説明

測定システム負荷に基づく輻輳フラグの生成方法

【課題】進化型UMTS地上無線アクセス(E−UTRA)ネットワークにおける効率的な無線資源管理を提供する。
【解決手段】無線基地局は、セル内の測定資源利用状況とセル内のセションの性能とに基づいて輻輳状態フラグを生成する。フラグは1ビット、あるいは数ビットであり、基地局が輻輳しているか否かを示す。フラグは近隣の無線基地局に送信され、その無線基地局へのハンドオーバを実行するか否かの判断に用いられる。無線基地局や近隣の無線基地局で生成されたフラグはセル内のユーザ機器にも送信される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明はセルラ携帯電話システムにおける方法と装置に関するもので、特に、進化型UMTS地上無線アクセス(E−UTRA)ネットワークにおける効率的な無線資源管理に関する。
【背景技術】
【0002】
進化型UMTS地上アクセス(E−UTRA)ネットワークにおいて高速なビットレートを実現するには、効率的な無線資源管理(RRM)技術が必要となる。効率的なRRM方法を実現するにあたっては、複数のネットワークノード間で測定情報の交換が必要である。その測定報告は、ネットワークノードにおける資源の利用状態を示すもので、平均送信電力レベルなどである。一般的には、RRM機能を実行するに先立ち、このような測定情報が必要となる。多様な種類の資源があるため、RRM動作を効率的に行うためにネットワークノード間、特に、ノードB間で交換する測定報告には多様な種類がある。測定報告はきわめて重要であるものの、シグナリングのオーバヘッドを避けるためには過剰なあるいは不必要な測定報告は避けなければならない。重要な観測事項とは、効率的な無線資源管理を行うために、無線ネットワークノード間で通信される必要のある多くの無線資源測定情報である。
【0003】
セルラシステムでは、所望のサービスグレード/サービス品質(GoS/QoS)を実現するために、受付制御とハンドオーバ制御といったRRM技術が重要な役割を担う(第3世代パートナーシッププロジェクト(3GPP))の非特許文献1や非特許文献2といった文書も参考にされたい)。受付制御の主たる目的は、新たなセションのQoSを確実に満たすことである。第二の目的は、新たなユーザが入ってきたときに、既にいるユーザの性能を劣化させないことである。
【0004】
UTRAでは、受付制御機能は、無線資源制御(RRC)プロトコルが終端される無線ネットワーク制御局(RNC)に配置される。UTRAの受付制御プロセスでは、ダウンリンク送信電力、ダウンリンクのチャネライゼーション符号の利用状態、アップリンクの広帯域総受信電力(RTWP)など、さまざまな種類の資源を考えなければならない。非特許文献1に記されているように、UTRAでは受付制御と同様に、ハンドオーバもターゲットセルの資源状態を把握しているRNCにおいて実行される。
【先行技術文献】
【非特許文献】
【0005】
【非特許文献1】3GPP TR 25.922「無線資源管理戦略」
【非特許文献2】3GPP TS 25.331「無線資源プロトコル仕様」
【発明の概要】
【発明が解決しようとする課題】
【0006】
新たな呼やハンドオーバが発生したとき、ターゲットノードBのターゲットセルにおいて必要な資源がない場合には、それらは拒否されることになる。
【0007】
図1はセルの資源が不十分であったためにハンドオーバ試行が失敗する例を示したものである。即ち、図1では、サービングノードBがハンドオーバ要求をターゲットノードBに送信する様子を例示している。ここでは、アップリンク資源ブロックがすべて使われているか、その利用状況がある閾値以上であることからハンドオーバ要求が拒否される。なお、ハンドオーバ試行に先立ち、ターゲットノードBの資源利用状態を照会しておくことで、ハンドオーバ拒否をいくらかは低減させることができる。
【0008】
図2は、それ故に、別のシナリオを例示したものである。ここでは、セル資源のボトルネックに起因するハンドオーバ失敗を避けるために、サービングノードBがターゲットノードBにすべての資源の利用状況の測定報告を要求する。測定報告を受信した後にのみ、サービングノードBがターゲットノードBをハンドオーバ先として良いか否かの判断を行う。資源が足りないためターゲットノードBが新たな呼を受け付けることができない場合には、すべての測定報告は帯域の無駄となるとともに、不必要なハンドオーバ遅延が生じてしまう。ハンドオーバ試行に失敗すると、サービングノードBは上述の処理を次に最良なターゲットノードBなどに対して繰り返す。
【0009】
即ち、従来のシステムでは、ハンドオーバが成功するまえに、何度もハンドオーバ試行が必要となることがある。また、シグナリングオーバヘッドも大きなものになってしまう。このような問題は、UTRAにおいて従来からも認識されてきた。現在のWCDMAネットワークでは、資源輻輳問題に対処するためにtry(試行)/fail(失敗)/adjust(調整)/reattempt(再試行)アプローチを用いている。
【0010】
無線資源を効率的に利用していないことにより、受付制御とハンドオーバ制御を効率的に利用できていないことが問題として認識されてきた。従って、E−UTRAにおいて不必要な測定報告を削減し、ノードB間で測定報告を簡単な機構でもって交換することが必要である。また、ネットワークの輻輳状態をノードB間で簡単に交換する機構も必要である。例えば、利用可能な容量などといった一つの輻輳レベルでもって輻輳状態をマルチキャストする方法が提案されている。現在の提案では、輻輳状態は、多様な無線、トランスポートネットワーク、ハードウェアの資源の集合体を考慮していない。また、進行中のサービスグレード性能などといった測定性能も輻輳状態に含まれていない。しかしながら、システムは完全に輻輳していないものの、要求されたQoS要件を満たすことができないような場合も存在する。
【課題を解決するための手段】
【0011】
本発明を一つの側面から見ると、測定資源利用状況と測定性能とを示す輻輳フラグをネットワークノードが生成し、これが、そのノードにアクセスするか否かの判断材料として用いられる。
【発明の効果】
【0012】
好適な実施例では、本発明は以下のような利点を有する。
【0013】
即ち、近隣の基地局やUEに対して輻輳状態を示す簡単な方法がある。
【0014】
ハンドオーバ失敗やハンドオーバ試行失敗を低減し、これにより、サービスグレードが向上する。特に、ハンドオーバがノードBでなされるような分散システムで利点となる。
【0015】
不必要な測定報告が低減する。特に、過剰な報告が基地局間のシグナリングリンクを圧迫するような分散システムにおいて利点となる。
【0016】
サービングノードBにおいて近隣セルリストを更新することが可能になる。これにより、UEは新たなリンクを受け入れることが可能なセルに対してのみ測定を行えば良く、UE測定数を低減させることができる。
【0017】
新たな呼の切断率を低減することができる。特に、受付制御がノードBで行われるような分散システムにおいて利点となる。
【0018】
無線関連情報を有する集中制御システムがないような分散アーキテクチャにおいてマルチセルRRMを実現することができる。
【図面の簡単な説明】
【0019】
【図1】不十分なセル資源によるハンドオーバ試行失敗を示す図である。
【図2】従来技術に従ったハンドオーバ失敗を避けるために必要な測定を示す図である。
【図3】E−UTRAの無線アクセスネットワークアーキテクチャを示す図である。
【図4】ターゲットノードBにおける資源状態の例を示す図である。
【図5】ノードBにおけるフラグ生成の例を示す図である。
【図6】状態遷移方法を用いて1ビットで実現される4レベル輻輳状態図である
【図7】輻輳状態フラグの生成処理を示すフローチャートである。
【図8】輻輳状態フラグを用いたハンドオーバ開始処理を示すフローチャートである。
【図9】更新した近隣セルリストをユーザ機器に送信する処理を示すフローチャートである。
【図10】本発明が適用される無線基地局とユーザ機器を含む通信ネットワークの一部を示す図である。
【発明を実施するための形態】
【0020】
本発明は、例えば、図3に示すようなセルラ無線通信システムに適用可能なものである。図3に示したネットワークの例では、ネットワーク10は進化型UMTS地上無線アクセス(E−UTRA)ネットワークである。ここで、本発明は他の種類のネットワークにも同じように適用可能であることは明らかである。
【0021】
図3は、4つの無線基地局、即ち、ノードBを含むネットワークを示したものであり、ネットワーク全体の一部を示したものである。ここで、このネットワークがこの数以上の基地局やノードBを含むことは明らかである。E−UTRAでは、RRCはノードBで終端される。図3に示すように、ノードBそれぞれはアクセスゲートウェイ(aGW)16への接続12,14などを有している。aGWはユーザプレーンでの交換処理は行うものの、セル負荷などといった無線に関する情報には注意を払わない。受付制御やハンドオーバを実行するためには、サービングネットワークノードは、ターゲットノードの負荷を知らなければならない。そのため、E−UTRAでは、受付制御とハンドオーバの双方ともノードBに配置されている。ノードB間の直接インタフェース18,20(X2インタフェース)は、測定報告やハンドオーバ関連コマンドなどを転送する制御プレーンである。
【0022】
E−UTRAは、UTRAと比べてきわめて高速なデータレートを実現するために設計されたものである。また、E−UTRAにおいて、ハンドオーバなどのある機能における遅延要件はWCDMAよりきわめて厳しい。このことは、受付制御やハンドオーバでの失敗が遅延の増大につながるため、これらを最小限にすることが求められることを意味する。従って、E−UTRAにおいては、送信電力、RTWP、資源ブロック利用状況、トランスポートネットワークチャネル利用状況などといったさまざまな種類の測定情報をノードBが監視することで、受付制御やハンドオーバを効率的に実行することが望まれる。ノードBにおいてより網羅的な資源情報を用いることで、受付制御やハンドオーバをより的確な予測精度で実行することが可能となる。
【0023】
E−UTRAでは、サービングノードBがセションに対して割り当てた無線資源やネットワーク資源として、さまざまな種類のものがある。E−UTRAで用いられる重要な資源として、ダウンリンク送信電力、アップリンク総干渉受信電力、ダウンリンク資源ブロック(DL RB)、アップリンク資源ブロック(UL RB)、アップリンクトランスポートネットワーク資源(UL TrNetCh)、ダウンリンクトランスポートネットワーク資源(DL TrNetCh)、ハードウェア資源などが挙げられる。
【0024】
ここに列挙したセル資源のうちの一つでも利用できなければ、新たな呼やハンドオーバ要求は拒否されることになる。図4はこのような例を示したものであり、ターゲットノードBのターゲットセル内のさまざまなセル資源の平均利用レベルを示している。図4は、一つのセル資源(アップリンク資源ブロック)のみがすべて使われており、他の資源にはまだ利用可能である例を図示している。
【0025】
本発明の基本的な考えは、資源利用状況と測定性能とに基づいて、新たな接続を受け入れられるか否かを示す輻輳状態フラグをノードBが生成することにある。フラグを近隣のノードBに伝えることでハンドオーバ失敗を避けるとともに、自身のセルに同報することでより効果的な受付制御を実現する。その輻輳状態フラグは、UEがダウンリンク測定を行うときに用いる近隣セルリストをサービングノードBが動的に設定するためにも用いられる。
【0026】
図5は、ノードBでのフラグ生成を示す図である。図5に示すように、フラグ生成アルゴリズムには二つの測定情報セットが入力される。測定情報の第一のセットは、ノードBでの資源利用状況に関するもので、ダウンリンク送信電力(X1)、ダウンリンク資源ブロック利用状況(X2)、アップリンクトランスポートネットワークチャネル利用状況(XN)などである。測定情報の第二のセットは測定性能に関するもので、不満足なユーザの割合(Y1)、新たなセションのブロック確率Pb(Y2)、進行中セションの強制切断確率Pd(YM)、平均ユーザビットレートなどである。その測定は、所定の期間にわたりなされる。資源利用状況や測定性能の指標ごとに、異なる測定期間となることもあり得る。
【0027】
図5に示すように、測定情報のぞれぞれはある閾値と比較される。具体的には、図に示すように、Xiとγiは測定セル資源iとその対応する閾値である。同様に、Yiとβiは測定性能iとその対応する閾値である。この例では、ひとつでも入力測定情報が対応する閾値以上となる場合には、ネットワーク中の輻輳を示すFlag=1が生成される。ノードBにおいてフラグを生成するアルゴリズムは、(閾値レベルの設定やフラグ生成ロジックの定義などを含めて)実施形に依存している。いずれにせよ、主たるアイデアは、資源利用状況と測定性能という二つの測定情報セットに基づいて輻輳フラグを生成することにある。
【0028】
図5において、フラグ生成ロジックは単純なOR動作により例示されている。異なる資源とヒステリシスの値に重みづけするなど、フラグ生成機構としては種々のものを考えることができる。
【0029】
最も単純なものでは、フラグは以下の表に示すように単一ビットからなる。Flag(フラグ)=1とFlag(フラグ)=0はそれぞれ、輻輳、非輻輳のセル状態を示す。
【0030】

【0031】
一般には、サービスごとに、必要とする資源が異なる。このような観点からは、多値のシグナリング、即ち、輻輳状態と非輻輳状態との間の中間レベルをもつことには利点がある。例えば、多値輻輳状態は、複数のビットを用いたり(例えば、2ビットを用いて4レベル)、複数の状態と同一ビット数での状態遷移を用いたりすることで(1ビットで4レベル)、実現される。
【0032】
例えば、4レベルの場合には、輻輳と非輻輳の2つの状態に、ターゲットセルが低ビットレートサービスを受け付けることができる状態、中ビットレートサービスを受け付けることができる状態を加えたものとなる。以下の表は、2つの4レベル輻輳状態シグナリング機構の例であり、それぞれが2ビットを用いる方法と単一ビットを用いて状態遷移を示す方法を示している。
【0033】

【0034】
図6は、状態遷移に基づく4レベル輻輳状態シグナリング機構を、4状態遷移図で示している。状態遷移方法、即ち、表中の方法2は輻輳状態そのものを示すのではなく、輻輳状態間の遷移を示すものである。これにより、ネットワークノード間でシグナリングされる情報は一度に1ビットであるが、多値の輻輳状態レベルが保持される。しかしながら、1ビットでは、近隣の輻輳状態のみしか報告できないという点が明らかな欠点となる。これに対して、各状態が2ビットで明示的に表現される方法1では、過去の報告とは完全に独立した形で輻輳状態報告を行うことができる。ノードBにおけるMレベル輻輳状態フラグ生成アルゴリズムは、資源利用状態と測定性能という2つの入力パラメータセットに対して(M−1)個の閾値を設けることで実現できる。即ち、4レベル輻輳状態の場合には、測定種別ごとに3つの閾値が必要となる。
【0035】
E−UTRAシステムは、UTRAやGERANなどの他のアクセス技術へのハンドオーバであるRAT間ハンドオーバをサポートしている。同一場所にあるUTRA/E−UTRAノードBなどのように、ノードBと他の無線アクセス技術の基地局とが同一の場所にある場合には、マルチRATフラグを他のRATの近隣ノードBに送ることができる。これにより、E−UTRAノードBに、他の技術に属するセル内の資源状態を全体的な状態を提供することが可能になる。マルチRATフラグは、上述のように2レベルあるいは多値輻輳状態を示す。以下の表は、2レベル輻輳状態が種々の技術の輻輳を示す例である。ここでは、E−UTRAノードB(eノードB)とGSM基地局とが輻輳している。
【0036】

【0037】
図7は、輻輳状態フラグが生成されるフローチャートであり、本発明における方法を示したものである。この処理のステップ70では、関連無線基地局の輻輳状態に関する測定がなされる。上述のように、ダウンリンク/アップリンクの無線/有線ネットワーク資源に関する測定などが含まれる。ステップ72では、基地局の性能に関する測定がなされる。上述のように、セル内での進行中のセションの性能に関する測定などが含まれる。ステップ74では、輻輳状態フラグが生成される。上述のように、測定情報と閾値とを比較し、基地局の輻輳状態を示すフラグが生成される。ステップ76では、無線基地局が生成された輻輳状態フラグを他のネットワークエンティティに送信する。
【0038】
具体的には、ステップ76に関して、1つの可能性とは、輻輳状態フラグを用いてハンドオーバ失敗を避けることが可能となることである。従って、それぞれのノードBが輻輳フラグを近隣のノードBに送信する。ここで、フラグは、送信ノードBでの資源の利用状態を示している。送信ノードBがハンドオーバのターゲットノードBの一つであれば、サービングノードBは輻輳状態(Flag=1)のターゲットノードBに対してハンドオーバ要求の送出を避けることができる。これにより、ハンドオーバ失敗率を低減できるとともに、ハンドオーバ遅延を小さくし、不必要なシグナリングの交換を避けることができる。また、サービングノードBは資源の利用可能性に基づいて、次のノードBを選択することができ、呼切断確率を小さくすることもできる。マルチRAT輻輳状態を用いれば、他のアクセス技術に属する基地局の輻輳によってハンドオーバ失敗が生じることも低減することができる。
【0039】
フラグ送信の最も簡潔な方法は、制御プレーン、即ち、図3に示したE−UTRAにおけるノードB−ノードBインタフェース18、20などを用いるものである。ここで、輻輳フラグは別のメッセージとすることも、他のシグナリングメッセージとあわせることも可能である。別のメッセージとする場合の利点は、基地局識別子などのオーバヘッドを小さくできることである。いずれの場合であっても、輻輳状態フラグを受信したターゲット基地局は、輻輳フラグの意味を一意に識別して解釈できなければならない。
【0040】
もう1つのオプションは、ユーザプレーン上でユーザデータと一緒にフラグを送信し、ターゲットノードBにアクセスゲートウェイ(aGW)16を介してルーティングすることである。このようなアプローチが可能であるのは、フラグが1ビット、あるいは高々数ビットであるためである。制御プレーン(ノードB−ノードBインタフェース)は、ユーザプレーンと比べると容量はきわめて小さいことが期待される。従って、ノードB−ノードB制御プレーンにおいて輻輳が生じている場合などには、この第二のアプローチが有用である。
【0041】
図8は、上述の輻輳状態フラグを用いてハンドオーバを開始するときの処理を示すフローチャートである。ステップ90において、サービング基地局は、ターゲットとして可能性のある基地局として他のノードBを特定する。ステップ92において、そのターゲット基地局からの輻輳状態フラグを読み取り、ステップ94においてターゲット基地局が輻輳しているか否かを輻輳状態フラグから判断する。もし、そのフラグがターゲットとして可能性のある基地局が輻輳していることを示していれば、処理はステップ90に戻り、サービング基地局は可能性のある他の基地局を特定する。もし、そのフラグがターゲットとして可能性のある基地局が輻輳していないことを示していれば、処理はステップ96に進み、そのターゲット基地局へのハンドオーバ処理をサービング基地局が開始する。
【0042】
近隣のノードBの輻輳状態フラグが輻輳していることを示していたとしても、近隣のノードBに対してノードBが測定報告を要求してはいけないということはない。なお、ノードBは、輻輳している近隣のノードBからの測定報告を要求しないというオプションをもつことができる。これにより、不必要なシグナリングオーバヘッドやノードBでの処理負荷を低減することができる。
【0043】
輻輳状態フラグは、近隣のセルリストを動的に更新するためにも用いられる。図9に示すように、ステップ100において、上述のように、サービングノードBは一つあるいは複数の近隣のノードBからの輻輳状態情報を受信する。ステップ102において、サービングノードBはFlag=1である近隣のノードBを現在の近隣セルリストから取り除き、更新する。更新されたリストは、サービングノードBからセル内のユーザに送信される。これにより、輻輳しているセルに対してユーザが(ハンドオーバあるいはセル変更のための)測定処理を実行することを避けることができる。
【0044】
図10は、無線基地局(RBS)81を含むシステムを示したものであり、無線基地局は上述のように輻輳状態フラグを生成するブロック811を備える。また、図10には、移動電話や多様な携帯無線通信機器などのユーザ機器(UE)82も示されている。ユーザ機器は、RBS 81から受信したメッセージを読み取るブロック821とプロセッサ822を備える。
【0045】
図9の処理において、RBS81は、更新された近隣セルリストをUE82に送信する。UE82は、将来のハンドオーバやセル変更において受信した近隣セルリストを用いることになる。
【0046】
輻輳状態フラグは、受付拒否を避けるためにも用いることができる。図10のシステムを考慮するなら、上述のものと同じシグナリング機構を用いて自身のセル内のユーザにフラグを同報できる。また、サービングノードB81は近隣のノードBの輻輳状態も把握しているため、近隣のノードBのフラグ状態をもサービングノードB81が同報できる。これにより、輻輳状態を把握するためにUE82が近隣のノードBに対して問い合わせすることを避けることができる。
【0047】
ハンドオーバを新しい呼よりも優先度を高くしたり、或は、その逆に新しい呼をハンドオーバよりも優先度を高くしたりするために、異なる測定閾値が用いられて、ハンドオーバと受付制御のためのフラグを生成する。UEは、呼の開始(例えば、ランダムアクセス要求の送信など)の前に、同報されたフラグを読み取ることにより、全体的な資源状態を把握する。例えば、UEは、カバレッジや品質の観点から最良のセルであったとしても、そのセルが輻輳セル(Flag=1)であればアクセスしない。むしろ、UEはカバレッジや品質の観点で次に最良な輻輳していないセル(Flag=0)に対してアクセスする。
【0048】
マルチRATフラグは、利用可能な資源の観点で最良のアクセス技術に属するセルにUEがアクセスするために用いられる。
【0049】
UE主導型ハンドオーバ(例えば、自律分散型システム)においては、同報情報をもユーザ機器が用いてハンドオーバを実行することができる。
【0050】
以上、ネットワークエンティティの効率的な動作を輻輳状態情報を用いて実現すべく、輻輳状態情報を生成するシステムについて説明した。

【特許請求の範囲】
【請求項1】
通信ネットワークの無線基地局の状態を示す方法であって、
前記方法は前記無線基地局の測定資源利用状況と測定性能とに基づいて輻輳状態フラグを生成する工程を有することを特徴とする方法。
【請求項2】
前記測定資源利用状況は、前記無線基地局におけるダウンリンク無線資源、或は、アップリンク無線資源、或は、固定ネットワーク資源のセットの利用状況に関することを特徴とする請求項1に記載の方法。
【請求項3】
前記測定性能は、セル内で進行中のセションの性能に関することを特徴とする請求項1に記載の方法。
【請求項4】
前記輻輳状態フラグは、前記測定資源利用状況と前記測定性能とをそれぞれの閾値と比較することにより生成されることを特徴とする請求項1に記載の方法。
【請求項5】
前記フラグは2つの可能性がある値があり、1つの値は輻輳している状態を示し、もう1つの値は輻輳していない状態を示すことを特徴とする請求項1に記載の方法。
【請求項6】
前記フラグは可能性のある2つよりも多い値があり、該値の最大値が輻輳している状態を示し、該値の最小値が輻輳していない状態を示し、該値の中間の値が輻輳の種々の中間レベルを示すことを特徴とする請求項1に記載の方法。
【請求項7】
2つよりも多い値を有する輻輳状態は、状態遷移を用いて1ビットでシグナリングされることを特徴とする請求項6に記載の方法。
【請求項8】
複数のアクセス技術に属する無線基地局の輻輳状態がシグナリングされることを特徴とする請求項7に記載の方法。
【請求項9】
前記輻輳状態フラグを少なくとも1つの他の無線基地局に送信する工程をさらに有することを特徴とする請求項1乃至8のいずれか1項に記載の方法。
【請求項10】
前記輻輳状態は、別の独立したメッセージとしてシグナリングされることを特徴とする請求項9に記載の方法。
【請求項11】
前記輻輳状態は、他のシグナリングメッセージとあわせて送信されることを特徴とする請求項9に記載の方法。
【請求項12】
前記輻輳状態は、ユーザデータとあわせるか、或はピギーバックして送信されることを特徴とする請求項9に記載の方法。
【請求項13】
前記輻輳状態フラグをセル内のユーザに送信する工程をさらに有することを特徴とする請求項1乃至12のいずれか1項に記載の方法。
【請求項14】
少なくとも1つの他の無線基地局に関する前記輻輳状態フラグをセル内のユーザに送信する工程をさらに有することを特徴とする請求項13に記載の方法。
【請求項15】
通信ネットワークの無線基地局の動作方法であって、
前記方法は少なくとも1つの他の無線基地局で生成された輻輳状態フラグを読み取る工程を有し、
前記輻輳状態フラグは前記少なくとも1つの他の無線基地局の測定資源利用状況と測定性能とに基づいたものであることを特徴とする方法。
【請求項16】
サービング無線基地局として動作中の前記無線基地局は、前記輻輳状態フラグを用いてハンドオーバを目的とするターゲット無線基地局を決定することを特徴とする請求項15に記載の方法。
【請求項17】
サービング無線基地局として動作中の前記無線基地局は、ユーザ機器がハンドオーバやセル再選択のためにダウンリンク測定を行うときに用いる近隣セルリストを動的に更新するために前記輻輳状態フラグを用いることを特徴とする請求項15に記載の方法。
【請求項18】
1つ以上の無線基地局を含む通信ネットワークにおけるユーザ機器の動作方法であって、
前記方法は無線基地局で生成された輻輳状態フラグを読み取る工程を有し、
前記輻輳状態フラグは前記無線基地局の測定資源利用状況と測定性能とに基づいたものであることを特徴とする方法。
【請求項19】
自身のセルと少なくとも一つの近隣セルの前記輻輳状態フラグを読み取る工程と、
新たな呼を確立するためにこの情報を用いてセル資源の観点から最良の無線基地局を決定する工程とをさらに有することを特徴とする請求項19に記載の方法。
【請求項20】
ハンドオーバを実行するために前記輻輳状態情報を用いてセル資源の観点から最良の無線基地局を決定する工程をさらに有することを特徴とする請求項19に記載の方法。
【請求項21】
通信ネットワーク(80)における無線基地局(81)であって、
前記無線基地局は、測定資源利用状況と測定性能とに基づいて輻輳状態フラグを生成する手段(81)を有することを特徴とする無線基地局。
【請求項22】
1つ以上の無線基地局を備える通信ネットワーク(80)におけるユーザ機器(82)であって、
前記ユーザ機器は、自身のセルと少なくとも1つの近隣セルの測定資源利用状況と測定性能とに基づく輻輳状態メッセージを読み取る手段(821)と、
新たな呼を確立するためにこの情報を用いてセル資源の観点から最良の無線基地局を決定する手段(822)とを有することを特徴とするユーザ機器。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2012−217186(P2012−217186A)
【公開日】平成24年11月8日(2012.11.8)
【国際特許分類】
【外国語出願】
【出願番号】特願2012−130156(P2012−130156)
【出願日】平成24年6月7日(2012.6.7)
【分割の表示】特願2009−509477(P2009−509477)の分割
【原出願日】平成18年12月5日(2006.12.5)
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.WCDMA
2.GSM
【出願人】(598036300)テレフオンアクチーボラゲット エル エム エリクソン(パブル) (2,266)
【Fターム(参考)】