説明

有機光電変換素子

【課題】本発明の目的は、高い光電変換効率を有し、かつ耐久性を有する有機光電変換素子を提供することにある。
【解決手段】第一の電極と第二の電極に挟まれたバルクヘテロジャンクション型の光電変換層を有する有機光電変換素子において、前記光電変換層が、少なくとも有機物半導体と結合した微粒子を含有することを特徴とする有機光電変換素子。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、バルクヘテロジャンクション型の有機光電変換素子に関する。
【背景技術】
【0002】
有機太陽電池は塗布法で形成できることから大量生産に適した太陽電池として注目され、多くの研究機関で盛んに研究がなされている。有機太陽電池は有機ドナー材料と有機アクセプター材料を混合した、所謂、バルクヘテロジャンクション構造によって、課題だった電荷分離効率を向上させている。結果としてエネルギー変換効率は5%台まで向上し、一気に実用レベルにまで発展してきた分野と言える(例えば、特許文献1参照)。
【0003】
バルクヘテロジャンクション型の太陽電池では、一般的には、p型半導体とn型半導体のドメインのサイズが小さいく、pn界面の表面積が大きい方が励起子の発生サイトが多くなるため有利であると考えられるが、発生したキャリアを電極まで運ぶためには、ドメインによる電極までの導電パスが形成されている必要があり、そのためには膜厚に匹敵するくらいのドメインサイズが必要となるため両者はトレードオフの関係になっていた。また、ドメインによる導電パスを形成させる手法としては、p型半導体とn型半導体の混合溶液を塗布した後、焼成処理を行うという方法が用いられているが、この方法ではドメインの形成の仕方を制御するのが難しく、電極までつながらず、キャリアが発生しても電荷を取り出せない発電領域が出来てしまうという問題もあった。
【0004】
さらには、バルクヘテロジャンクション層は、厚膜化することにより太陽光を効率良く吸収することができるが、厚膜化しすぎると発生したキャリアが電極に到達する前に失活、再結合してしまう問題がある。
【0005】
現在、多く用いられている半導体はn型の移動度と比較してp型の移動度が低く、電子と比べホールの取り出しが困難であるという問題があった。その解決の為、n型は焼成処理を行わないアモルファス状態でも移動度が高いのに対し、p型半導体は焼成処理をしてp型半導体の結晶性を高め移動度を向上させる必要があるが、焼成処理を行うと有機物が凝集し、ドメインサイズが肥大化するといった問題があった。
【0006】
また、p型半導体にP3HT、n型半導体にCdSeナノ粒子を用いたバルクヘテロジャンクション層を有する光電変換素子を作製の報告(例えば、非特許文献1参照)があるが、n型半導体と比較したp型半導体の移動度の低さを改善することはできなかった。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】米国特許第5331183号明細書
【非特許文献】
【0008】
【非特許文献1】W.U.Huynh,J.J.Dittmer,A.P.Alivisatos、Science、295、2425(2002)
【発明の概要】
【発明が解決しようとする課題】
【0009】
本発明の目的は、高い光電変換効率を有し、かつ耐久性を有する有機光電変換素子を提供することにある。
【課題を解決するための手段】
【0010】
本発明の上記目的は、以下の構成により達成することができる。
【0011】
1.第一の電極と第二の電極に挟まれたバルクヘテロジャンクション型の光電変換層を有する有機光電変換素子において、前記光電変換層が、少なくとも有機物半導体と結合した微粒子を含有することを特徴とする有機光電変換素子。
【0012】
2.前記微粒子が金属微粒子であることを特徴とする前記1に記載の有機光電変換素子。
【0013】
3.前記微粒子と前記有機物半導体が、チオール基を介して結合していることを特徴とする前記1又は2に記載の有機光電変換素子。
【0014】
4.前記有機物半導体がp型半導体もしくはn型半導体のいずれかを含むことを特徴とする前記1〜3のいずれか1項に記載の有機光電変換素子。
【0015】
5.前記光電変換層がp型有機半導体被覆微粒子とn型半導体材料を含み構成されることを特徴とする前記1〜4のいずれか1項に記載の有機光電変換素子。
【0016】
6.前記微粒子が金ナノ粒子であることを特徴とする前記1〜5のいずれか1項に記載の有機光電変換素子。
【発明の効果】
【0017】
本発明により、高い変換効率を達成可能で、耐久性が高く、安価な製造を可能とする有機光電変換素子を提供することができた。
【図面の簡単な説明】
【0018】
【図1】バルクヘテロジャンクション型の有機光電変換素子からなる太陽電池を示す断面図である。
【図2】タンデム型のバルクヘテロジャンクション層を備える有機光電変換素子からなる太陽電池を示す断面図である。
【図3】タンデム型のバルクヘテロジャンクション層を備える有機光電変換素子からなる太陽電池を示す断面図である。
【図4】光センサアレイの構成を示す図である。
【発明を実施するための形態】
【0019】
本発明は、第一の電極と第二の電極に挟まれたバルクヘテロジャンクション型の光電変換層を有する有機光電変換素子において、該光電変換層が、少なくとも有機物半導体と結合した微粒子を含有することを特徴とする有機光電変換素子に関するものである。
【0020】
すなわち、金属微粒子の末端を、チオール基などを有する有機物半導体(p型半導体もしくはn型半導体)が吸着もしくは、結合した金属微粒子を含有する、バルクヘテロジャンクション層を形成させることにより、バルクヘテロジャンクション層を厚膜化することができ、その結果、光の吸収効率が高まることを見出し、本発明に至った。
【0021】
また、移動度の高い上記金属微粒子を内包することによりバルクヘテロジャンクション層を厚膜化した際にも、キャリアが失活することなく電極に到達することができる。特にp型半導体を内包した金属微粒子をバルクヘテロジャンクション層に用いた場合には、金属微粒子の高い移動度によりp型半導体内を通るホールの電極への伝達が達成される。さらには、p型半導体の結晶性を高めるための焼成処理を行った際にも、p型半導体は微粒子の周りに固定されているため、必要以上の肥大化が抑制されるといった利点もある。
【0022】
次に、本発明を実施するための最良の形態について説明するが、本発明はこれにより限定されるものではない。
【0023】
<微粒子>
微粒子としては、金属、無機酸化物、無機窒化物、ポリマー等の微粒子が用いられるが、好ましくは金属微粒子である。本発明の金属微粒子の金属としては、白金、金、銀、ニッケル、クロム、銅、鉄、錫、タンタル、インジウム、コバルト、パラジウム、テルル、レニウム、イリジウム、アルミニウム、ルテニウム、ゲルマニウム、モリブデン、タングステン、亜鉛、等を用いることができる。特に、仕事関数が4.5eV以上の白金、金、銀、銅、コバルト、クロム、イリジウム、ニッケル、パラジウム、モリブデン、タングステンが好ましい。
【0024】
このような金属微粒子の製造方法として、ガス中蒸発法、スパッタリング法、金属蒸気合成法などの物理的生成法や、コロイド法、共沈法などの、液相で金属イオンを還元して金属微粒子を生成する化学的生成法があげられるが、好ましくは、特開平11−76800号、特開平11−80647号、特開2000−239853号などに示されたコロイド法、特開2001−254185号、特開2001−53028号、特開2001−35814号、特開2001−35255号、特開2000−124157号、特開2000−123634号などに記載されたガス中蒸発法である。
【0025】
無機酸化物微粒子としては、酸化ケイ素、酸化チタン、酸化アルミニウム等の微粒子があげられる。又、このような無機酸化物はゾルであってもよい。微粒子の大きさは任意であるが、0.1nm〜1μm好ましくは、1〜100nmである。半導体材料として良好に機能させるには、表面が平滑であることが好ましい。ここでいう微粒子の大きさとは、球状の微粒子の場合は、その直径であり、球状以外の形状の微粒子の場合は、その投影像と同面積の円像の直径である。本発明においては、半導体チャネルは金属微粒子に結合した有機半導体化合物を含むが、金属微粒子の含有量は使用する金属によっても異なるが、概ね、有機半導体化合物100質量部に対して30〜5000質量部である。
【0026】
<有機半導体>
有機半導体としては公知のものを適用できるが、p型半導体として、π共役系ポリマー又はオリゴマーであることが好ましい。その中でも特にポリチオフェン誘導体であることが好ましい。又、ポリチオフェン誘導体としては、位置規則的ポリ(3−アルキルチオフェン)構造を含む誘導体(以下、単に、位置規則的ポリ(3−アルキルチオフェン)誘導体という)であることがさらに好ましい。より好ましくは、位置規則的ポリ(3−アルキルチオフェン)誘導体のアルキル基が、炭素原子数4から15のアルキル基である。n型半導体としては、フラーレン、オクタアザポルフィリン等、p型半導体の水素原子をフッ素原子に置換したパーフルオロ体であることが好ましい。その中でもフラーレン誘導体が好ましい。微粒子としては、金属微粒子であることが好ましい。
【0027】
また、微粒子と有機半導体化合物は、好ましくは、チオール基、ジチオール基、カルボキシル基、スルホン酸基、スルフィン酸基、ホスホン酸基、または燐酸基を介して結合しており、より好ましくは、チオール基を介して結合している。
【0028】
本発明の有機半導体組成物は、前記結合した微粒子と有機半導体化合物が、溶媒に分散されていることが好ましい。本発明の有機半導体組成物の分散液から有機半導体層を形成する時、分散液のキャスト過程で、微粒子が自己組織的に配列構造、好ましくは細密充填(ヘキサゴナルパッキング)構造を形成することで、結果的に有機半導体化合物が自己組織的に配列構造を形成するため、バルクヘテロジャンクション内のp/n半導体のドメインサイズを制御することが出来るだけでなく、金属微粒子を含有することによりキャリア輸送能を保ったまま厚膜化することが可能となる。本発明に用いられる有機半導体化合物は、微粒子に結合性を有する任意の結合基を分子の末端の少なくとも一箇所に有する。
【0029】
微粒子に結合性を有する任意の置換基の例として、チオール基、ジチオール基、カルボキシル基、スルホン酸基、スルフィン酸基、ホスホン酸基、燐酸基が挙げられ、チオール基、好ましい。例えば、金、銀、白金などの金属微粒子に結合させる場合、チオール基、メチルチオ基(−SCH)、メルカプトチオ基(−S−SH)、メチルメルカプトチオ基(−S−SCH)、アセチルチオ基(−SAc)などを末端に有している有機半導体化合物を用いて、それらを元にしたスルフィド結合により金属微粒子表面に化学結合もしくは吸着により結合させる。
【0030】
又、本発明に用いられる有機半導体化合物として、好ましいものの一つであるセクシチオフェンの合成法としては、Justus.Liebigs、Ann.Chem.;546;1941;180,194.(ヨードチオフェンから合成)、Mol.Cryst.Liq.Cryst.;EN;167;1989;227−232.(ジブロモビチオフェンとビチオフェンマグネシウムブロミドから合成)、J.Org.Chem.;EN;59;16;1994;4630−4636.(ターチオフェンのホモカップリングによる、タリウム触媒を用いる)、Heterocycles;EN;26;7;1987;1793−1796.(ブロモターチオフェンのNiCl触媒によるホモカップリング)等を参照することができる。
【0031】
以下に本発明で使用可能なチオール基を有する有機半導体の構造と作成例を示すが、本発明はこれに限定されるものではない。
【0032】
【化1】

【0033】
【化2】

【0034】
【化3】

【0035】
【化4】

【0036】
また、フラーレン誘導体末端にチオール基を導入する方法は、J.Mater.Chem.,2005,15,5158−5163とChemical&Pharmaceutical Bulletin+;English;31;2;1983;454−465を参考にして作製できる。
【0037】
(有機光電変換素子および太陽電池の構成)
本発明に係る有機光電変換素子の好ましい態様を説明するが、これに限定されるものではない。有機光電変換素子としては特に制限がなく、陽極と陰極と、両者に挟まれた発電層(p型半導体とn型半導体が混合された層、バルクヘテロジャンクション層、i層とも言う)が少なくとも1層以上あり、光を照射すると電流を発生する素子であればよい。
【0038】
有機光電変換素子の層構成の好ましい具体例を以下に示す。
(i)陽極/発電層/陰極
(ii)陽極/正孔輸送層/発電層/陰極
(iii)陽極/正孔輸送層/発電層/電子輸送層/陰極
(iv)陽極/正孔輸送層/p型半導体層/発電層/n型半導体層/電子輸送層/陰極
(v)陽極/正孔輸送層/第1発光層/電子輸送層/中間電極/正孔輸送層/第2発光層/電子輸送層/陰極
ここで、発電層は、正孔を輸送できるp型半導体材料と電子を輸送できるn型半導体材料を含有していることが必要であり、これらは実質2層でヘテロジャンクションを形成していても良いし、1層の内部で混合された状態となっているバルクヘテロジャンクションを形成しても良いが、バルクヘテロジャンクション構成が光電変換効率が高いため、好ましい。発電層に用いられるp型半導体材料、n型半導体材料については後述する。
【0039】
有機EL素子同様、発電層を正孔輸送層、電子輸送層で挟み込むことで、正孔及び電子の陽極・陰極への取り出し効率を高めることができるため、それらを有する構成((ii)、(iii))の方が好ましい。また、発電層自体も正孔と電子の整流性(キャリア取り出しの選択性)を高めるため、(iv)のようにp型半導体材料とn型半導体材料単体からなる層で発電層を挟み込むような構成(p−i−n構成ともいう)であっても良い。また、太陽光の利用効率を高めるため、異なる波長の太陽光をそれぞれの発電層で吸収するような、タンデム構成((v)の構成)であっても良い。
【0040】
太陽光利用率(光電変換効率)の向上を目的として、図1に示す有機光電変換素子10におけるサンドイッチ構造に替わって、一対の櫛歯状電極上にそれぞれ正孔輸送層14、電子輸送層16を形成し、その上に光電変換部15を配置するといった、バックコンタクト型の有機光電変換素子が構成とすることもできる。
【0041】
図1は、バルクヘテロジャンクション型の有機光電変換素子からなる太陽電池の一例を示す断面図である。図1において、バルクヘテロジャンクション型の有機光電変換素子10は、基板11の一方面上に、陽極12、正孔輸送層17、バルクヘテロジャンクション層の発電層14、電子輸送層18及び陰極13が順次積層されている。
【0042】
基板11は、順次積層された陽極12、発電層14及び陰極13を保持する部材である。本実施形態では、基板11側から光電変換される光が入射するので、基板11は、この光電変換される光を透過させることが可能な、すなわち、この光電変換すべき光の波長に対して透明な部材である。基板11は、例えば、ガラス基板や樹脂基板等が用いられる。この基板11は、必須ではなく、例えば、発電層14の両面に陽極12及び陰極13を形成することでバルクヘテロジャンクション型の有機光電変換素子10が構成されてもよい。
【0043】
発電層14は、光エネルギーを電気エネルギーに変換する層であって、p型半導体材料とn型半導体材料とを一様に混合したバルクヘテロジャンクション層を有して構成される。p型半導体材料は、相対的に電子供与体(ドナー)として機能し、n型半導体材料は、相対的に電子受容体(アクセプター)として機能する。
【0044】
図1において、基板11を介して陽極12から入射された光は、発電層14のバルクヘテロジャンクション層における電子受容体あるいは電子供与体で吸収され、電子供与体から電子受容体に電子が移動し、正孔と電子のペア(電荷分離状態)が形成される。発生した電荷は、内部電界、例えば、陽極12と陰極13の仕事関数が異なる場合では陽極12と陰極13との電位差によって、電子は、電子受容体間を通り、また正孔は、電子供与体間を通り、それぞれ異なる電極へ運ばれ、光電流が検出される。例えば、陽極12の仕事関数が陰極13の仕事関数よりも大きい場合では、電子は、陽極12へ、正孔は、陰極13へ輸送される。なお、仕事関数の大小が逆転すれば電子と正孔は、これとは逆方向に輸送される。また、陽極12と陰極13との間に電位をかけることにより、電子と正孔の輸送方向を制御することもできる。
【0045】
なお図1には記載していないが、正孔ブロック層、電子ブロック層、電子注入層、正孔注入層、あるいは平滑化層等の他の層を有していてもよい。
【0046】
さらに好ましい構成としては、前記発電層14が、いわゆるp−i−nの三層構成となっている構成(図2)である。通常のバルクヘテロジャンクション層は、p型半導体材料とn型半導体層が混合した、i層単体であるが、p型半導体材料単体からなるp層、およびn型半導体材料単体からなるn層で挟むことにより、正孔及び電子の整流性がより高くなり、電荷分離した正孔・電子の再結合等によるロスが低減され、一層高い光電変換効率を得ることができる。
【0047】
さらに、太陽光利用率(光電変換効率)の向上を目的として、このような光電変換素子を積層した、タンデム型の構成としてもよい。図3は、タンデム型のバルクヘテロジャンクション層を備える有機光電変換素子からなる太陽電池を示す断面図である。タンデム型構成の場合、基板11上に、順次透明電極12、第1の発電層14′を積層した後、電荷再結合層15を積層した後、第2の発電層16、次いで対電極13を積層することで、タンデム型の構成とすることができる。第2の発電層16は、第1の発電層14′の吸収スペクトルと同じスペクトルを吸収する層でもよいし、異なるスペクトルを吸収する層でもよいが、好ましくは異なるスペクトルを吸収する層である。また第1の発電層14′、第2の発電層16がともに前述のp−i−nの三層構成であってもよい。
【0048】
以下に、これらの層を構成する材料について述べる。
【0049】
(p型半導体材料)
本発明の発電層(バルクヘテロジャンクション層)に用いられるp型半導体材料としては、種々の縮合多環芳香族低分子化合物や共役系ポリマー・オリゴマーが挙げられる。
【0050】
縮合多環芳香族低分子化合物としては、例えば、アントラセン、テトラセン、ペンタセン、ヘキサセン、ヘプタセン、クリセン、ピセン、フルミネン、ピレン、ペロピレン、ペリレン、テリレン、クオテリレン、コロネン、オバレン、サーカムアントラセン、ビスアンテン、ゼスレン、ヘプタゼスレン、ピランスレン、ビオランテン、イソビオランテン、サーコビフェニル、アントラジチオフェン等の化合物、ポルフィリンや銅フタロシアニン、テトラチアフルバレン(TTF)−テトラシアノキノジメタン(TCNQ)錯体、ビスエチレンテトラチアフルバレン(BEDTTTF)−過塩素酸錯体、及びこれらの誘導体や前駆体が挙げられる。
【0051】
また上記の縮合多環を有する誘導体の例としては、国際公開第03/16599号パンフレット、国際公開第03/28125号パンフレット、米国特許第6,690,029号明細書、特開2004−107216号公報等に記載の置換基をもったペンタセン誘導体、米国特許出願公開第2003/136964号明細書等に記載のペンタセンプレカーサ、J.Amer.Chem.Soc.,vol127.No14.4986、J.Amer.Chem.Soc.,vol.123、p9482、J.Amer.Chem.Soc.,vol.130(2008)、No.9、2706等に記載のトリアルキルシリルエチニル基で置換されたアセン系化合物等が挙げられる。
【0052】
共役系ポリマーとしては、例えば、ポリ3−ヘキシルチオフェン(P3HT)等のポリチオフェン及びそのオリゴマー、またはTechnical Digest of the International PVSEC−17, Fukuoka, Japan, 2007, P1225に記載の重合性基を有するようなポリチオフェン、Nature Material,(2006)vol.5,p328に記載のポリチオフェン−チエノチオフェン共重合体、WO2008/000664号に記載のポリチオフェン−ジケトピロロピロール共重合体、Adv Mater,2007p4160に記載のポリチオフェン−チアゾロチアゾール共重合体,Nature Mat.vol.6(2007),p497に記載のPCPDTBT等のようなポリチオフェン共重合体、ポリピロール及びそのオリゴマー、ポリアニリン、ポリフェニレン及びそのオリゴマー、ポリフェニレンビニレン及びそのオリゴマー、ポリチエニレンビニレン及びそのオリゴマー、ポリアセチレン、ポリジアセチレン、ポリシラン、ポリゲルマン等のσ共役系ポリマー、等のポリマー材料が挙げられる。
【0053】
また、ポリマー材料ではなくオリゴマー材料としては、チオフェン6量体であるα−セクシチオフェンα,ω−ジヘキシル−α−セクシチオフェン、α,ω−ジヘキシル−α−キンケチオフェン、α,ω−ビス(3−ブトキシプロピル)−α−セクシチオフェン、等のオリゴマーが好適に用いることができる。
【0054】
これらの化合物の中でも、溶液プロセスが可能な程度に有機溶剤への溶解性が高く、かつ乾燥後は結晶性薄膜を形成し、高い移動度を達成することが可能な化合物が好ましい。
【0055】
また、発電層上に電子輸送層を塗布で製膜する場合、電子輸送層溶液が発電層を溶かしてしまうという課題があるため、溶液プロセスで塗布した後に不溶化できるような材料を用いても良い。
【0056】
このような材料としては、Technical Digest of the International PVSEC−17, Fukuoka, Japan, 2007, P1225に記載の重合性基を有するようなポリチオフェンのような、塗布後に塗布膜を重合架橋して不溶化できる材料、または米国特許出願公開第2003/136964号、および特開2008−16834号等に記載されているような、熱等のエネルギーを加えることによって可溶性置換基が反応して不溶化する(顔料化する)材料などを挙げることができる。
【0057】
(n型半導体材料)
本発明のバルクヘテロジャンクション層に用いられるn型半導体材料としては、特に限定されないが、例えば、フラーレン、オクタアザポルフィリン等、p型半導体の水素原子をフッ素原子に置換したパーフルオロ体(パーフルオロペンタセンやパーフルオロフタロシアニン等)、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等の芳香族カルボン酸無水物やそのイミド化物を骨格として含む高分子化合物等を挙げることができる。
【0058】
しかし、各種のp型半導体材料と高速(〜50fs)かつ効率的に電荷分離を行うことができる、フラーレン誘導体が好ましい。フラーレン誘導体としては、フラーレンC60、フラーレンC70、フラーレンC76、フラーレンC78、フラーレンC84、フラーレンC240、フラーレンC540、ミックスドフラーレン、フラーレンナノチューブ、多層ナノチューブ、単層ナノチューブ、ナノホーン(円錐型)等、およびこれらの一部が水素原子、ハロゲン原子、置換または無置換のアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、シクロアルキル基、シリル基、エーテル基、チオエーテル基、アミノ基、シリル基等によって置換されたフラーレン誘導体を挙げることができる。
【0059】
中でも[6,6]−フェニルC61−ブチリックアシッドメチルエステル(略称PCBM)、[6,6]−フェニルC61−ブチリックアシッド−nブチルエステル(PCBnB)、[6,6]−フェニルC61−ブチリックアシッド−イソブチルエステル(PCBiB)、[6,6]−フェニルC61−ブチリックアシッド−nヘキシルエステル(PCBH)、Adv.Mater.,vol.20(2008),p2116等に記載のbis−PCBM、特開2006−199674号公報等のアミノ化フラーレン、特開2008−130889号公報等のメタロセン化フラーレン、米国特許第7329709号明細書等の環状エーテル基を有するフラーレン等のような、置換基を有してより溶解性が向上したフラーレン誘導体を用いることが好ましい。
【0060】
(正孔輸送層・電子ブロック層)
本発明の有機光電変換素子10は、バルクヘテロジャンクション層と陽極との中間には正孔輸送層17を、バルクヘテロジャンクション層で発生した電荷をより効率的に取り出すことが可能となるため、これらの層を有していることが好ましい。
【0061】
これらの層を構成する材料としては、例えば、正孔輸送層17としては、スタルクヴイテック社製、商品名BaytronP等のPEDOT、ポリアニリン及びそのドープ材料、WO2006/019270号等に記載のシアン化合物、などを用いることができる。なお、バルクヘテロジャンクション層に用いられるn型半導体材料のLUMO準位よりも浅いLUMO準位を有する正孔輸送層には、バルクヘテロジャンクション層で生成した電子を陽極側には流さないような整流効果を有する、電子ブロック機能が付与される。このような正孔輸送層は、電子ブロック層とも呼ばれ、このような機能を有する正孔輸送層を使用するほうが好ましい。このような材料としては、特開平5−271166号公報等に記載のトリアリールアミン系化合物、また酸化モリブデン、酸化ニッケル、酸化タングステン等の金属酸化物等を用いることができる。また、バルクヘテロジャンクション層に用いたp型半導体材料単体からなる層を用いることもできる。これらの層を形成する手段としては、真空蒸着法、溶液塗布法のいずれであってもよいが、好ましくは溶液塗布法である。バルクヘテロジャンクション層を形成する前に、下層に塗布膜を形成すると塗布面をレベリングする効果があり、リーク等の影響が低減するため好ましい。
【0062】
(電子輸送層・正孔ブロック層)
本発明の有機光電変換素子10は、バルクヘテロジャンクション層と陰極との中間には電子輸送層18を形成することで、バルクヘテロジャンクション層で発生した電荷をより効率的に取り出すことが可能となるため、これらの層を有していることが好ましい。
【0063】
また電子輸送層18としては、オクタアザポルフィリン、p型半導体のパーフルオロ体(パーフルオロペンタセンやパーフルオロフタロシアニン等)を用いることができるが、同様に、バルクヘテロジャンクション層に用いられるp型半導体材料のHOMO準位よりも深いHOMO準位を有する電子輸送層には、バルクヘテロジャンクション層で生成した正孔を陰極側には流さないような整流効果を有する、正孔ブロック機能が付与される。このような電子輸送層は、正孔ブロック層とも呼ばれ、このような機能を有する電子輸送層を使用するほうが好ましい。このような材料としては、バソキュプロイン等のフェナントレン系化合物、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等のn型半導体材料、及び酸化チタン、酸化亜鉛、酸化ガリウム等のn型無機酸化物及びフッ化リチウム、フッ化ナトリウム、フッ化セシウム等のアルカリ金属化合物等を用いることができる。また、バルクヘテロジャンクション層に用いたn型半導体材料単体からなる層を用いることもできる。これらの層を形成する手段としては、真空蒸着法、溶液塗布法のいずれであってもよいが、好ましくは溶液塗布法である。
【0064】
その他の層
エネルギー変換効率の向上や、素子寿命の向上を目的に、各種中間層を素子内に有する構成としてもよい。中間層の例としては、正孔ブロック層、電子ブロック層、正孔注入層、電子注入層、励起子ブロック層、UV吸収層、光反射層、波長変換層などを挙げることができる。
【0065】
透明電極(第1電極)
本発明の透明電極は、陰極、陽極は特に限定せず、素子構成により選択することができるが、好ましくは透明電極を陽極として用いることである。例えば、陽極として用いる場合、好ましくは380〜800nmの光を透過する電極である。材料としては、例えば、インジウムチンオキシド(ITO)、SnO、ZnO等の透明導電性金属酸化物、金、銀、白金等の金属薄膜、金属ナノワイヤ、カーボンナノチューブ用いることができる。
【0066】
またポリピロール、ポリアニリン、ポリチオフェン、ポリチエニレンビニレン、ポリアズレン、ポリイソチアナフテン、ポリカルバゾール、ポリアセチレン、ポリフェニレン、ポリフェニレンビニレン、ポリアセン、ポリフェニルアセチレン、ポリジアセチレン及びポリナフタレンの各誘導体からなる群より選ばれる導電性高分子等も用いることができる。また、これらの導電性化合物を複数組み合わせて透明電極とすることもできる。
【0067】
対電極(第2電極)
対電極は導電材単独層であっても良いが、導電性を有する材料に加えて、これらを保持する樹脂を併用しても良い。対電極の導電材としては、仕事関数の小さい(4eV以下)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子の取り出し性能及び酸化等に対する耐久性の点から、これら金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。対電極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、膜厚は通常10nm〜5μm、好ましくは50〜200nmの範囲で選ばれる。
【0068】
対電極の導電材として金属材料を用いれば対電極側に来た光は反射されて第1電極側に反射され、この光が再利用可能となり、光電変換層で再度吸収され、より光電変換効率が向上し好ましい。
【0069】
また、対電極13は、金属(例えば金、銀、銅、白金、ロジウム、ルテニウム、アルミニウム、マグネシウム、インジウム等)、炭素からなるナノ粒子、ナノワイヤ、ナノ構造体であってもよく、ナノワイヤの分散物であれば、透明で導電性の高い対電極を塗布法により形成でき好ましい。
【0070】
また、対電極側を光透過性とする場合は、例えば、アルミニウム及びアルミニウム合金、銀及び銀化合物等の対電極に適した導電性材料を薄く1〜20nm程度の膜厚で作製した後、上記透明電極の説明で挙げた導電性光透過性材料の膜を設けることで、光透過性対電極とすることができる。
【0071】
中間電極
また、前記(v)(または図3)のようなタンデム構成の場合に必要となる中間電極の材料としては、透明性と導電性を併せ持つ化合物を用いた層であることが好ましく、前記透明電極で用いたような材料(ITO、AZO、FTO、酸化チタン等の透明金属酸化物、Ag、Al、Au等の非常に薄い金属層またはナノ粒子・ナノワイヤを含有する層、PEDOT:PSS、ポリアニリン等の導電性高分子材料等)を用いることができる。
【0072】
なお前述した正孔輸送層と電子輸送層の中には、適切に組み合わせて積層することで中間電極(電荷再結合層)として働く組み合わせもあり、このような構成とすると1層形成する工程を省くことができ好ましい。
【0073】
(金属ナノワイヤ)
本発明の導電性繊維としては、金属でコーティングした有機繊維や無機繊維、導電性金属酸化ナノワイヤ、炭素繊維、カーボンナノチューブ等を用いることができるが、金属ナノワイヤが好ましい。
【0074】
一般に、金属ナノワイヤとは、金属元素を主要な構成要素とする線状構造体のことをいう。特に、本発明における金属ナノワイヤとはnmサイズの直径を有する線状構造体を意味する。
【0075】
本発明に係る金属ナノワイヤとしては、1つの金属ナノワイヤで長い導電パスを形成するために、また、適度な光散乱性を発現するために、平均長さが3μm以上であることが好ましく、さらには3〜500μmが好ましく、特に3〜300μmであることが好ましい。併せて、長さの相対標準偏差は40%以下であることが好ましい。また、平均直径は、透明性の観点からは小さいことが好ましく、一方で、導電性の観点からは大きい方が好ましい。本発明においては、金属ナノワイヤの平均直径として10〜300nmが好ましく、30〜200nmであることがより好ましい。併せて、直径の相対標準偏差は20%以下であることが好ましい。
【0076】
本発明に係る金属ナノワイヤの金属組成としては特に制限はなく、貴金属元素や卑金属元素の1種または複数の金属から構成することができるが、貴金属(例えば、金、白金、銀、パラジウム、ロジウム、イリジウム、ルテニウム、オスミウム等)及び鉄、コバルト、銅、錫からなる群に属する少なくとも1種の金属を含むことが好ましく、導電性の観点から少なくとも銀を含むことがより好ましい。また、導電性と安定性(金属ナノワイヤの硫化や酸化耐性、及びマイグレーション耐性)を両立するために、銀と、銀を除く貴金属に属する少なくとも1種の金属を含むことも好ましい。本発明に係る金属ナノワイヤが2種類以上の金属元素を含む場合には、例えば、金属ナノワイヤの表面と内部で金属組成が異なっていてもよいし、金属ナノワイヤ全体が同一の金属組成を有していてもよい。
【0077】
本発明において金属ナノワイヤの製造手段には特に制限はなく、例えば、液相法や気相法等の公知の手段を用いることができる。また、具体的な製造方法にも特に制限はなく、公知の製造方法を用いることができる。例えば、Agナノワイヤの製造方法としては、Adv.Mater.,2002,14,833〜837;Chem.Mater.,2002,14,4736〜4745等、Auナノワイヤの製造方法としては特開2006−233252号公報等、Cuナノワイヤの製造方法としては特開2002−266007号公報等、Coナノワイヤの製造方法としては特開2004−149871号公報等を参考にすることができる。特に、上述した、Adv.Mater.及びChem.Mater.で報告されたAgナノワイヤの製造方法は、水系で簡便にAgナノワイヤを製造することができ、また銀の導電率は金属中で最大であることから、本発明に係る金属ナノワイヤの製造方法として好ましく適用することができる。
【0078】
本発明においては、金属ナノワイヤが互いに接触し合うことにより3次元的な導電ネットワークを形成し、高い導電性を発現するとともに、金属ナノワイヤが存在しない導電ネットワークの窓部を光が透過することが可能となり、さらに、金属ナノワイヤの散乱効果によって、有機発電層部からの発電を効率的に行うことが可能となる。第1電極において金属ナノワイヤを有機発電層部に近い側に設置すれば、この散乱効果がより有効に利用できるのでより好ましい実施形態である。
【0079】
基板
基板側から光電変換される光が入射する場合、基板はこの光電変換される光を透過させることが可能な、即ちこの光電変換すべき光の波長に対して透明な部材であることが好ましい。基板は、例えば、ガラス基板や樹脂基板等が好適に挙げられるが、軽量性と柔軟性の観点から透明樹脂フィルムを用いることが望ましい。本発明で透明基板として好ましく用いることができる透明樹脂フィルムには特に制限がなく、その材料、形状、構造、厚み等については公知のものの中から適宜選択することができる。例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)変性ポリエステル等のポリエステル系樹脂フィルム、ポリエチレン(PE)樹脂フィルム、ポリプロピレン(PP)樹脂フィルム、ポリスチレン樹脂フィルム、環状オレフィン系樹脂等のポリオレフィン類樹脂フィルム、ポリ塩化ビニル、ポリ塩化ビニリデン等のビニル系樹脂フィルム、ポリエーテルエーテルケトン(PEEK)樹脂フィルム、ポリサルホン(PSF)樹脂フィルム、ポリエーテルサルホン(PES)樹脂フィルム、ポリカーボネート(PC)樹脂フィルム、ポリアミド樹脂フィルム、ポリイミド樹脂フィルム、アクリル樹脂フィルム、トリアセチルセルロース(TAC)樹脂フィルム等を挙げることができるが、可視域の波長(380〜800nm)における透過率が80%以上である樹脂フィルムであれば、本発明に係る透明樹脂フィルムに好ましく適用することができる。中でも透明性、耐熱性、取り扱いやすさ、強度及びコストの点から、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルム、ポリエーテルサルホンフィルム、ポリカーボネートフィルムであることが好ましく、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルムであることがより好ましい。
【0080】
本発明に用いられる透明基板には、塗布液の濡れ性や接着性を確保するために、表面処理を施すことや易接着層を設けることができる。表面処理や易接着層については従来公知の技術を使用できる。例えば、表面処理としては、コロナ放電処理、火炎処理、紫外線処理、高周波処理、グロー放電処理、活性プラズマ処理、レーザー処理等の表面活性化処理を挙げることができる。また、易接着層としては、ポリエステル、ポリアミド、ポリウレタン、ビニル系共重合体、ブタジエン系共重合体、アクリル系共重合体、ビニリデン系共重合体、エポキシ系共重合体等を挙げることができる。
【0081】
また、酸素及び水蒸気の透過を抑制する目的で、透明基板にはバリアコート層が予め形成されていてもよいし、透明導電層を転写する反対側にはハードコート層が予め形成されていてもよい。
【0082】
(光学機能層)
本発明の有機光電変換素子は、太陽光のより効率的な受光を目的として、各種の光学機能層を有していて良い。光学機能層としては、たとえば、反射防止膜、マイクロレンズアレイ等の集光層、陰極で反射した光を散乱させて再度発電層に入射させることができるような光拡散層などを設けても良い。
【0083】
反射防止層としては、各種公知の反射防止層を設けることができるが、例えば、透明樹脂フィルムが二軸延伸ポリエチレンテレフタレートフィルムである場合は、フィルムに隣接する易接着層の屈折率を1.57〜1.63とすることで、フィルム基板と易接着層との界面反射を低減して透過率を向上させることができるのでより好ましい。屈折率を調整する方法としては、酸化スズゾルや酸化セリウムゾル等の比較的屈折率の高い酸化物ゾルとバインダー樹脂との比率を適宜調整して塗設することで実施できる。易接着層は単層でもよいが、接着性を向上させるためには2層以上の構成にしてもよい。
【0084】
集光層としては、例えば、支持基板の太陽光受光側にマイクロレンズアレイ上の構造を設けるように加工したり、あるいは所謂集光シートと組み合わせたりすることにより特定方向からの受光量を高めたり、逆に太陽光の入射角度依存性を低減することができる。
【0085】
マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を2次元に配列する。一辺は10〜100μmが好ましい。これより小さくなると回折の効果が発生して色付き、大きすぎると厚みが厚くなり好ましくない。
【0086】
また光散乱層としては、各種のアンチグレア層、金属または各種無機酸化物などのナノ粒子・ナノワイヤ等を無色透明なポリマーに分散した層などを挙げることができる。
【0087】
製膜方法・表面処理方法
(各種の層の形成方法)
電子受容体と電子供与体とが混合されたバルクヘテロジャンクション層、および輸送層・電極の形成方法としては、蒸着法、塗布法(キャスト法、スピンコート法を含む)等を例示することができる。このうち、バルクヘテロジャンクション層の形成方法としては、蒸着法、塗布法(キャスト法、スピンコート法を含む)等を例示することができる。このうち、前述の正孔と電子が電荷分離する界面の面積を増大させ、高い光電変換効率を有する素子を作製するためには、塗布法が好ましい。また塗布法は、製造速度にも優れている。
【0088】
この際に使用する塗布方法に制限は無いが、例えば、スピンコート法、溶液からのキャスト法、ディップコート法、ブレードコート法、ワイヤバーコート法、グラビアコート法、スプレーコート法等が挙げられる。さらには、インクジェット法、スクリーン印刷法、凸版印刷法、凹版印刷法、オフセット印刷法、フレキソ印刷法等の印刷法でパターニングすることもできる。
【0089】
塗布後は残留溶媒及び水分、ガスの除去、及び半導体材料の結晶化による移動度向上・吸収長波化を引き起こすために加熱を行うことが好ましい。製造工程中において所定の温度でアニール処理されると、微視的に一部が凝集または結晶化が促進され、バルクヘテロジャンクション層を適切な相分離構造とすることができる。その結果、バルクヘテロジャンクション層のキャリア移動度が向上し、高い効率を得ることができるようになる。
【0090】
発電層(バルクヘテロジャンクション層)14は、電子受容体と電子供与体とが均一に混在された単一層で構成してもよいが、電子受容体と電子供与体との混合比を変えた複数層で構成してもよい。この場合、前述したような塗布後に不溶化できるような材料を用いることで形成することが可能となる。
【0091】
パターニング
本発明に係る電極、発電層、正孔輸送層、電子輸送層等をパターニングする方法やプロセスには特に制限はなく、公知の手法を適宜適用することができる。
【0092】
バルクヘテロジャンクション層、輸送層等の可溶性の材料であれば、ダイコート、ディップコート等の全面塗布後に不要部だけ拭き取っても良いし、インクジェット法やスクリーン印刷等の方法を使用して塗布時に直接パターニングしても良い。
【0093】
電極材料などの不溶性の材料の場合は、電極を真空堆積時にマスク蒸着を行ったり、エッチング又はリフトオフ等の公知の方法によってパターニングすることができる。また、別の基板上に形成したパターンを転写することによってパターンを形成しても良い。
【0094】
(光センサアレイ)
次に、以上説明したバルクヘテロジャンクション型の有機光電変換素子10を応用した光センサアレイについて詳細に説明する。光センサアレイは、前記のバルクヘテロジャンクション型の有機光電変換素子が受光によって電流を発生することを利用して、前記の光電変換素子を細かく画素状に並べて作製し、光センサアレイ上に投影された画像を電気的な信号に変換する機能を有するセンサである。
【0095】
図4は、光センサアレイの構成を示す図である。図4(a)は、上面図であり、図4(b)は、図4(a)のA−A’線断面図である。
【0096】
図4において、光センサアレイ20は、保持部材としての基板21上に、下部電極としての透明電極22、光エネルギーを電気エネルギーに変換する発電層24及び透明電極22と対をなし、上部電極としての対電極23が順次積層されたものである。発電層24は、p型半導体材料とn型半導体材料とを一様に混合したバルクヘテロジャンクション層を有してなる光電変換層24bと、バッファ層24aとの2層で構成される。図4に示す例では、6個のバルクヘテロジャンクション型の有機光電変換素子が形成されている。
【0097】
これら基板21、透明電極22、光電変換層24b及び対電極23は、前述したバルクヘテロジャンクション型の光電変換素子10における透明電極12、発電層14及び対電極13と同等の構成及び役割を示すものである。
【0098】
基板21には、例えば、ガラスが用いられ、透明電極22には、例えば、ITOが用いられ、対電極23には、例えば、アルミニウムが用いられる。そして、光電変換層24bのp型半導体材料には、例えば、前記BP−1前駆体が用いられ、n型半導体材料には、例えば、前記例示化合物が用いられる。
【0099】
また、バッファ層24aには、PEDOT(ポリ−3,4−エチレンジオキシチオフェン)−PSS(ポリスチレンスルホン酸)導電性高分子(スタルクヴイテック社製、商品名BaytronP)が用いられる。このような光センサアレイ20は、次のようにして製作された。
【0100】
ガラス基板上にスパッタリングによりITO膜を形成し、フォトリソグラフィにより所定のパターン形状に加工した。ガラス基板の厚さは、0.7mm、ITO膜の厚さは、200nm、フォトリソグラフィ後のITO膜における測定部面積(受光面積)は、1mm×1mmであった。次に、このガラス基板21上に、スピンコート法(条件;回転数=1000rpm、フィルター径=1.2μm)によりPEDOT−PSS膜を形成した。その後、該基板を、オーブンで140℃、10分加熱し、乾燥させた。乾燥後のPEDOT−PSS膜の厚さは30nmであった。
【0101】
次に、上記PEDOT−PSS膜の上に、P3HTとPCBMの1:1混合膜を、スピンコート法(条件;回転数=3300rpm、フィルター径=0.8μm)により形成した。P3HTとPCBMの混合膜の形成後、窒素ガス雰囲気下においてオーブンで180℃、30分加熱しアニール処理を施した。アニール処理後のバルクヘテロジャンクション層の厚さは70nmであった。
【0102】
その後、所定のパターン開口を備えたメタルマスクを用い、バルクヘテロジャンクション層の上に、上部電極としてのアルミニウム層を蒸着法により形成(厚さ=10nm)した。その後、PVA(polyvinyl alcohol)をスピンコートで1μm形成し、150℃で焼成することで図略のパッシベーション層を作製した。以上により、光センサアレイ20が作製された。
【0103】
作製された、2行×3列の画素を有する光センサアレイ20に対し、中央の列の2画素のみに光があたる様に光を照射し、6画素に順次陽極・陰極間に−0.5Vの電圧を印加して電流値を読み取ったところ、光のあたっている画素のみで電流が観測され、光のあたっていない画素では電流が流れなかった。したがって、前記光センサアレイ20は、光センサとして動作することを確認できた。
【実施例】
【0104】
(試料1の作製)
J.Amer.Chem.Soc.,vol127.No7.2172を参考に2.0nmのトリフェニルホスフィン保護金ナノ粒子のジクロロエタン溶液を得た。末端にチオール基を有するチオフェン(化合物1)のクロロホルム溶液を添加し、攪拌した後クロロホルム相をよく精製し、本発明のクロロホルム分散物である試料1を得た。TEM観察により、直径約2.0nm金微粒子が良好に分散されていることを確認した。
【0105】
(試料2の作製)
有機化合物半導体を末端にチオール基を有するフラーレン誘導体(化合物2)に変更した以外は試料1と同様に組成物を作製し、クロロホルム分散物として試料2を得た。
【0106】
(有機光電変換素子SC−101の作製)
ガラス基板上にパターン形成した透明電極を、界面活性剤と超純水による超音波洗浄、超純水による超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線オゾン洗浄を行った。
【0107】
この透明基板上に、導電性高分子であるBaytron P4083(スタルクヴィテック社製)を30nmの膜厚でスピンコートした後、140℃で大気中10分間加熱乾燥した。
【0108】
これ以降は、基板をグローブボックス中に持ち込み、窒素雰囲気下で作業した。まず、窒素雰囲気下で上記基板を140℃で3分間加熱処理した。クロロホルムにp型半導体材料として試料1を1.5質量%、n型半導体材料として試料2を1.5質量%を溶解した液を作製し、0.45μmのフィルターでろ過をかけながら500rpmで60秒、ついで2200rpmで1秒間のスピンコートを行い、室温で30分放置し、バルクヘテロジャンクション層を形成した。
【0109】
次にエタノールにTi−イソプロポキシドを25mmol/lになるように溶解した液を調製し、取り出し電極部をマスキングした後に2000rpmでスピンコートした後、大気中に取り出して60分間放置してTi−イソプロポキシドを加水分解することによって、膜厚10nmのTiOx層を形成し、電子輸送層を形成した。
【0110】
次に、上記一連の有機層を成膜した基板を大気に晒すことなく真空蒸着装置内に設置した。2mm幅のシャドウマスクが透明電極と直交するように素子をセットし、10−3Pa以下にまでに真空蒸着機内を減圧した後、Alを100nmを蒸着した。最後に120℃で30分間の加熱を行い、本発明の有機光電変換素子であるSC−101を得た。なお蒸着速度は2nm/秒で蒸着し、2mm角のサイズとした。
【0111】
得られた有機光電変換素子であるSC−101は、窒素雰囲気下でアルミニウムキャップとUV硬化樹脂(ナガセケムテックス株式会社製、UV RESIN XNR5570−B1)を用いて封止を行った後に大気下に取り出した。
【0112】
(有機光電変換素子SC−102の作製)
有機光電変換素子SC−101の作製において、クロロホルムにp型半導体として試料1を1.5質量%、n型半導体としてPCBMを1.5質量%を溶解した液を用いてバルクヘテロジャンクション層を形成した以外は同様にして、有機光電変換素子SC−102を得た。
【0113】
(有機光電変換素子SC−103の作製)
有機光電変換素子SC−101の作製において、クロロホルムにp型半導体としてP3HTを1.5質量%、n型半導体として試料2を1.5質量%を溶解した液を用いてバルクヘテロジャンクション層を形成した以外は同様にして、有機光電変換素子SC−103を得た。
【0114】
(有機光電変換素子SC−104の作製)
有機光電変換素子SC−101の作製において、クロロホルムにp型半導体としてP3HTを1.5質量%、n型半導体としてPCBMを1.5質量%を溶解した液を用いてバルクヘテロジャンクション層を形成した以外は同様にして、有機光電変換素子SC−104を得た。
【0115】
(変換効率の評価)
上記作製した光電変換素子に、ソーラーシミュレーター(AM1.5Gフィルタ)の100mW/cmの強度の光を照射し、有効面積を4.0mmにしたマスクを受光部に重ね、短絡電流密度Jsc(mA/cm)及び開放電圧Voc(V)、曲線因子(フィルファクター)FFを、同素子上に形成した4箇所の受光部をそれぞれ測定し、平均値を求めた。またJsc、Voc、FFから式1に従ってエネルギー変換効率η(%)を求めた。結果を表1に示す。
【0116】
式1 Jsc(mA/cm)×Voc(V)×FF=η(%)
【0117】
【表1】

【0118】
表1に示すように、本発明のSC−101、102及び103は比較例であるSC−104に比較して変換効率が優れていることが解る。
【符号の説明】
【0119】
10 バルクヘテロジャンクション型の有機光電変換素子
11 基板
12 陽極
13 陰極
14 発電層(バルクヘテロジャンクション層)
14p p層
14n n層
14′ 第1の発電層
15 電荷再結合層
16 第2の発電層
17 正孔輸送層
18 電子輸送層
20 光センサアレイ
21 基板
22 透明電極
23 対電極
24 発電層
24a バッファ層
24b 光電変換層

【特許請求の範囲】
【請求項1】
第一の電極と第二の電極に挟まれたバルクヘテロジャンクション型の光電変換層を有する有機光電変換素子において、前記光電変換層が、少なくとも有機物半導体と結合した微粒子を含有することを特徴とする有機光電変換素子。
【請求項2】
前記微粒子が金属微粒子であることを特徴とする請求項1に記載の有機光電変換素子。
【請求項3】
前記微粒子と前記有機物半導体が、チオール基を介して結合していることを特徴とする請求項1又は2に記載の有機光電変換素子。
【請求項4】
前記有機物半導体がp型半導体もしくはn型半導体のいずれかを含むことを特徴とする請求項1〜3のいずれか1項に記載の有機光電変換素子。
【請求項5】
前記光電変換層がp型有機半導体被覆微粒子とn型半導体材料を含み構成されることを特徴とする請求項1〜4のいずれか1項に記載の有機光電変換素子。
【請求項6】
前記微粒子が金ナノ粒子であることを特徴とする請求項1〜5のいずれか1項に記載の有機光電変換素子。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2010−278377(P2010−278377A)
【公開日】平成22年12月9日(2010.12.9)
【国際特許分類】
【出願番号】特願2009−131872(P2009−131872)
【出願日】平成21年6月1日(2009.6.1)
【出願人】(000001270)コニカミノルタホールディングス株式会社 (4,463)
【Fターム(参考)】