説明

液体吐出ノズル

【課題】ある程度離れた位置において液体内に気泡を存在させることができる液体吐出ノズルを提供する。
【解決手段】液体吐出ノズル10は、第1速度で液体Iを吐出する第1ノズル部1と、第1速度よりも大きな第2速度で液体IIを吐出する第2ノズル部2とを備えている。また、第1ノズル部1と第2ノズル部2とは、第1速度を有する液体Iと第2速度を有する液体IIとが合流または接触するように、配置されている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、液体を吐出するノズルに関するものである。
【背景技術】
【0002】
従来から、液体吐出ノズルが用いられている。従来の液体吐出ノズルは、ほとんど流れが生じていない液体中において流速が大きな液体の噴流を生じさせる。それにより、噴流と静止液体との間の界面に剪断力が生じる。その結果、渦に起因したキャビテーションが発生する。
【0003】
前述の液体吐出ノズルによれば、加工対象物の表面に液体を衝突させて、加工対象物の表面でキャビテーションを生じさせることができる。キャビテーションが発生すれば、気泡が生成される。微細気泡が破裂すると、マイクロジェット効果によって、加工対象物の表面応力状態が改善される。そのために、液体吐出ノズルには強制的に乱流を生じさせる手段が設けられている。強制的に乱流を生じさせる手段は、流速が異なる2つの噴流を合流させる手段である。
【特許文献1】特開平6−47672号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
一方、上記従来の液体吐出ノズルを用いて、ほとんど流れが生じていない気体中に流速が大きな液体の噴流を生じさせても、気体と液体との界面では、キャビテーションが発生し難い。そこで、乱流を発生させる様々な工夫によって、液体吐出ノズルの近傍においてキャビテーションを発生させている。キャビテーションが発生すれば、気泡が生成される。
【0005】
しかしながら、前述の気泡は、液体吐出ノズルからある程度はなれた位置においては、気体の圧力によって崩壊してしまう。逆に言うと、液体吐出ノズルから離れた位置において液体内に気泡を存在させるためには、液体吐出ノズルからある程度離れた位置においてキャビテーションを発生させる必要がある。
【0006】
本発明は、上述の問題に鑑みてなされたものであり、その目的は、ある程度離れた位置において液体内に気泡を存在させることができる液体吐出ノズルを提供することである。
【課題を解決するための手段】
【0007】
本発明の液体吐出ノズルは、第1速度で液体を吐出する第1ノズル部と、第1速度よりも大きな第2速度で液体を吐出する第2ノズル部とを備えている。第1ノズル部と第2ノズル部とは、第1速度を有する液体と第2速度を有する液体とが合流または接触するように、配置されている。
【0008】
これによれば、液体吐出ノズルからある程度離れた位置において液体内に気泡を存在させることができる。その気泡は、第1速度を有する液体と第2速度を有する液体との接触部では破裂しないが、被洗浄物に衝突して破裂する。したがって、気泡が破裂するときに生じる衝撃力が汚物の除去に用いられれば、大きな洗浄効果が得られる。
【0009】
また、液体吐出ノズルは、第1ノズル部および第2ノズル部のそれぞれが液体を供給する共通流路に接続されていてもよい。この場合、第1ノズル部は、入口側の流路の断面積が出口側の流路の断面積に比較して小さく、かつ、第2ノズル部は、入口側の流路の断面積が出口側の流路の断面積に比較して大きいことが望ましい。これによれば、シンプルな構造によって速度が異なる2つの液体を接触させることができる。
【0010】
第1ノズル部および第2ノズル部のそれぞれは、気体中に液体を吐出するように配置されていることが望ましい。これによれば、液体と気体との間の接触抵抗が小さいため、2つの液体の速度差が大きい状態が維持される。そのため、液体同士の接触または合流によってキャビテーションを容易に発生させることができる。
【0011】
本発明の液体吐出ノズルにおいては、第1ノズル部から吐出される液体が通過する全流路の抵抗と第2ノズル部から吐出される液体が通過する全流路の抵抗とが実質的に同一であることが望ましい。
【0012】
これによれば、一方の流路の全抵抗と他方の流路の全抵抗との差に起因した流路内における液体の流れの乱れが生じないため、液体システム全体の設計が容易になる。
【0013】
また、第1ノズル部および第2ノズル部が鏡面対称に配置されていれば、液体吐出ノズルから吐出される液体の進む方向が曲げられることがない。
【0014】
また、第1ノズル部の出口と第2ノズル部の出口とが同心円状に配置されていれば、第1ノズル部から吐出される液体の流れおよび第2ノズル部から吐出される液体の流れが、全体として、直線的になる。そのため、2つの液体をターゲットに向かって吐出することが容易になる。
【0015】
また、第1ノズル部および第2ノズル部のそれぞれは、出口の近傍に流路の断面積が一定の状態で延びる定流路断面部を有していれば、第1ノズル部から吐出された液体と第2ノズル部から吐出された液体とが接触する位置の変動が抑制される。
【0016】
また、液体には、気泡径が1μm〜100μmである微細気泡が含まれていれば、少ないエネルギーでキャビテーションを発生させることが可能になる。
【発明の効果】
【0017】
本発明によれば、ある程度離れた位置において液体内に気泡を存在させることができる液体吐出ノズルが得られる。
【発明を実施するための最良の形態】
【0018】
以下、図面を参照しながら、本発明の実施の形態の液体吐出ノズルを説明する。
(実施の形態1)
まず、図1および図2を用いて、実施の形態1の液体吐出ノズルを説明する。
【0019】
本実施の形態の液体吐出ノズル10は、図1に示すように、第1速度で液体Iを吐出する第1ノズル部1と、第1速度よりも大きな第2速度で液体IIを吐出する第2ノズル部2とを備えている。第1ノズル部1および第2ノズル部2のそれぞれは、円錐状の空間からなる。第1ノズル部1を構成する円錐状の空間の中心軸と第2ノズル部2を構成する円錐状の空間の中心軸とは互いに平行である。また、第1ノズル部1を構成する円錐状の空間の向きと第2ノズル部2を構成する円錐状の空間の向きとは180°異なっている。第1ノズル部1を構成する円錐状の空間の形状および大きさと第2ノズル部2を構成する円錐状の空間の形状および大ききとは同一である。
【0020】
また、図2に示すように、第1ノズル部1と第2ノズル部2とは、第1速度を有する液体Iと第2速度を有する液体IIとが合流または接触するように、配置されている。そのため、第1速度を有する液体Iと第2速度を有する液体IIとの界面で、相対的に大きな第2速度を有する液体IIによって、相対的に小さな第1速度を有する液体Iが引っ張られる。それにより、液体中で渦Vが生成される。渦Vの中心では、キャビテーションが発生する。その結果、渦Vの中心では、液体の飽和水蒸気圧の近傍の負圧が形成され、気泡Bが生成される。つまり、液体吐出ノズル10からある程度離れた位置において液体内に気泡を存在させることができる。
【0021】
その気泡Bは、第1速度を有する液体Iと第2速度を有する液体IIとの接触部では、負圧が維持されるため破裂しないが、被洗浄物に衝突して破裂する。それにより、マイクロジェット効果に起因した大きな衝撃力が生じる。したがって、気泡Bが破裂するときに生じる衝撃力が汚物の除去に用いられれば、大きな洗浄効果が得られる。
【0022】
また、液体吐出ノズル10においては、第1ノズル部1が第1流路60を介して共通流路5に接続されている。また、第2ノズル部2が第2流路50を介して共通流路5に接続されている。したがって、液体は、ポンプ6によって共通流路5に供給される。その後、液体は、第1流路60を介して、第1ノズル部1に供給される。また、液体は、第2流路50を介して、第2ノズル部2にも供給される。
【0023】
また、第1ノズル部1は、入口側の流路の断面積が出口側の流路の断面積に比較して小さい。また、第2ノズル部2は、入口側の流路の断面積が出口側の流路の断面積に比較して大きい。これによれば、シンプルな構造によって速度が異なる2つの液体IおよびIIを接触させることができる。
【0024】
また、第1ノズル部1および第2ノズル部2は、それぞれ、気体中に液体IおよびIIを吐出するように配置されている。一般に、液体と気体との間の接触抵抗は小さい。そのため、第1ノズル部1から吐出される液体Iと第2ノズル部2から吐出される液体IIとの間の速度の差が大きい状態が維持され易い。その結果、第1ノズル部1から吐出される液体Iと第2ノズル部2から吐出される液体IIとの接触部に生じる剪断力が大きい状態が維持され易い。したがって、キャビテーションが発生し易い。
【0025】
一般に、第1ノズル部1から吐出されている液体Iの質量と第2ノズル部2から吐出されている液体IIの質量との差が大きい場合がある。この場合には、液体吐出ノズル10から吐出されている2つの液体IおよびIIの接触部における剪断作用が生じ難い。また、仮に剪断作用が生じても、液体IおよびII内に空間が形成されてしまう。そのため、負圧部としての渦Vが形成され難い。したがって、液体吐出ノズル10から吐出されている2つの液体IおよびIIの質量がほぼ同一であることが望ましい。
【0026】
そのため、本実施の形態の液体吐出ノズル10においては、第1ノズル部1から吐出される液体Iが通過する全流路(共通流路5、第1流路60、および第1ノズル部1)の抵抗と第2ノズル部2から吐出される液体IIが通過する全流路(共通流路5、第2流路50、および第2ノズル部2)の抵抗とが実質的に同一になっている。
【0027】
また、一般に、2つの流路の抵抗が異なっていると、抵抗が小さい流路の液体流量が抵抗が小さい流路の液体流量に比較して大きくなる。そのため、外部から液体流量が少ないノズル部内の空間へ気体が混入するおそれがある。その結果、液体吐出ノズル10内の液体の流れが安定しないことがある。
【0028】
しかしながら、本実施の形態の液体吐出ノズル10によれば、一方の流路(共通流路5、第1流路60、および第1ノズル部1)の全抵抗と他方の流路(共通流路5、第2流路50、および第2ノズル部2)の全抵抗との差に起因した流路内における液体の流れの乱れが生じない。そのため、流路(共通流路5、第1流路60、第2流路50、第1ノズル部1、および第2ノズル部2)の全体にわたって液体の流れが安定する。その結果、第1ノズル部1から吐出される液体IIの速度と第2ノズル部2から吐出される液体IIの速度との間の比率がほぼ一定に維持される。したがって、液体システム全体の設計が容易になる。
【0029】
(実施の形態2)
次に、図3および図4を用いて、実施の形態2の液体吐出ノズルを説明する。
【0030】
本実施の形態の液体吐出ノズル10は、図3に示すように、第1速度で液体Iを吐出する第1ノズル部1aおよび1bと、第1速度よりも大きな第2速度で液体IIを吐出する第2ノズル部2とを備えている。第1ノズル部1a、第1ノズル部1b、および第2ノズル部2のそれぞれは、円錐状の空間からなる。第1ノズル部1aを構成する円錐状の空間の中心軸、第1ノズル部1bを構成する円錐状の空間の中心軸、および第2ノズル部2を構成する円錐状の空間の中心軸は、互いに平行であり、かつ、同一平面上にある。
【0031】
また、第1ノズル部1aを構成する円錐状の空間の向きと、第1ノズル部1bを構成する円錐状の空間の向きとは同一である。一方、第1ノズル部1aを構成する円錐状の空間の向きおよび第1ノズル部1bを構成する円錐状の空間の向きのぞれぞれと第2ノズル部2を構成する円錐状の空間の向きとは180°異なっている。第1ノズル部1aを構成する円錐状の空間の形状および大きさ、第1ノズル部1bを構成する円錐状の空間の形状および大きさ、および第2ノズル部2を構成する円錐状の空間の形状および大ききはすべて同一である。
【0032】
また、図4に示すように、第1ノズル部1aと第2ノズル部2とは、第1速度を有する液体Iと第2速度を有する液体IIとが合流または接触するように、配置されている。また、第1ノズル部1bと第2ノズル部2とも、第1速度を有する液体Iと第2速度を有する液体IIとが合流または接触するように、配置されている。そのため、第1速度を有する液体Iと第2速度を有する液体IIとの2つの界面のそれぞれで、相対的に大きな第2速度を有する液体IIによって、相対的に小さな第1速度を有する液体Iが引っ張られる。それにより、液体中の2箇所で渦Vが生成される。
【0033】
また、実施の形態1の液体吐出ノズルと同様に、2箇所の渦Vの中心のそれぞれでは、キャビテーションが発生する。その結果、液体中の2箇所で、液体の飽和水蒸気圧の近傍の負圧が形成され、気泡Bが生成される。つまり、液体吐出ノズル10から離れた位置において液体内に気泡を存在させることができる。したがって、本実施の形態の液体吐出ノズルによっても、実施の形態1の液体吐出ノズルと同様に、大きな洗浄効果が得られる。
【0034】
また、液体吐出ノズル10においては、第1ノズル部1aが第1流路60aを介して共通流路5に接続されている。第1ノズル部1bが第1流路60bを介して共通流路5に接続されている。また、第2ノズル部2が第2流路50を介して共通流路5に接続されている。したがって、液体は、ポンプ6によって共通流路5に供給される。その後、液体は、第1流路60aを介して、第1ノズル部1aに供給される。また、液体は、第1流路60bを介して、第1ノズル部1bに供給される。また、液体は、第2流路50を介して、第2ノズル部2にも供給される。
【0035】
また、第1ノズル部1aは、入口側の流路の断面積が出口側の流路の断面積に比較して小さい。また、第1ノズル部1bは、入口側の流路の断面積が出口側の流路の断面積に比較して小さい。また、第2ノズル部2は、入口側の流路の断面積が出口側の流路の断面積に比較して大きい。したがって、シンプルな構造によって速度が異なる2つの液体Iのそれぞれと1つの液体IIとを接触させることができる。
【0036】
また、本実施の形態の液体吐出ノズル10においては、第1ノズル部1aから吐出される液体Iが通過する全流路(共通流路5、第1流路60、および第1ノズル部1a)の抵抗、第1ノズル部1bから吐出される液体Iが通過する全流路(共通流路5、第1流路60、および第1ノズル部1b)の抵抗、および第2ノズル部2から吐出される液体IIが通過する全流路(共通流路5、第2流路50、および第2ノズル部2)の抵抗が、互いに実質的に同一である。これによれば、第1ノズル部1aから吐出される液体Iの質量、第1ノズル部1bから吐出される液体Iの質量、および第2ノズル部2から吐出される液体IIの質量が、互いにほぼ同一に維持される。
【0037】
そのため、流路(共通流路5、第1流路60、第2流路50、第1ノズル部1a、第1ノズル部1b、および第2ノズル部2)の全体にわたって液体の流れが安定する。その結果、第1ノズル部1から吐出される2つの液体Iの速度のそれぞれと第2ノズル部2から吐出される液体IIの速度との間の比率がほぼ一定に維持される。したがって、液体システム全体の設計が容易になる。
【0038】
本実施の形態においては、第1ノズル部1aと第1ノズル部1bとは、第2ノズル部2の中心軸を通る平面に対して鏡面対称に配置されている。つまり、第1ノズル部1a、第1ノズル部1b、および第2ノズル部2は、全体として、鏡面対称に配置されている。また、第1ノズル部1aの中心軸、第1ノズル部1bの中心軸、および第2ノズル部2の中心軸は、同一平面上にある。したがって、相対的に流速が小さな第1速度を有する液体Iが、相対的に流速が大きな第2速度を有する液体IIによって押されて、その流れ方向が一方に偏るように変更されたり、液体Iと液体IIとが接触しない程度に離れて流れたりするおそれが低減される。
【0039】
(実施の形態3)
次に、図5〜図7を用いて、実施の形態3の液体吐出ノズルを説明する。
【0040】
本実施の形態の液体吐出ノズル10は、図5〜図7に示すように、第1速度で液体Iを吐出する第1ノズル部1a,1b,および1cと、第1速度よりも大きな第2速度で液体IIを吐出する第2ノズル部2とを備えている。第2ノズル部2は、円錐状の空間からなる。第1ノズル部1a、第1ノズル部1b、および第1ノズル部1cのそれぞれは、内側面が円錐状の第2ノズル部2の側面に沿って設けられ、かつ、外側面が仮想円柱の周面に沿うように、配置されている。第1ノズル部1aを構成する空間、第1ノズル部1bを構成する空間、および第1ノズル部1cを構成する空間からなる3つの空間の中心軸と、第2ノズル部2を構成する円錐状の空間の中心軸とは互いに一致する。
【0041】
また、第1ノズル部1aと第2ノズル部2とは、第1速度を有する液体Iと第2速度を有する液体IIとが合流または接触するように、配置されている。また、第1ノズル部1bと第2ノズル部2とも、第1速度を有する液体Iと第2速度を有する液体IIとが合流または接触するように、配置されている。また、第1ノズル部1cと第2ノズル部2とも、第1速度を有する液体Iと第2速度を有する液体IIとが合流または接触するように、配置されている。
【0042】
そのため、第1速度を有する液体Iと第2速度を有する液体IIとの3つの界面のそれぞれで、相対的に大きな第2速度を有する液体IIによって、相対的に小さな第1速度を有する液体Iが引っ張られる。それにより、液体中の3箇所で渦Vが生成される。したがって、本実施の形態の液体吐出ノズルによっても、実施の形態1の液体吐出ノズルと同様に、大きな洗浄効果が得られる。
【0043】
また、液体吐出ノズル10においては、第1ノズル部1aが第1流路60aを介して共通流路5に接続されている。第1ノズル部1bが第1流路60bを介して共通流路5に接続されている。第1ノズル部1cが第1流路60cを介して共通流路5に接続されている。また、第2ノズル部2が第2流路50を介して共通流路5に接続されている。したがって、液体はポンプ6によって共通流路5に供給され、その後、第1流路60aを介して、第1ノズル部1aに供給される。また、液体は、第1流路60aを介して、第1ノズル部1bに供給される。また、液体は、第1流路60aを介して、第1ノズル部1cに供給される。また、液体は、第2流路50を介して、第2ノズル部2にも供給される。
【0044】
また、第1ノズル部1aは、入口側の流路の断面積が出口側の流路の断面積に比較して小さい。また、第1ノズル部1bは、入口側の流路の断面積が出口側の流路の断面積に比較して小さい。また、第1ノズル部1cは、入口側の流路の断面積が出口側の流路の断面積に比較して小さい。また、第2ノズル部2は、入口側の流路の断面積が出口側の流路の断面積に比較して大きい。これによれば、シンプルな構造によって速度が異なる2つの液体IおよびIIを接触させることができる。
【0045】
また、吐出されている3つの液体Iのそれぞれと1つの液体IIの質量がほぼ同一である。そのため、本実施の形態の液体吐出ノズル10においては、次の(1)〜(4)に示される4つの流路の抵抗が等しいことが望ましい。
【0046】
(1) 第1ノズル部1aから吐出される液体Iが通過する全流路(共通流路5、第1流路60、および第1ノズル部1a)の抵抗
(2) 第1ノズル部1bから吐出される液体Iが通過する全流路(共通流路5、第1流路60、および第1ノズル部1b)の抵抗
(3) 第1ノズル部1cから吐出される液体Iが通過する全流路(共通流路5、第1流路60、および第1ノズル部1c)の抵抗
(4) 第2ノズル部2から吐出される液体IIが通過する全流路(共通流路5、第2流路50、および第2ノズル部2)の抵抗
これによれば、第1ノズル部1aから吐出される液体Iの質量、第1ノズル部1bから吐出される液体Iの質量、第1ノズル部1cから吐出される液体Iの質量、および第2ノズル部2から吐出される液体IIの質量が、互いにほぼ同一に維持される。したがって、システムの設計が容易になる。
【0047】
また、本実施の形態においては、第1ノズル部1a、第1ノズル部1b、および第1ノズル部1cからなる3つの空間と第2ノズル部2を構成する円錐状の空間とは、それらの中心軸を通る直線に関して、同心円状に配置されている。したがって、第1ノズル部1a,1b,および1cから吐出される液体Iの流れ、および第2ノズル部2から吐出される液体IIの流れが、全体として、直線的になる。そのため、3つの液体Iの流れおよびIIの流れをターゲットに向け易くなる。
【0048】
(実施の形態4)
本実施の形態の液体吐出ノズルは、実施の形態3の液体吐出ノズルとほぼ同様であるが、次の点が異なっている。
【0049】
図8および図9に示すように、第1ノズル部1a、第1ノズル部1b、および第1ノズル部1cは、それぞれ、定流路断面部100a、定流路断面部100b、および定流路断面部100cを有している。定流路断面部100a、定流路断面部100b、および定流路断面部100cは、それぞれ、出口の近傍に流路の断面積が一定の状態で延びている。第2ノズル部2は、出口の近傍に流路の断面積が一定の状態で延びる定流路断面部200を有している。
【0050】
そのため、第1ノズル部1aの先端の定流路断面部100a、第1ノズル部1bの先端の定流路断面部100b、第1ノズル部1cの先端の定流路断面部100c、および第2ノズル部2の先端の定流路断面部200のそれぞれにおいて、整流作用が生じる。そのため、第1ノズル部1a、第1ノズル部1b、および第1ノズル部1cのそれぞれから吐出された液体Iの速度と第2ノズル部2から吐出された液体IIの速度との差がほぼ一定に維持され易い。その結果、第1ノズル部1a、第1ノズル部1b、および第1ノズル部1cのそれぞれから吐出された液体Iと第2ノズル部2から吐出された液体IIとが接触する位置の変動が抑制される。
【0051】
上記実施の形態1〜4の液体吐出ノズル10から吐出される液体には、気泡径が1μm〜100μmである微細気泡が含まれていることが望ましい。一般に、微細気泡は、キャビテーションを生じさせるための気泡核として機能する。また、気泡核が含まれている液体中においてキャビテーションを発生させるために必要なエネルギーは、気泡核が含まれていない液体中においてキャビテーションを発生させるために必要なエネルギーよりも少ない。したがって、気泡径が1μm〜100μmである微細気泡が液体吐出ノズルから吐出される液体中に混入されていれば、少ないエネルギーでキャビテーションを発生させることが可能になる。
【0052】
なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内のすべての変更が含まれることが意図される。
【図面の簡単な説明】
【0053】
【図1】実施の形態1の流体吐出ノズルの概略図である。
【図2】実施の形態1の流体吐出ノズルから流体が吐出されている状態を示す図である。
【図3】実施の形態2の流体吐出ノズルの概略図である。
【図4】実施の形態2の流体吐出ノズルから流体が吐出されている状態を示す図である。
【図5】実施の形態3の流体吐出ノズルの概略図である。
【図6】実施の形態3の流体吐出ノズルの出口側の側面図である。
【図7】実施の形態3の流体吐出ノズルの入口側の側面図である。
【図8】実施の形態4の流体吐出ノズルの概略図である。
【図9】図8のIX‐IX線断面の斜視図である。
【符号の説明】
【0054】
1,1a,1b,1c,2 ノズル部、5 共通流路、6 ポンプ、10 液体吐出ノズル、50,60,60a,60b,60c 流路、100a,100b,100c,200 定流路断面部、V 渦、B 気泡、I,II 液体。

【特許請求の範囲】
【請求項1】
第1速度で液体を吐出する第1ノズル部と、
前記第1速度よりも大きな第2速度で液体を吐出する第2ノズル部とを備え、
前記第1ノズル部と前記第2ノズル部とは、前記第1速度を有する液体と前記第2速度を有する液体とが合流または接触するように、配置されている、液体吐出ノズル。
【請求項2】
前記第1ノズル部および前記第2ノズル部のそれぞれが前記液体を供給する共通流路に接続され、
前記第1ノズル部は、入口側の流路の断面積が出口側の流路の断面積に比較して小さく、
前記第2ノズル部は、入口側の流路の断面積が出口側の流路の断面積に比較して大きい、請求項1に記載の液体吐出ノズル。
【請求項3】
前記第1ノズル部および前記第2ノズル部のそれぞれは、気体中に前記液体を吐出するように配置された、請求項1に記載の液体吐出ノズル。
【請求項4】
前記第1ノズル部から吐出される液体が通過する全流路の抵抗と前記第2ノズル部から吐出される液体が通過する全流路の抵抗とは、実質的に同一である、請求項1に記載の液体吐出ノズル。
【請求項5】
前記第1ノズル部および前記第2ノズル部が鏡面対称に配置されている、請求項1に記載の液体吐出ノズル。
【請求項6】
前記第1ノズル部と前記第2ノズル部とが同心円状に配置されている、請求項1に記載の液体吐出ノズル。
【請求項7】
前記第1ノズル部および前記第2ノズル部のそれぞれは、出口の近傍に流路の断面積が一定の状態で延びる定流路断面部を有する、請求項1に記載の液体吐出ノズル。
【請求項8】
前記液体には、気泡径が1μm〜100μmである微細気泡が含まれている、請求項1に記載の液体吐出ノズル。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2007−152169(P2007−152169A)
【公開日】平成19年6月21日(2007.6.21)
【国際特許分類】
【出願番号】特願2005−347597(P2005−347597)
【出願日】平成17年12月1日(2005.12.1)
【出願人】(000005049)シャープ株式会社 (33,933)
【Fターム(参考)】