説明

汚泥処理装置及び汚泥処理方法

【課題】汚泥細胞の破壊を確実に行い、汚泥の減容を十分に行うことや容易に脱水を行うことを可能とする汚泥処理装置及び汚泥処理方法を提供すること。
【解決手段】ガス溶解手段13によって、スラリー状の汚泥に加圧条件下でガスを溶解させた後、破壊手段14によって、当該スラリー状の汚泥を加圧条件下の圧力より低い圧力の下で破砕する。これにより、汚泥細胞内に溶解していたガスを圧力差(加圧条件下と当該加圧条件下の圧力より低い圧力下との圧力差)により気泡として汚泥細胞を膨らんだ状態とし、この膨らんだ又は膨らみつつあり細胞壁の弾性力が小さい状態(細胞壁がパンパンに張った状態)で破砕し、汚泥細胞の破壊を確実に行う。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、汚泥を処理する汚泥処理装置及び汚泥処理方法に関する。
【背景技術】
【0002】
従来、スラリー状の汚泥をポンプで加圧してノズル内に送り込み、ノズル先端の噴射口に対向して配置された衝撃板に向けスラリー状の汚泥を噴射し、この噴射時の急激な膨張によって生じるキャビテーションによりスラリー状の汚泥の細胞を破壊して微細化すると共に、衝撃板との衝突による衝撃によって細胞を破壊して微細化を一層促進し、これにより、汚泥の減量化を図るものが知られている(例えば、特許文献1参照)。
【0003】
また、有機性汚泥を密閉圧力容器に充填した後、密閉圧力容器の下部から汚泥ポンプの吸引力を利用して当該密閉圧力容器内を減圧状態とし、この減圧により、菌の細胞を破壊し死滅させると共に水中に溶解しているガスを脱気させて汚泥の浮上分離を防ぎ、汚泥の減量化を促進するものが知られている(例えば、特許文献2参照)。
【特許文献1】特開2006−55737号公報
【特許文献2】特開平6−304598号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
しかしながら、上記何れの公報のものにあっても、汚泥細胞の破壊は殆ど起こらないということが本発明者らにより見出された。
【0005】
本発明は、このような課題を解決するために成されたものであり、汚泥細胞の破壊が確実に行われ、汚泥の減容を十分に行うことや容易に脱水を行うことができる汚泥処理装置及び汚泥処理方法を提供することを目的とする。
【課題を解決するための手段】
【0006】
本発明による汚泥処理装置は、スラリー状の汚泥に加圧条件下でガスを溶解させるガス溶解手段と、加圧条件下の圧力より低い圧力の下で、ガスを溶解したスラリー状の汚泥を破砕する破壊手段と、を備えたことを特徴としている。
【0007】
また、本発明による汚泥処理方法は、スラリー状の汚泥に加圧条件下でガスを溶解させ、加圧条件下の圧力より低い圧力の下で、ガスを溶解したスラリー状の汚泥を破砕することを特徴としている。
【0008】
このような汚泥処理装置及び汚泥処理方法によれば、スラリー状の汚泥に加圧条件下でガスを溶解させた後、当該スラリー状の汚泥が加圧条件下の圧力より低い圧力の下で破砕されるため、汚泥細胞内に溶解していたガスは圧力差(加圧条件下と当該加圧条件下の圧力より低い圧力下との圧力差)により気泡となって汚泥細胞は膨らんだ状態となり、この膨らんだ又は膨らみつつあり細胞壁の弾性力が小さい状態(細胞壁がパンパンに張った状態)で破砕されることになり、汚泥細胞の破壊が確実に行われるようになる。
【0009】
ここで、ガスとしては、安価且つ安全且つ容易に溶解することから、炭酸ガス含有ガスが挙げられる。
【0010】
また、破壊手段として、具体的には、ガスを溶解したスラリー状の汚泥を衝突させる衝突手段が挙げられる。
【0011】
さらに、衝突手段としては、具体的には、ガスを溶解したスラリー状の汚泥を衝突させる衝突板を有する構成が挙げられる。
【0012】
また、衝突手段は、ガスを溶解したスラリー状の汚泥を衝突板に向かって噴射するノズルを有し、ノズルの噴射方向に対して、衝突板がその下部がその上部より後側に位置するように傾斜して設置されていると、スラリー状の汚泥が衝突板に溜まること無く流れ易くなり、その結果、スラリー状の汚泥の衝突時の衝撃力の低減が防止され、汚泥細胞の破壊が一層確実に行われる。
【0013】
また、衝突板に衝突させて破砕した汚泥を脱水する脱水機を備えていると、脱水機に導入される汚泥は、その汚泥細胞の破壊により内部から細胞質が漏出し含水率が低下するため、容易に脱水を行うことができる。
【0014】
また、衝突板に衝突させて破砕した汚泥が返送される曝気槽を備えていると、その汚泥細胞の破壊により内部より漏出した細胞質が生物易分解性で曝気槽で容易に生物分解されるため、余剰汚泥の減容を十分に行うことができる。
【発明の効果】
【0015】
このように本発明の汚泥処理装置及び汚泥処理方法によれば、汚泥細胞の破壊を確実に行うことができ、汚泥の減容を十分に行うことや容易に脱水を行うことができる。
【発明を実施するための最良の形態】
【0016】
以下、本発明による汚泥処理装置及び汚泥処理方法の好適な実施形態について図1〜図5を参照しながら説明する。図1は、本発明の実施形態に係る汚泥処理装置を採用した排水処理装置を示す概略構成図、図2は、図1中の汚泥処理装置を示す概略構成図、図3は、汚泥細胞の状態を示すイメージ図、図4は、ガス溶解後のスラリー状の汚泥を衝突板に衝突させている状態を示す図、図5は、汚泥の含水率低下のメカニズムを説明するための汚泥細胞のイメージ図である。
【0017】
図1に示すように、本実施形態の排水処理装置100は、例えば下水等の有機性排水を生物学的処理により浄化するものであり、有機性排水が導入される曝気槽1と、この曝気槽1からの排水を導入し処理水と汚泥とに固液分離する固液分離装置としての沈殿槽2と、この沈殿槽2と曝気槽1とに接続され汚泥を返送する汚泥返送ラインL1と、この汚泥返送ラインL1から分岐し余剰汚泥を系外に排出するための余剰汚泥排出ラインL2と、を備え、さらに、本実施形態にあっては、汚泥返送ラインL1から分岐して曝気槽1に接続される返送分岐ラインL3及びこの返送分岐ラインL3の途中に設けられ汚泥を所定に処理する汚泥処理装置3と、を備える。
【0018】
そして、このような構成を有する排水処理装置100にあっては、有機性排水が曝気槽1に導入され、曝気槽1でブロワBによる曝気が行われ、これにより、排水中の有機物が曝気槽1内の好気性汚泥により分解され、その一部は汚泥に転換される。曝気槽1内のスラリー状の汚泥は沈殿槽2に導入され、沈降汚泥と上澄である処理水とに分離されて処理水は後段に排出され、一方、沈降汚泥はポンプPにより引き抜かれ、汚泥返送ラインL1を通して再び曝気槽1に返送される。
【0019】
ここで、特に本実施形態にあっては、汚泥の一部が、返送分岐ラインL3を通して汚泥処理装置100に導入される。なお、この導入量は汚泥流量計FGに基づいて調整される。
【0020】
汚泥処理装置100は、汚泥細胞を破壊するためのものであり、図2に示すように、汚泥槽10、加圧ポンプ11、ガス溶解タンク(ガス溶解手段)13、破砕タンク(破壊手段)14をこの順に接続して備えると共に、ガス溶解タンク13に接続される炭酸ガスボンベ12を備えている。
【0021】
汚泥槽10は、返送分岐ラインL3からの汚泥を導入し貯留するものである。
【0022】
加圧ポンプ11は、汚泥槽10の汚泥をガス溶解タンク13に圧送するためのものである。
【0023】
炭酸ガスボンベ12は内部に炭酸ガスを貯留し、当該炭酸ガスをガス溶解タンク13に供給するためのものである。
【0024】
ガス溶解タンク13は、加圧ポンプ11により汚泥槽10から圧送された汚泥を導入すると共に炭酸ガスボンベ12から炭酸ガスを導入し、導入したスラリー状の汚泥を分散バッフル板13aに衝突させることで当該汚泥に炭酸ガスを溶解させるものである。
【0025】
破砕タンク14は、内部が大気圧状態とされ、ガス溶解タンク13からのスラリー状の汚泥を噴射するスプレーノズル(ノズル)14aと、このノズル14aに対向して配置されノズル14aからのスラリー状の汚泥を衝突させる衝突板(衝突手段)14bと、を備えている。
【0026】
この衝突板14bは、図4(a)に示すように、ノズル14aの噴射方向に対して、その下部がその上部より後側に位置し鉛直方向に対して傾斜角θで傾斜するように設置されている
【0027】
また、図2に示すように、破砕タンク14内におけるノズル14aの上流には、上記ガス溶解タンク13内の最低圧力を保持するための圧力調整弁14cが設置されている。
【0028】
そして、破砕タンク14の底部は、返送分岐ラインL3を介して図1に示す曝気槽1に接続されている。
【0029】
このように構成された汚泥処理装置100によれば、汚泥の一部が返送分岐ラインL3を通して汚泥槽10に導入され、この汚泥槽10の汚泥は加圧ポンプ11により加圧されてガス溶解タンク13に圧送されると共に、炭酸ガスボンベ12の炭酸ガスがガス溶解タンク13に供給される。ガス溶解タンク13に圧送されたスラリー状の汚泥は、分散バッフル板13aに衝突して分散し、ガス溶解タンク13内の炭酸ガスを加圧条件下で溶解して、当該タンク13内に貯留される。
【0030】
このガス溶解タンク13内にあっては、水中に溶解した炭酸ガスが汚泥細胞内に拡散する。ここで、図3(a)に示すように、汚泥細胞4は細胞壁4a内に細胞質4bを収容しているものであり、この汚泥細胞4内に溶解している炭酸ガス濃度と水中に溶解している炭酸ガス濃度とがほぼ等しくなる。
【0031】
図2に戻って、ガス溶解タンク13内に貯留され炭酸ガスが溶解しているスラリー状の汚泥は、ノズル14aに送られ、当該ノズル14aから大気条件下で噴射される。すなわち、加圧条件下から減圧状態とされ、従って、過剰に溶解していた炭酸ガスは直ちに炭酸ガスの気泡となり、泡状のスラリーとなる。
【0032】
このとき(減圧の状態では)、汚泥細胞4の細胞壁4a内で溶解していた炭酸ガスは、図3(b)に示すように、細胞壁4a内で気泡5となり、汚泥細胞4は膨らんだ状態となる。
【0033】
そして、ノズル14aから噴射されたスラリー状の汚泥は、その圧力差(加圧条件下と大気圧下の圧力差)を速度エネルギーに変換するため、非常に高速で噴射され、膨らんだ状態又は膨らみつつある状態で、高速で衝突板14bに衝突する。このように、汚泥細胞4は、膨らんだ又は膨らみつつあり細胞壁4aの弾性力が小さい状態(細胞壁4aがパンパンに張った状態)で高速で衝突板14bに衝突するため、汚泥細胞4の破壊が確実に行われる。
【0034】
ここで、本実施形態にあっては、前述の如く図4(a)に示すように、ノズル14aの噴射方向に対して、衝突板14bを、その下部がその上部より後側に位置し鉛直方向に対して傾斜角θで傾斜するように設置しているが、図4(b)に示すように、ノズル14aの噴射方向に対して直角に設置(鉛直に設置)すると、噴射したスラリー状の汚泥が汚泥14xの如く衝突板14bに溜まり、衝突時の衝撃力が弱まってしまう。
【0035】
ところが、本実施形態にあっては、上記のように、衝突板14bを傾斜設置しているため、スラリー状の汚泥が衝突板14bに溜まること無く流れ易くなり、その結果、スラリー状の汚泥の衝突時の衝撃力の低減が防止され、汚泥細胞の破壊が一層確実に行われる。ここで、傾斜角θは5〜10°程度が好ましい。
【0036】
また、ノズル14aと衝突板14bとの間の距離は50〜100cmとするのが、破壊性を高める上で好ましい。また、衝突時の衝撃を大きくすべく、衝突板14bは、硬い金属板やセラミック板とするのが好ましい。なお、衝突板14bに代えてタンク壁を用いても良い。
【0037】
このように、本実施形態においては、スラリー状の汚泥に加圧条件下で炭酸ガスを溶解させた後、当該スラリー状の汚泥が加圧条件下の圧力より低い大気圧下で衝突板14bに衝突すべく向かうため、汚泥細胞4内に溶解していた炭酸ガスは圧力差(加圧条件下と当該加圧条件下の圧力より低い大気圧下との圧力差)により気泡となって汚泥細胞4は膨らんだ状態となり、この膨らんだ又は膨らみつつあり細胞壁4aの弾性力が小さい状態(細胞壁4aがパンパンに張った状態)で衝突板14bに衝突するため、汚泥細胞4の破壊が確実に行われるようになる。
【0038】
そして、このように汚泥処理装置3で細胞破壊された汚泥は、図1に示すように、返送分岐ラインL3を介して曝気槽1に返送され、その汚泥細胞4の破壊により内部より漏出した細胞質4bが生物易分解性で曝気槽1で容易に生物分解されて二酸化炭素、水、汚泥に転換される。このため、余剰汚泥の減容が十分に行われる。具体的には、余剰汚泥の発生量は、汚泥処理装置3を設置しない場合に比して、1/2〜1/4程度に抑制される。
【0039】
ここで、上記細胞壁4aは生物難分解性のため、スラリー状の汚泥中に細胞壁4aが多く残り、従って、一層良質の処理水を得る排水処理装置においては、細胞破壊された汚泥を、以下のように脱水機に導入し直接脱水処理することが望ましい。
【0040】
図5(a)に示すように、汚泥細胞4は、上記細胞破壊により細胞壁4aの一部が破損し孔6が開口している状態にある。従って、脱水機により脱水処理で圧搾力や剪断力が作用すると、図5(b)に示すように、細胞質4bが孔6を通して外部に漏出して自由水となり、この自由水は圧搾力や剪断力によって脱水ケーキ外に排出される。このように、脱水機に導入される汚泥はその汚泥細胞4の破壊により内部から細胞質4bが漏出し含水率が低下するため、容易に脱水を行うことができる。
【0041】
なお、このように脱水処理を行う場合には、汚泥槽10の前段において例えば重力濃縮等の汚泥濃縮を予め行っておくと、使用する炭酸ガスを削減できる。また、炭酸ガスが多く溶解しているため、脱水機の前段で曝気し炭酸ガスを放出してから脱水することが好ましい。
【0042】
以上、本発明をその実施形態に基づき具体的に説明したが、本発明は上記実施形態に限定されるものではなく、例えば、上記実施形態においては、特に好ましいとして、スラリー状の汚泥に対して加圧条件下で炭酸ガスを溶解させ、この炭酸ガスを溶解したスラリー状の汚泥を大気圧条件下で衝突板14bに衝突させるようにしているが、大気圧で無くても加圧条件下の圧力より低い圧力の下で衝突板14bに衝突させるようにしても良い。
【0043】
また、上記実施形態においては、破壊手段として衝突手段を用いているが、膨らんだ汚泥細胞4を叩いたり、潰しても良く、汚泥細胞4が破壊できれば何れの方法でも良い。この場合も、スラリー状の汚泥が加圧条件下の圧力より低い圧力の下で破砕されるため、汚泥細胞内に溶解していたガスは圧力差(加圧条件下と当該加圧条件下の圧力より低い圧力下との圧力差)により気泡となって汚泥細胞は膨らんだ状態となり、この膨らんだ又は膨らみつつあり細胞壁の弾性力が小さい状態(細胞壁がパンパンに張った状態)で破砕されることになり、汚泥細胞の破壊が確実に行われるようになる。
【0044】
また、上記実施形態においては、特に安価且つ安全且つ容易に溶解することから炭酸ガスを用いているが、燃焼排ガスや空気等であっても良く、要は、炭酸ガス含有ガスとするのが好ましい。
【0045】
なお、ガス溶解タンク13に代えて、ポンプで加圧しガスを溶解する構成を採用することも可能であるが、ガス溶解に時間を要することから、溶解時間を十分にとれる溶解タンクを用いることが好ましい。
【実施例】
【0046】
以下、実施例1〜4及び比較例1〜3を説明する。
【0047】
(実施例1)
図2に示すのと同様な構成の試験装置を用い、汚泥細胞の破壊を評価した。スラリー状の汚泥は、食品工場の活性汚泥設備の返送汚泥ラインから採取したものを使用した。汚泥濃度は8500mg/L、加圧ガスは炭酸ガスを使用し、溶解圧力は0.5MPa、ガス溶解タンクは全容量で100L(汚泥貯留部50L)、スプレーノズルは均等扇型ノズル(1/4B)、噴角は25°、圧力調整弁の調整圧力は0.45MPaとし、噴射量を15L/Mで実施した。衝突板はステンレス板(6t)を用い、鉛直方向から10°前に倒して設置した。ノズルと衝突板との間の距離は50cmとした。そして、衝突板流下スラリーを1000rpmで5分間遠心沈降させてその上澄を分取し、上澄のSS、CODをJISK0102法で測定することで、汚泥細胞の破壊を調べた。結果を表1の処理後の上澄として示す。また、汚泥細胞の破壊の効果を確認すべく、加圧後の汚泥から(衝突板に衝突させる前の汚泥から)上記と同様の遠心沈降法で上澄を採取し、上澄のSS、CODをJISK0102法で測定した結果を表1の処理前の上澄として示す。
【0048】
(比較例1)
従来の特開2006−55737号公報の技術と同様に、スラリー状の汚泥に炭酸ガスを溶解させない点以外は実施例1と同様とした。結果を表1の処理後の上澄として示す。また、衝突板に衝突させる前の汚泥(この汚泥は炭酸ガスを溶解していない汚泥)から上記と同様の遠心沈降法で上澄を採取し、上澄のSS、CODをJISK0102法で測定した結果を表1の処理前の上澄として示す。
【0049】
【表1】

【0050】
表1に示すように、実施例1の処理後の上澄はSSが150mg/L、CODが530mg/Lで、比較例1の処理後の上澄のSS=27mg/L、COD=35mg/Lに比して大幅に高く、実施例1では汚泥細胞の破壊が起こって汚泥細胞内の細胞質が水中に漏出しSS、CODが高くなっていることが確認でき、比較例1では汚泥細胞の破壊が殆ど起こっていないことが確認できた。
【0051】
(実施例2)
炭酸ガスをボイラーの燃焼排ガス(N:79%、O:3%、CO:18%)とし、これに伴い溶解圧力を0.99MPaとした点以外は実施例1と同様とした。結果を表2に示す。
【0052】
【表2】

【0053】
表2に示すように、実施例2の処理後の上澄はSSが155mg/L、CODが490mg/Lと実施例1と同様に高く、燃焼排ガスでも同様な汚泥細胞の破壊効果が得られることが確認できた。
【0054】
(実施例3)
図1に示すのと同様な構成の試験装置を用い、汚泥の減容を評価した。グルコースとペプトンを主要BOD源として、必要量の窒素、リンを添加して調合した合成下水(BOD濃度500mg/L)を用いた。曝気槽、沈殿槽とも1mを用い、運転条件は、BOD容積負荷1.5kg−BOD/m・d、MLSSを3000mg/Lとした。余剰汚泥発生量は、毎日の分析によりMLSSが3000mg/Lになるように系から汚泥を引き出してその発生量を測定した。また、返送汚泥を毎日100L抜き出し、汚泥処理装置において、0.5Mpaの加圧下で炭酸ガスを溶解させてスプレーノズルから噴出させて衝突板に衝突させ、汚泥細胞を破壊したスラリー状の汚泥の全量を曝気槽に返送した。この運転を8週間行った。そして、処理水のSS、BOD、COD、全運転期間中の積算余剰汚泥発生量を測定した。結果を表3に示す。
【0055】
(比較例2)
返送汚泥を汚泥処理装置を通さずに全量曝気槽に返送した点以外は実施例3と同様にした。結果を表3に示す。
【0056】
【表3】

【0057】
表3に示すように、実施例3の余剰汚泥は4.2で、比較例2の余剰汚泥の17.6に比して大幅に低く、実施例3では汚泥細胞の確実な破壊により汚泥の減容を十分に行えることが確認できた。
【0058】
(実施例4)
実施例1で得られた衝突板流下スラリーを脱水機に導入し、脱水性を評価した。脱水機はベルトプレス型を用いた。衝突板流下スラリーにカチオン系高分子凝集剤を、汚泥乾物当たり0.5%添加して汚泥を凝集させ一次脱水濾布に供給し、重力脱水汚泥を作成した。この重力脱水汚泥を漏出しないようにスポンジで作った枠の中に入れ、その両側を脱水濾布に取り付け、ベルトプレス型脱水機による圧搾を行った。圧搾は面圧低から高へ、5段階に分けて行った。最終の面圧は2kg/cmの圧搾圧力になるように調整して行った。脱水後の脱水ケーキを脱水機から取り出し、105°Cで乾燥させて含水率を測定した。試験は3回実施しその平均値も求めた。結果を表4に示す。
【0059】
(比較例3)
汚泥処理装置による処理を施されていない汚泥を用いた点以外は実施例4と同様にした。結果を表4に示す。
【0060】
【表4】

【0061】
表4に示すように、実施例4の含水率の平均値は74.5%で、比較例3の含水率の83.6%に比して大幅に低く、実施例4では汚泥細胞の確実な破壊により容易に脱水を行えることが確認できた。
【図面の簡単な説明】
【0062】
【図1】本発明の実施形態に係る汚泥処理装置を採用した排水処理装置を示す概略構成図である。
【図2】図1中の汚泥処理装置を示す概略構成図である。
【図3】汚泥細胞の状態を示すイメージ図であり、(a)はガス溶解前のイメージ図、(b)はガス溶解後で減圧後のイメージ図である。
【図4】ガス溶解後のスラリー状の汚泥を衝突板に衝突させている状態を示す図であり、(a)は衝突板を傾斜して設置した図、(b)は衝突板を鉛直に設置した図である。
【図5】汚泥の含水率低下のメカニズムを説明するための汚泥細胞のイメージ図であり、(a)は細胞壁に損傷が生じた図、(b)は細胞内から細胞質が漏出した図である。
【符号の説明】
【0063】
1…曝気槽、3…汚泥処理装置、13…ガス溶解タンク(ガス溶解手段)、14…破砕タンク(破壊手段)、14a…スプレーノズル(ノズル)、14b…衝突板(衝突手段)。

【特許請求の範囲】
【請求項1】
スラリー状の汚泥に加圧条件下でガスを溶解させるガス溶解手段と、
前記加圧条件下の圧力より低い圧力の下で、前記ガスを溶解したスラリー状の汚泥を破砕する破壊手段と、を備えたことを特徴とする汚泥処理装置。
【請求項2】
前記ガスは、炭酸ガス含有ガスであることを特徴とする請求項1記載の汚泥処理装置。
【請求項3】
前記破壊手段は、前記ガスを溶解したスラリー状の汚泥を衝突させる衝突手段であることを特徴とする請求項1又は2記載の汚泥処理装置。
【請求項4】
前記衝突手段は、前記ガスを溶解したスラリー状の汚泥を衝突させる衝突板を有することを特徴とする請求項3記載の汚泥処理装置。
【請求項5】
前記衝突手段は、前記ガスを溶解したスラリー状の汚泥を前記衝突板に向かって噴射するノズルを有し、
前記ノズルの噴射方向に対して、前記衝突板がその下部がその上部より後側に位置するように傾斜して設置されていることを特徴とする請求項4記載の汚泥処理装置。
【請求項6】
前記衝突板に衝突させて破砕した汚泥を脱水する脱水機を備えることを特徴とする請求項4又は5記載の汚泥処理装置。
【請求項7】
前記衝突板に衝突させて破砕した汚泥が返送される曝気槽を備えることを特徴とする請求項4〜6の何れか一項に記載の汚泥処理装置。
【請求項8】
スラリー状の汚泥に加圧条件下でガスを溶解させ、
前記加圧条件下の圧力より低い圧力の下で、前記ガスを溶解したスラリー状の汚泥を破砕することを特徴とする汚泥処理方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate