では、1と表記されている解)になったとする。最適化部140は、この実行不可能解に対して、費用に影響するパラメータを固定し、且つ、費用に影響しないパラメータを変更することにより、直近で得られた解が実行可能解(図10では、2と表記されている解)となるか否かを判定する。
【0100】
一方、図11には、解が実行不可能解から実行可能解に遷移した場合の最適化処理の例が示されている。直近で得られた解が実行不可能解である場合、最適化部140は、費用に影響するパラメータである「小型基地局500の設置台数」を追加又は削除することにより、実行可能解を探索する。ここで、小型基地局500の設置台数を追加したことにより、直近で得られた解が実行不可能解から実行可能解(図11では、1と表記されている解)に遷移したとする。最適化部140は、小型基地局500の設置台数を追加する前の直近の実行不可能解(図11では、0と表記されている解)に対して、費用に影響しないパラメータを変更することにより、実行可能解(図11では、2と表記されている解)となるか否かを判定する。
【0101】
このようにして、最適化部140は、直近で得られた解が実行可能解である場合と、直近で得られた解が実行不可能解である場合とに応じて、上記の最適化処理(操作)を繰り返すことにより、実行可能解の最適解を検出する。
【0102】
次に、費用に影響するパラメータを変更する最適化処理の例を説明する。
最適化部140は、費用に影響するパラメータを変更する最適化処理として、例えば、タブーサーチを実行する。
【0103】
ここで、費用に影響するパラメータを変更する最適化処理の目的関数を構成する第1指標は、収容すべきトラヒック需要(所要収容トラヒック量)から、直近で得られた解により収容可能であるトラヒック需要(現在の収容トラヒック量)を減算した値である。但し、この減算結果が負値である場合、第1指標は値0とされる。また、費用に影響するパラメータを変更する最適化処理の目的関数を構成する第2指標は、小型基地局500−pの設置費用である。また、費用に影響するパラメータを変更する最適化処理の目的関数を構成する第3指標は、カバレッジエリア800(図2を参照)における、全ての基地局(マクロ基地局400及び小型基地局500−p)に対するトラヒック需要の負荷量の総和である。
【0104】
また、費用に影響するパラメータを変更する最適化処理の目的関数を構成する第1〜第3指標は、辞書式順序(例えば、昇順、五十音順、アルファベット順)により、それぞれ予め配列されているものとする。
【0105】
最適化部140は、実行可能解の空間内だけでなく、実行不可能解の空間内に対しても、トラヒック需要の最適解の探索を実行する。このため、カバレッジエリア800において収容すべきトラヒック需要を満たすことは、本実施形態における制約条件でないものとする。その代わり、本実施形態では、該制約条件は、上記の第1指標のように定められている。この場合、直近の解により収容可能であるトラヒック需要が、収容すべきトラヒック需要を満たしている解が、元の最適化問題の実行可能解である。一方、直近の解により収容可能であるトラヒック需要が、収容すべきトラヒック需要を満たさない解が、元の最適化問題の実行不可能解である。
【0106】
したがって、第1指標が値0となる本実施形態における実行可能解は、直近の解により収容可能であるトラヒック需要が、収容すべきトラヒック需要を満たす解である。つまり、第1指標が値0となる本実施形態における実行可能解が得られなかった場合、このことは、カバレッジエリア800(図2を参照)において収容すべきトラヒック需要を満たす解を得ることができなかったことを示す。ただし、この場合でも、最適化部140は、収容すべきトラヒック需要に可能な限りに近いトラヒック需要を満たす、小型基地局500の設置台数及び設置位置、並びに、小型基地局500毎のパラメータ(例えば、チルト角)を検出することができる。
【0107】
また、最適化部140は、第1指標の値が最も小さくなる解に対して小型基地局500の費用合計が最小となる解を、さらに第2指標を探索することにより検出する。ここで、小型基地局500の費用合計が最小となる解が複数ある場合、最適化部140は、収容すべきトラヒック需要を最も少ない負荷量で収容することができる解を、さらに第3指標を探索することにより検出する。これは、第1指標及び第2指標により定まった解の条件下において、ヘテロジニアスネットワーク(システム)が収容可能であるトラヒック需要が、最も大きくなる解を検出(選択)することを意味する。
【0108】
最適化部140は、直近で得られた解が実行可能解である場合と、直近で得られた解が実行不可能解である場合とで、異なる近傍操作を実行する。ここで、近傍操作には、タブーサーチにおける1回の探索に対し、実行可能な操作の上限数が定められる。例えば、近傍値=1と定められた場合、最適化部140は、小型基地局500の設置台数を新たに1台追加する操作、又は、小型基地局500の設置台数を新たに1台削除する操作のどちらかを、1回だけ実行する。
【0109】
図12には、直近で得られた解が実行可能解である場合の近傍操作の例が示されている。直近で得られた解(図12では、n−1(nは、1以上の整数)と表記されている解)が実行可能解であり、且つ、実行不可能解から実行可能解(図12では、0と表記されている解)に遷移した以降に探索した回数が、予め定められた回数n未満である場合、最適化部140は、小型基地局500の設置台数を新たに追加する近傍操作のみを実行する。これにより、最適化部140は、局所的な解から脱し、探索する範囲を広げることができる。
【0110】
また、直近で得られた解(図12では、nと表記されている解)が実行可能解であり、且つ、実行不可能解から実行可能解(図12では、0と表記されている解)に遷移した以降に探索した回数が、予め定められた回数n以上である場合、最適化部140は、小型基地局500を新たに削除する近傍操作のみを実行する。これにより、最適化部140は、費用合計が最小となる解を探索することができる。
【0111】
一方、直近で得られた解が実行不可能解である場合、最適化部140は、直近で得られた解が実行可能解となるよう、小型基地局500の設置台数を新たに追加する近傍操作、及び、小型基地局500の設置台数を新たに削除する近傍操作のうち、少なくとも一方を実行する。
【0112】
次に、費用に影響しないパラメータを変更する最適化処理の例を説明する。
最適化部140は、費用に影響しないパラメータを変更する最適化処理として、例えば、局所探索法を実行する。
【0113】
ここで、費用に影響しないパラメータを変更する最適化処理の目的関数を構成する第1指標は、収容すべきトラヒック需要(所要収容トラヒック量)から、直近で得られた解により収容可能であるトラヒック需要(現在の収容トラヒック量)を減算した値である。ただし、この減算結果が負値である場合、第1指標は値0とされる。また、費用に影響しないパラメータを変更する最適化処理の目的関数を構成する第2指標は、カバレッジエリア800(図2を参照)における、全ての基地局(マクロ基地局400及び小型基地局500−p)に対するトラヒック需要の負荷量の総和である。
【0114】
また、費用に影響しないパラメータを変更する最適化処理の目的関数を構成する第1及び第2指標は、辞書式順序(例えば、昇順、五十音順、アルファベット順)により、それぞれ予め配列されているものとする。
【0115】
図13には、費用に影響しないパラメータについての近傍操作の例が示されている。最適化部140は、直近で得られた解(図13では、値C)を基準とする、目的関数の指標要素(離散値)に予め定められた範囲(図13では、n=±2の場合、値A〜値E)に対して、近傍操作を実行する。
【0116】
図1に戻り、最適解検出装置100の構成の説明を続ける。出力部150は、記憶部130に記憶されている各種データに基づいて、小型基地局500−pの最適な設置台数及び設置位置を示す情報を、地図(図5を参照)と共に画面に表示する。また、出力部150は、カバレッジエリア800に含まれる各BIN(メッシュ)を示す情報を、地図と共に画面に表示してもよい。
【0117】
次に、最適化処理の手順を説明する。
図14は、最適化処理の手順を表すフローチャートである。最適化部140は、直近で得られた解が、収容すべきトラヒック需要を満たすか(収容すべきトラヒック需要を収容可能か)否かを判定する(ステップS1)。
【0118】
直近で得られた解が、収容すべきトラヒック需要を満たす場合(ステップS1−Yes)、最適化部140は、タブーサーチにおいて、予め定められた回数まで小型基地局500の設置台数を追加したか否かを判定する(ステップS2)。
【0119】
予め定められた回数までは小型基地局500を追加していない場合(ステップS2−No)、最適化部140は、小型基地局500の設置台数を追加する近傍操作(局所的な解から脱し、探索する範囲を広げる操作)を実行し、直近で得られた解を示す変数を、記憶部130に記憶させる。また、直近で得られた解が、これまでに得られた解のなかで、目的関数値を最も小さくさせる解である場合、最適化部140は、直近で得られた解を変数Bestに格納し、変数Bestを記憶部130に記憶させる(ステップS3)。
【0120】
最適化部140は、直近で得られた解が、収容すべきトラヒック需要を満たすか(収容すべきトラヒック需要を収容可能か)否かを判定する(ステップS4)。直近で得られた解が、収容すべきトラヒック需要を満たさない場合(ステップS4−No)、最適化部140は、小型基地局500の設置台数を追加した回数をカウントするための回数カウンタをリセットする(ステップS5)。
【0121】
最適化部140は、直近で得られた解に対して、費用に影響するパラメータを固定し、費用に影響しないパラメータを変更することにより、最適化処理を実行する(ステップS6)。最適化部140は、最適化処理により得られた解で、直近で得られた解を示す変数を更新する。また、直近で得られた解が、これまでに得られた解のなかで、目的関数値を最も小さくさせる解である場合、最適化部140は、直近で得られた解を変数Bestに格納し、変数Bestを記憶部130に記憶させる(ステップS7)。
【0122】
そして、最適化部140は、最適化処理について予め定められた終了条件を満たすか否かを判定する(ステップS8)。最適化処理について予め定められた終了条件を満たす場合(ステップS8−Yes)、最適化部140は、最適化処理を終了する。
【0123】
一方、ステップS1において、直近で得られた解が、収容すべきトラヒック需要を満たしていない場合(ステップS1−No)、最適化部140は、直近で得られた解を変数TMPに格納し、変数TMPを記憶部130に記憶させる(ステップS9)。
【0124】
最適化部140は、小型基地局500の設置台数を追加及び削除する近傍操作を実行し、直近で得られた解を示す変数を、記憶部130に記憶させる。また、直近で得られた解が、これまでに得られた解のなかで、目的関数値を最も小さくさせる解である場合、最適化部140は、直近で得られた解を変数Bestに格納し、変数Bestを記憶部130に記憶させる(ステップS10)。
【0125】
最適化部140は、直近で得られた解が、収容すべきトラヒック需要を満たすか否かを判定する(ステップS11)。直近で得られた解が、収容すべきトラヒック需要を満たす場合(ステップS11−Yes)、最適化部140は、直近で得られた解が、小型基地局500の設置台数を追加する近傍操作により得られた解であるか否かを判定する(ステップS12)。
【0126】
直近で得られた解が、小型基地局500の設置台数を追加する近傍操作により得られた解である場合(ステップS12−Yes)、最適化部140は、変数TMPに対して、費用に影響するパラメータを固定し、費用に影響しないパラメータを変更することにより、最適化処理を実行する(ステップS13)。
【0127】
最適化部140は、直近で得られた解による目的関数値が、ステップS13における最適化処理により得られた解による目的関数値以下であるか否かを判定する(ステップS14)。直近で得られた解による目的関数値が、ステップS13における最適化処理により得られた解による目的関数値よりも大きい場合(ステップS14−No)、最適化部140は、ステップS13における最適化処理により得られた解で、直近で得られた解を示す変数を更新する。また、直近で得られた解が、これまでに得られた解のなかで、目的関数値を最も小さくさせる解である場合、最適化部140は、直近で得られた解を変数Bestに格納し、変数Bestを記憶部130に記憶させる(ステップS15)。そして、最適化部140は、ステップS8に処理を進める。
【0128】
また、ステップS2において、予め定められた回数まで小型基地局500を追加している場合(ステップS2−Yes)、最適化部140は、小型基地局500の設置台数を削除する近傍操作(費用合計が最小となる解を探索する操作)を実行し、直近で得られた解を示す変数を、記憶部130に記憶させる。また、直近で得られた解が、これまでに得られた解のなかで、目的関数値を最も小さくさせる解である場合、最適化部140は、直近で得られた解を変数Bestに格納し、変数Bestを記憶部130に記憶させる(ステップS16)。
【0129】
最適化部140は、直近で得られた解が、収容すべきトラヒック需要を満たすか否かを判定する(ステップS17)。直近で得られた解が、収容すべきトラヒック需要を満たさない場合(ステップS17−No)、最適化部140は、ステップS5に処理を進める。一方、直近で得られた解が、収容すべきトラヒック需要を満たす場合(ステップS17−Yes)、最適化部140は、ステップS16に処理を戻す。
【0130】
また、ステップS4において、直近で得られた解が、収容すべきトラヒック需要を満たす場合(ステップS4−Yes)、最適化部140は、小型基地局500の設置台数を追加した回数をカウントするための回数カウンタをリセットする(ステップS18)。そして、最適化部140は、ステップS2に処理を戻す。
【0131】
また、ステップS12において、直近で得られた解が、小型基地局500の設置台数を追加する以外の近傍操作により得られた解である場合(ステップS12−Yes)、最適化部140は、ステップS2に処理を戻す。また、ステップS14において、直近で得られた解による目的関数値が、ステップS13における最適化処理により得られた解による目的関数値以下である場合(ステップS14−Yes)、最適化部140は、ステップS8に処理を進める。また、ステップS8において、最適化処理について予め定められた終了条件を満たさない場合(ステップS8−No)、最適化部140は、ステップS1に処理を戻す。
【0132】
以上のように、最適解検出装置100は、置局設計により収容すべきトラヒック需要を満たす解である実行可能解と、前記収容すべきトラヒック需要を満たさない解である実行不可能解との間を、トラヒック需要に影響する(費用に影響しない)第1パラメータ群、及び費用に影響する第2パラメータ群を変更することにより(図10及び図11を参照)、解が遷移した場合、直近の実行不可能解に対してのみ、前記第1パラメータ群を変更することにより、実行可能解の最適解を検出する最適化部140を備える。
この構成により、最適化部140は、第1パラメータ群(費用に影響しないパラメータ群)と、第2パラメータ群(費用に影響するパラメータ群)とに分けられたパラメータに基づいて、解が遷移した場合の直近の実行不可能解に対してのみ、前記第1パラメータ群を変更する。これにより、最適解検出装置100は、第1パラメータ群(費用に影響しないパラメータ群)を変更する最適化処理を必要最小限に抑え、実行可能解の最適解を短時間で検出することができる。また、最適解検出装置100は、ヘテロジニアスネットワークに特有のパラメータであるCREバイアス値及びミューティング比率の最適値を得ることができる。
【0133】
また、最適化部140は、直近で得られている解が実行可能解である場合、予め定められた回数だけ前記第2パラメータ群(費用に影響するパラメータ)を費用が増加する方向に変更(近傍操作)することにより、実行可能解の最適解を検出する(図12を参照)。
この構成により、最適化部140は、近傍操作を実行する。これにより、最適解検出装置100は、局所的な解から脱し、探索する範囲を広げることができ、実行可能解の最適解を短時間で検出することができる。
【0134】
また、最適化部140は、前記実行可能解の最適解として、トラヒック需要を収容し且つ費用(費用合計)が最小となる最適解を検出する。
これにより、最適解検出装置100は、トラヒック需要を収容し且つ費用(費用合計)が最小となる最適解を短時間で検出することができる。
【0135】
また、最適化部140は、トラヒック需要に影響し且つ費用に影響しない予め定められたパラメータ群(例えば、CREバイアス値、ミューティング比率、小型基地局500の送信電力、及び小型基地局500のチルト角)を、前記第1パラメータ群として変更することにより、前記実行可能解の最適解を検出する。
これにより、最適解検出装置100は、実行可能解の最適解を短時間で検出することができる。
【0136】
また、最適化部140は、ヘテロジニアスネットワークを構成する第1無線基地局(小型基地局500)における受信電力に対するバイアス値(CREバイアス値)、前記ヘテロジニアスネットワークを構成する第2無線基地局(マクロ基地局400)が送信するサブフレームがミュートされる率(ミューティング比率)、及び、前記第2無線基地局(マクロ基地局400)の送信電力のうち少なくとも一つを、前記第1パラメータ群(例えば、費用に影響しないパラメータ群)として変更することにより、前記実行可能解の最適解を検出する。
これにより、最適解検出装置100は、実行可能解の最適解を短時間で検出することができる。
【0137】
また、最適化部140は、ヘテロジニアスネットワークを構成する第1無線基地局(小型基地局500)の設置台数及び設置位置のうち少なくとも一つを、前記第2パラメータ群(例えば、費用に影響するパラメータ)として変更する。
これにより、最適解検出装置100は、実行可能解の最適解を短時間で検出することができる。
【0138】
また、最適化部140は、タブーサーチ(タブー探索)又は局所探索を実行する。
これにより、最適解検出装置100は、実行可能解の最適解を短時間で検出することができる。
【0139】
以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
【0140】
例えば、各BINにおける受信信号強度及び干渉量、アンテナのチルト角などの基地局のパラメータ、並びに、所要の受信信号強度及びキャリア信号電力対干渉電力比(C/I)等を入力データとして、通信エリアを構築する対象とされた範囲に対し、例えば、所要の受信信号強度以上となるBINの個数を最大化(カバレッジ最大化)する等の置局設計における条件が満たされるように、最適解検出装置100は、最適化処理を実行してもよい
【0141】
また、例えば、最適解検出装置100は、入力装置300から各種データを取得する代わりに、それら各種データを予め記憶するデータベース部を備えていてもよい。
【0142】
なお、以上に説明した最適解検出装置を実現するためのプログラムを、コンピュータ読み取り可能な記録媒体に記録し、そのプログラムをコンピュータシステムに読み込ませて実行するようにしてもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(RAM)のように、一定時間プログラムを保持しているものも含むものとする。また、上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。また、上記プログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
【符号の説明】
【0143】
100…最適解検出装置、110…領域設定部、120…特性算出部、130…記憶部、140…最適化部、150…出力部、300…入力装置、400…マクロ基地局、410…受信電力曲線、500…小型基地局、510…受信電力曲線、520…受信電力曲線、600…無線端末、800…カバレッジエリア、900…小型基地局セル、910…小型基地局セル

【特許請求の範囲】
【請求項1】
置局設計により収容すべきトラヒック需要を満たす解である実行可能解と、前記収容すべきトラヒック需要を満たさない解である実行不可能解との間を、トラヒック需要に影響する第1パラメータ群、及び費用に影響する第2パラメータ群を変更することにより、解が遷移した場合、直近の実行不可能解に対してのみ、前記第1パラメータ群を変更することにより、実行可能解の最適解を検出する最適化部、
を備えることを特徴とする最適解検出装置。
【請求項2】
前記最適化部は、直近で得られている解が実行可能解である場合、予め定められた回数だけ前記第2パラメータ群を費用が増加する方向に変更することにより、実行可能解の最適解を検出することを特徴とする請求項1に記載の最適解検出装置。
【請求項3】
前記最適化部は、前記実行可能解の最適解として、トラヒック需要を収容し且つ費用が最小となる最適解を検出することを特徴とする請求項1又は請求項2に記載の最適解検出装置。
【請求項4】
前記最適化部は、トラヒック需要に影響し且つ費用に影響しない予め定められたパラメータ群を、前記第1パラメータ群として変更することにより、前記実行可能解の最適解を検出することを特徴とする請求項1から請求項3のいずれか一項に記載の最適解検出装置。
【請求項5】
前記最適化部は、ヘテロジニアスネットワークを構成する第1無線基地局における受信電力に対するバイアス値、前記ヘテロジニアスネットワークを構成する第2無線基地局が送信するサブフレームがミュートされる率、及び、前記第2無線基地局の送信電力のうち少なくとも一つを、前記第1パラメータ群として変更することにより、前記実行可能解の最適解を検出することを特徴とする請求項1から請求項4のいずれか一項に記載の最適解検出装置。
【請求項6】
前記最適化部は、ヘテロジニアスネットワークを構成する第1無線基地局の設置台数及び設置位置のうち少なくとも一つを、前記第2パラメータ群として変更することを特徴とする請求項1から請求項5のいずれか一項に記載の最適解検出装置。
【請求項7】
前記最適化部は、タブーサーチ又は局所探索を実行することを特徴とする請求項1から請求項6のいずれか一項に記載の最適解検出装置。
【請求項8】
コンピュータに、
置局設計により収容すべきトラヒック需要を満たす解である実行可能解と、前記収容すべきトラヒック需要を満たさない解である実行不可能解との間を、トラヒック需要に影響する第1パラメータ群、及び費用に影響する第2パラメータ群を変更することにより、解が遷移した場合、直近の実行不可能解に対してのみ、前記第1パラメータ群を変更することにより、実行可能解の最適解を検出する手順、
を実行させるための最適解検出プログラム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate