説明

漏出防止性を強化した流体射出装置

本発明は、ピストンタイプの分割部分(5)によって分割された2つのチャンバ(A、B)を備えた小型の流体射出装置に関する。一方のチャンバ(B)は、射出される流体を収容し、もう一方のチャンバ(A)は加圧チャンバであり、その加圧チャンバを加圧すると、分割部分(5)を変位させ流体を射出することができる。本発明によれば、加圧チャンバ(A)は、加圧チャンバ(A)の内側をリザーバの側壁から漏出防止して分割するのに適したソックス(50)を備える。したがって、2つのチャンバ間の漏出防止性は完全であり耐久性があるが、ピストン(5)の摺動の容易さを損なわない。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、流体射出装置、詳細には、航空機で用いられる消火器または緊急液圧式発生器に関する。
【背景技術】
【0002】
消火器としての流体射出装置の使用に関して、消火剤のリザーバを有する消火器は2つのカテゴリーに分類されることが知られている。第1のカテゴリーは、常時加圧される装置に関するものであり、この装置では、ガスは、消火剤用のリザーバとして用いられる単一の容器内で消火剤を確実に常時加圧し、消火剤は、前記容器の出口でバルブを通して解放される。第2のカテゴリーでは、消火器を使用して消火剤を解放したときにのみ推進ガスが解放され、したがって消火剤は圧力下では保存されていない。
【0003】
第1のタイプの消火器の例のように、航空機のエンジン火災を消火するために現在使用されている消火器を考えることができる。これらの装置は、火災を消すことを可能にするだけでなく、前記火災の延焼を防止する。消火剤は容器内に収容され、容器はほとんどの場合球形であり不活性ガスによって加圧され、前記容器に連結された1つまたは複数の分配ダクトは、保護すべき領域に向かって薬剤を分配することができる。容器の下端では、較正キャップが各分配ダクトをブロックすることを可能にする。容器の加圧を継続的にチェックするために圧力センサも設置される。火災が検出されると火工式雷管が起動する。その結果生じる衝撃波により、ブロックキャップを穿孔し、それにより容器を空にし、ダクトを介して容器内収容された圧力の影響下で保護すべき領域に向かって消火剤を排出することが可能になる。
【0004】
このタイプの加圧消火器の主な欠点は、微少の漏出に対する感度であり、消火器に対して厳密なモニタリング、検査、およびメンテナンス調整を行っている。さらに、加圧ガスを収容可能であるべきなので、消火剤は完全に容器を満たすことはない。
【0005】
第2のカテゴリーの消火器に関しては、それらの消火器は別個の加圧装置を使用する。これらの消火装置は、一般に、圧縮ガスの第1のリザーバおよび消火剤用の第2のリザーバを備える。こうした装置が用いられるときは、第1のリザーバ中に収容される圧縮ガスは、消火剤を収容する容器を加圧するためにオリフィスを介して消火剤の第2のリザーバと連通する。消火剤は、加圧されるときに、第1の消火器のカテゴリーの装置の場合のように火災を消すために射出される。
【0006】
場合によっては、第2のカテゴリーの消火器に関して、特許文献1に記載されているように圧縮ガスの第1のリザーバの代わりにガス発生器を用いることができる。
【0007】
このタイプの消火器は、リザーバ中に配置された分割手段、例えば膜またはピストンを備えることができ、それにより加圧チャンバと呼ばれる第1の筐体および消火剤を収容する第2の筐体が画定される。こうした分割手段の目的は、特許文献2に記載されているように、発生したガスと消火剤との間の伝熱を制限することである。実際に、断熱材がないと、消火剤は発生したガスの熱量を速く吸収することができ、それにより消火剤を射出する効率が低減される。
【0008】
しかし、こうした消火器の性能をさらに最適化することができる。実際に、航空機で用いられる消火器は、広い温度範囲にわたって、特に飛行機が飛行する高い高度による約−55℃から約+95℃まで動作可能なままであるべきである。温度に応じて、消火剤は大幅な体積変化を受けることがある。これらの体積変化は、加圧チャンバ中の過剰圧力を引き起こすことがあり、これはいくつかの主な欠点を有する。
【0009】
実際に、航空分野の国際規定によって課される安全に関する制約により、消火剤を供給できる領域の近く、具体的には、エンジン近傍で過剰な内部圧力を受ける装置の実装が繊細かつ複雑になる。実際に、これらの装置は、例えばエンジン部品の放出、熱または炎による外部インシデント中に損傷を受け易い。同様に、これらの装置の破裂により関連の領域に損傷を与えることがある。
【0010】
こうした基準要件を満たすために、ある解決策は、具体的には保護するように、例えば壁厚を大きくした消火器を生産することから構成することができる。こうした解決策により、消火器の全体の体積が大きくなり、これは航空機の性能に関して不利である。
【0011】
他の解決策は、消火器を移動して関連の領域から十分に離すことから構成することができる。しかし、消火器を離れる方に移動すると、消火器と前記領域との間の分配ダクトの長さの長いものを使用する必要があり、これは、ダクト中の線形の圧力損失を増大させ、射出効率を低減させる。さらに、必要なダクトの大きさが大きいことも不利である。
【0012】
当然のことながら、航空機のために緊急液圧式発生器として流体射出装置を使用する場合と同様の問題は残っており、その際最適の射出効率を保証しながらアイドル段階では射出装置中の過剰圧力を避けるべきである。
【0013】
消火のための流体射出装置は通常、図1に示すように、消火点A5に向けた流体の射出のために分配回路A4に連結された加圧リザーバA1を備える。リザーバは、任意の適切な装置A6によって遠隔制御されたバルブA2を介して分配回路A4に連結される。バルブA2を開放すると、加圧リザーバA1が空になって内容物が分配回路A4中に向けられ消火点A5に至る。こうした装置の効率を最大にするためには、分配回路の長さを短縮しそれにより圧力損失を制限しながら消火点への流体の伝達を加速するように、リザーバができるだけ消火点の近くに位置することが望ましい。
【0014】
大量の流体が必要な場合に、空間の制限を考慮に入れると消火点の近傍に体積の大きいリザーバを設置することが不可能な場合、あるいは規制のためにいくつかの独立システムまたは余剰分を有することが課される場合は、いくつかのリザーバを同じ回路上で並列に連結することが必要になることがある。この場合には、第1の実施形態によれば、第1の加圧タンクが、連結バルブA2を開放することによって空になり、次いでバルブが閉鎖され、この第2の加圧リザーバが、連結バルブを開放することによって空になり、次いでそのバルブは空にするのを終了する際などに閉鎖される。続いてバルブが開放されたリザーバから射出される流体が、消火点に向けられる代わりにそれまでに空になっているリザーバを満たすのを防止するために、空にするのを終了する際に各バルブを閉鎖することが必要である。
【0015】
これは、開閉の両方向に駆動できる、すなわち可動式パーツを含むことができる複雑な制御システムおよびバルブを必要とし、シールの不具合を受ける。こうした装置は複雑なので、前記装置が数年間使用されないままであってよく時が来たら完璧に動作すべきである安全装置のために用いるときはそのメンテナンスにコストがかかり信頼性が低下する。
【0016】
したがって、大気圧で消火剤を収容するリザーバを使用することは、例えば特許文献3または特許文献2から知られている。リザーバは、圧縮空気または窒素の容器と連通させるか、あるいはリザーバの内側または近くに直接配置され、リザーバに連結された火工式ガス発生器を介して加圧される。リザーバの加圧の火工式ガス発生器の場合には、特許文献2による装置の火工反応によって発生したガスから流体を分割する膜によって、流体がこうした反応の熱量を吸収し流体の効率が低下するのを防止することが可能である。こうした流体リザーバは、分配回路と直接連通され、連結部は、所与の圧力の場合に引裂き可能なキャップによって閉鎖されている。こうしたキャップはバルブの役割を果たす。したがって、装置を空にするのを開始するためには、加圧ガスを容器からリザーバ中に導入するか、または火工式発生器を起動させることで十分である。分配回路が空であり大気圧である一方、リザーバ中の圧力が上昇していると、キャップ上にかけられる圧力差により、キャップが引裂かれ、それにより流体を分配回路A4中に消火点A5に向かって注ぐことが可能になる。
【0017】
この装置は、バルブの位置で可動式のパーツを備えないのでより信頼性が高い。バルブ用のパーツは、ある期間にわたって、確実にシールしなければならず、特に詰まらせることなく動作を保証しなければならない。一方、キャップは、穿孔されると、もはや分配回路とのリザーバの連結部を確実に閉鎖することができない。
【0018】
こうした状況で、開放の際にのみ制御可能であるバルブを使用する場合は必ず逆止バルブA3を分配回路中に挿入することができる。こうしたバルブは、流れの1方向(図1の矢印の方向)にのみ流体を流す。バルブの開放を連続して起動する間に、バルブはそれにより同じ分配回路上で連結された他のリザーバが空になり、流体が先に空になったリザーバを満たすのを防止する。複数のN個のリザーバを設置する場合は、回路上に少なくとも(N−1)個のバルブA3を設置しなければならない。
【0019】
したがって、多数のバルブが回路で圧力損失を生じ、やはり操作性を保証するために規則的なモニタリングを受けなければならない。実際に、装置が動作していない場合に分配回路A4が空であるとき、すなわち数年の可能性がある時間が経ったときに、具体的には、装置が航空機の無圧領域に設置されており、したがってフライトの度に温度および圧力の大幅な変化を受けるときに、こうしたバルブは、こうした回路で生じることがある凝縮によって起きる詰まりを受けることがある。
【0020】
したがって、単一のリザーバで得られる場合と比べて動作の信頼性を維持しながら、回路中で過度の圧力損失を生じることなく連続して起動させるために、複数の流体リザーバを並列に取付け可能な装置が必要である。
【0021】
すでに説明したように、先行技術による流体射出装置は、射出することを意図した流体を収容するリザーバを備え、前記リザーバの一端は、バルブなど、制御可能なブロック手段を含み、そのブロック手段は、流体を流すためにその流体をリザーバの外部と連通させることができる。
【0022】
したがって、実施形態によれば、流体はリザーバ中に圧力下で保管される。リザーバは、バルブを介して分配回路に連結され、バルブを開放すると、流体が分配回路中に射出される。
【0023】
先行技術の他の実施形態によれば、流体はリザーバ中に圧力下で保管されない。流体を射出するために、分配回路との連通のためにバルブを開放する前にリザーバ中の圧力を上昇させなければならない。このような結果は、リザーバの内部を加圧流体、例えば圧縮空気と直接連通させるか、または射出することが意図された流体をリザーバ内部に位置する分割要素で圧縮することによって得られる。こうした分割要素を膜またはピストンによって形成することができ、その膜またはピストンは、リザーバをシール可能に分割して2つのチャンバにし、チャンバのうち1つは射出することが意図された流体を収容する。リザーバの体積は一定なので、射出される流体の加圧およびリザーバの射出は、流体を収容しないチャンバの体積を増加させることによって行われる。このような体積の変化は、単に機械的装置で、または射出することが意図された流体を収容しないチャンバ中の圧力を上昇させることで、分割要素を移動させることによって行われる。こうした圧力の上昇は、加圧チャンバと呼ばれる前記チャンバ中に加圧流体を噴射することによって行われる。
【0024】
リザーバの両方のチャンバが分割要素によってシール可能に分割されるので、射出することが意図された流体と混合するリスクなしに任意の流体のタイプを使用することができる。一例として、これらは圧縮空気または窒素でよい。有利には、加圧チャンバ中に噴射する流体は、火工式ガス発生器によって発生し、先行技術の特に有利な実施形態によれば、前記火工式発生器は、リザーバ中で加圧チャンバ内部に直接配置される。
【0025】
最後に、射出することが意図された流体を収容するチャンバをブロックする制御可能な手段は、前記流体所与の圧力の場合に破損するキャップの形状であると想定することができる。これらの状況下で、流体の射出を起動する全ての手段を含む小型の装置が得られる。こうした装置は、特許文献2に記載されている。
【0026】
さらに、分割要素は、射出することが意図された流体の加圧チャンバを断熱する。したがって、この装置を消火装置として用いるときは、射出される流体は、例えば液相の消火剤である。このタイプの流体は、熱容量が非常に高いことがあり、分割要素は、消火剤による熱の吸収によって加圧ガスを発生する火工反応が遅くなるのを防止する。
【0027】
先行技術のこれらの全ての実施形態の中では、ピストンによって2つのチャンバに分割した実質的にシリンダ形のリザーバを用いる実施形態が、流体の射出の点から最も効率的であり、すなわちこの実施形態は、実際に分配回路中に注がれる流体の体積と、最初にリザーバ中に収容される流体の体積の比を最大にする。
【0028】
このタイプの装置では、連続した射出を5つの不可欠な段階で実行する。
1.ガス発生器を起動して、加圧チャンバ中の圧力、相関的に、ピストンを介して流体を収容するチャンバ中の圧力を上昇させる。
2.規定した圧力閾値を超えると、射出される流体を収容するチャンバのキャップが破損して、前記流体が分配回路と連通する。
3.次いで、分割要素が移動し、流体を分配回路中に押しやることができる。
4.ピストンが移動の終端に達すると、流体がリザーバに向かって戻ることを避けるために、ある手段がピストンをその位置にロックする。
5.次いで、バルブを形成する特有の手段により、前記回路をパージするために、加圧チャンバからのガスを分配回路に向かって流すことが可能になる。
【0029】
加圧チャンバと射出される流体を収容するチャンバの両方の圧力は、起動時には高く、キャップが破損するときに最大値を通過する。次いで、排出の最後には減少して大気圧に近い値に達する。
【0030】
こうした装置は使い切りの装置である。
【0031】
その装置は、消火装置または緊急装置として用いられる場合は、数年に達することがある非常に長い期間にわたって休止した状態のままにすることができ、それでもなお時が来たら完璧に動作しなければならない。次に、ピストンをリザーバ内部で摺動させるときに、ピストンが簡単に摺動できる性質を維持し、数年に達することがある期間にわたってこれを維持しながら両チャンバ間を確実に完璧にシールすることは難しい。
【0032】
したがって、先行技術のこれらの実施形態によれば、少量の射出される流体が最後には加圧チャンバに浸入する。
【0033】
前記加圧チャンバが外の空気と連通する場合は、この流体は蒸発することができる。それにより、蒸発した流体は失われ、射出できる流体の量が比例して減少する。加圧チャンバが外部に対してシールされる場合は、そのチャンバ中のこうした流体の蓄積により、火工反応の効率、次に流体の射出効率が比例して低下する。
【0034】
さらに、具体的には加圧チャンバが外部と連通している場合は、凝縮現象が内部で起きることがある。それにより、このチャンバ中に導入された水が、結局は、射出される流体と混合することができ、これは、流体の使用の特徴を低下させるリスクがある。
【0035】
最後に、装置が休止しているときにピストンのシールを保証することが可能であっても、射出の第1の段階は、この段階で起きる急速な圧力変化のせいで重要な段階のままである。これらの圧力条件の下でこのシールを保持することもできる。
【先行技術文献】
【特許文献】
【0036】
【特許文献1】欧州特許第1552859号明細書
【特許文献2】欧州特許第1819403号明細書
【特許文献3】欧州特許第1502859号明細書
【特許文献4】国際公開第93/25950号
【特許文献5】米国特許第4,877,051号明細書
【発明の概要】
【発明が解決しようとする課題】
【0037】
したがって、ピストンタイプの分割要素によって分割された2つのチャンバを含み、両チャンバ間のその分割要素のシールが、ピストンの摺動性を低下させることなしに完璧であり耐久性がある、小型の流体射出装置が必要である。
【課題を解決するための手段】
【0038】
先行技術の不十分な点を少なくとも部分的に解決するために、本発明は、流体射出装置であって、実質的にシリンダ形のリザーバと、リザーバを2つのチャンバに分割する分割要素と、分割要素とリザーバの側壁との間のシール手段とを備え、前記分割要素が、チャンバの相対体積を変更するようにリザーバ中でリザーバの長手方向軸に沿って摺動でき、第2のチャンバが、流体で充填され、キャップによって閉鎖されたオリフィスを備え、その結果、分割要素の平行移動およびキャップの開放の影響下でリザーバから前記オリフィスを通して前記流体を射出することができ、流体射出装置がさらに、分割要素を平行移動させるために、どんな流体も収容しないチャンバ、いわゆる加圧チャンバ中の圧力を修正することができる手段を備える流体射出装置を提案する。本発明によれば、前記加圧チャンバはさらに、加圧チャンバの内側をリザーバの側壁からシール可能に分割することができるシンブルを備える。
【0039】
したがって、分割要素とリザーバの壁との間で生じることがある射出される流体の可能性のある漏出は、壁とシンブルとの間に限定されるままである。したがって、特に加圧チャンバ中の射出される流体の蒸発によって射出される流体を失うリスクもなく、加圧チャンバの凝縮性生物が射出流体と混合するリスクもない。
【0040】
有利には、シンブルは、分割要素の2つの長手方向位置の間で、加圧チャンバとシリンダの壁との間を常時シールすることができる。これにより、特に射出される流体の熱膨張によって起きる、ピストンの移動中、ならびに排出の最初の2つの段階の少なくとも一部の間に、シールを保持することができる。
【0041】
有利には、前記シンブルは、径方向に拡張可能な可撓性材料から構成される。したがって、ピストンの平行移動に加えて、加圧チャンバ中の圧力が上昇すると、シンブルが拡張して、リザーバの壁を押圧する。したがって、シンブルは、圧力が高い場合にも両チャンバ間をシールし続ける。その結果、ピストンとリザーバの壁との間のシール手段が次第にわずかに劣化しており、圧力下で、したがって具体的にはキャップの開放の直前および直後の射出を開始するときに、もはや完璧なシールを行うことができない場合でも、装置の動作を確実にすることができる。
【0042】
キャップが破損し流れが始まるとすぐに、射出される流体の圧力は、分配回路の特徴および圧力損失に応じてのみ変化する。射出の第2の段階の間は、装置の効率は、ピストンの速く摺動する能力に応じて変わる。したがって、この段階中に、シンブルによる平行移動においてピストンが速度低下するはずがないことは有利である。したがって、有利な特徴によれば、シンブルのシールは、分割要素の規定した長手方向位置を越えると破損する。こうした特徴により、排出の第5の段階中にパージするために分配回路を加圧ガスと連通させることも可能になる。
【0043】
ピストンの規定した両長手方向位置間のシンブルのシールの連続性は、具体的にはシンブが可撓性材料から構成される場合に、前記シンブルの長手方向の弾性の延長によって確実にすることができる。しかし、有利には、こうした長手方向の延長は、シンブルが、分割要素の平行移動の影響下で広げることができる少なくとも1つの折り目を含むときに容易である。こうした特徴で、最初の2つの排出段階中に、より厚い、したがってより耐圧性のある材料、必要な場合はより耐熱性のある材料で作製したシンブルを用いることが可能である。したがって、この実施形態は、装置が加圧チャンバと連通した火工式ガス発生器を含み、火工式ガス発生器を起動させると排出を起こすことができるときに特に有利である。
【0044】
これらの特徴を組み合わせると、チャンバ間のシールを強化した小型の射出装置を形成することができる。有利には、こうした装置は、遅い体積変化に対して内部の圧力を一定に維持し火工式ガス発生器の作動によって生じた圧力および体積の変化に対して前記チャンバを閉鎖するために、加圧チャンバを外部と連通させることができる装置を含む。こうした特徴で、動作の段階以外で過剰な内部圧力を有しない射出装置を維持することが可能であり、これは、安全性を改善し、体積および重量の削減を可能にする。実際に、常時内部圧力を受けないので、破裂のリスクに向かって信頼性を落とすことのない、壁厚が薄い装置を構築することができる。
【0045】
具体的には流体射出装置を消火装置として使用するのに適合された実施形態によれば、その装置は、流体の射出を終了する際に火工反応によって発生したガスを流体の分配回路に連通させることができる手段を含む。それにより、一方でこの回路をパージし、したがってこの回路は消火剤の全体の量から恩恵を受けることができ、排出を2つの段階で行うこともでき、第1の段階は、大量の消火剤を火炎に注ぐことから成り、第2の段階は、火工反応によって発生するガスおよび消火剤から成るエアゾールを火災領域に吹くことである。
【0046】
この第1の排出段階で純粋な薬剤を噴射することによって、具体的には航空分野ではエンジン火災の消火の用途で、消火システムの認定の範囲内で最も多く求められる基準である、消火剤の最大の濃度を得ることが可能である。
【0047】
第2の段階では、加圧ガスによって形成したエアゾールを射出することによって、ガス(不活性)の実際の性質が、一方で消火の段階で役立つように関わることができ、もう一方で、取り扱う火災領域で役立つところではどこでも薬剤を適切に分配することができる。
【0048】
本発明による装置は、リザーバの排出を完了した後でガスまたは流体が分配回路からリザーバ中に戻るのを防止できる手段を含むことができる。これにより、装置の効率を向上させ、特に実際に注がれた流体と最初にリザーバ中に収容されていた流体との間の比を最大にすることができ、これにより、より大量の射出される流体を利用可能にするために、このタイプのいくつかのリザーバを同じ分配回路上で並列に連結することもできる。この場合には、異なるリザーバは、リザーバの1つからの排出が、目標とする点で注ぐ代わりにすでに空になっている他のリザーバを満たすリスクなしに順次起動する。
【0049】
本発明による装置を消火のために用いる場合は、射出される流体は、有利にはフッ化ケトンタイプの消火剤である。
【0050】
あるいは、こうした装置を最終の緊急液圧式発生器として用いることもできる。この場合には、射出された流体は液圧油であり、したがって、液圧回路の最終の緊急加圧を確実にすることができる。
【0051】
こうした装置は、より具体的には、コンパクトであり、信頼性があり、重量が削減され、圧力および温度の変化への感度が低いので航空機での使用に適している。
【0052】
本発明の他の態様による本発明の目的は、流体を射出する射出装置であって、
端部において第1および第2の端部分によってシール可能に閉鎖されたシリンダ形本体を備える、前記流体を含むリザーバと、
加圧ガスを発生する手段と、
第1の筐体、および前記流体を収容する第2の筐体をシール可能に形成するように第1の端部分と前記流体との間に配置された、前記リザーバの軸方向に沿って移動可能な剛体の分割手段と、
前記発生手段によって発生したガスが前記リザーバの前記第1の筐体中に浸入できるように、リザーバを前記発生手段と連通させる連通手段と、
第2の端部分に位置する射出オリフィスとを含み、
圧力制御手段が、第1の端部分に配置され、分割手段の軸方向位置に関係なく、前記第1の筐体を確実に外部環境の外気にさらすように、前記発生したガスがリザーバ中に存在しない開放した構成と、前記第1の筐体をシールするように、前記発生した加圧ガスがリザーバ中に存在する閉鎖した構成とを取り入れることができる流体射出装置である。
【0053】
有利には、圧力制御手段の閉鎖は、前記第1の筐体中で前記発生した加圧ガスによってかけられる圧力によって制御される。
【0054】
本発明の実施形態では、圧力制御手段は、実質的に管状のバルブ本体を備え、その内面はバルブシートを含み、前記バルブ本体は、リザーバの外部環境と連通するための少なくとも1つの導管と、バルブ本体の軸方向に沿った可動式パーツとを含み、前記バルブシートと接触するように適合されたヘッドを含み、それによりバルブの閉位置を画定する。
【0055】
有利には、圧力制御手段はさらに、バルブ本体の軸方向に沿って移動可能でありバルブ本体と可動式パーツとの間に径方向に配置された分割手段を備え、前記分割手段は、バルブ本体の前記連通用導管に面するように移動可能である。
【0056】
好ましくは、射出装置が、射出オリフィスに連結された分配手段を備えるときは、前記バルブ本体の前記連通用導管は、前記分配手段に連結される。
【0057】
好ましくは、ばね手段が、分割手段の軸方向位置には関係なしに前記リザーバの軸方向に沿って第2の端部分に向けて圧縮力を前記分割手段上にかけるように、前記リザーバの前記第1の筐体に配置される。
【0058】
本発明の実施形態では、流体を射出するための射出装置は、
端部において第1および第2の端部分によってシール可能に閉鎖されたシリンダ形本体を備える、前記流体を含むリザーバと、
加圧ガスを発生する手段と、
第1の筐体、および前記流体を収容する第2の筐体をシール可能に形成するように第1の端部分と前記流体との間に配置された、前記リザーバの軸方向に沿って移動可能な剛体の分割手段と、
前記発生手段によって発生したガスが前記リザーバの前記第1の筐体中に浸入できるように、リザーバを前記発生手段と連通させる連通手段と、
第2の端部分に位置する射出オリフィスとを含み、
前記射出装置が、分割手段の軸方向位置には関係なしに前記リザーバの軸方向に沿って第2の端部分に向かって圧縮力を前記分割手段上にかけるように、前記リザーバの前記第1の筐体中に配置されたばね手段を含む。
【0059】
有利には、分割手段は、前記流体と前記発生したガスとの間の熱交換を低減するための断熱材である。
【0060】
好ましくは、分割手段は、実質的に前記分割手段の径方向に沿って延びる断熱領域を備える。
【0061】
本発明の実施形態では、前記リザーバのシリンダ形本体が、前記第2の端部分の近傍に位置する内周方向のショルダを備えるときに、分割手段は、リザーバの径方向に沿って推力を作用させる少なくとも1つのブロック手段を備え、その結果、前記分割手段が前記ショルダに向いて位置し分割手段がリザーバの第1の端部分へ変位するのをブロックするときに、前記ブロック手段は、リザーバの径方向に沿って拡張する。
【0062】
本発明の他の実施形態によれば、分割手段が少なくとも1つの連通用導管を備えるときに、前記リザーバのシリンダ形本体は、前記第2の端部分の近傍に内周方向のショルダを備え、少なくとも1つの凹所が、第2の端部分の内面または分割手段の面に位置し、その結果、分割手段が実質的にリザーバのシリンダ形本体の前記ショルダに面して位置するときに、発生したガスが射出オリフィスまで流れる。
【0063】
あるいは、分割手段は、実質的にリザーバの前記シリンダ形本体の直径に沿って延びる中心部分と、実質的に前記シリンダ形本体に接触する側方部分と、円周方向に延び前記中心部分と前記側方部分との間に位置する破損領域とを備え、前記発生したガスの圧力下で、前記中心部分が前記当接部を形成する部分と接触し、それにより前記分割手段の前記破損領域が破損して、発生したガスが噴射オリフィスまで流れるように、前記第2の端部分が、当接部を形成する部分を備える。
【0064】
本発明の他の実施形態によれば、分割手段が第2の端部分に向かって所定の位置を越えた位置にあるときに電気回路が開放するようにリザーバ内部に配置された電気回路の一部を含むモニタリング装置が設けられる。
【0065】
有利には、少なくとも1つの電線が前記第1の端部分を前記分割手段に接続し、前記電線が、分割手段が所定の位置を越えて第2の端部分に向かって移動する場合に前記電線が破損または切断するように所定の長さを有する電気回路を含むモニタリング装置が設けられる。
【0066】
好ましくは、射出装置は、射出オリフィスおよび射出オリフィスに連結された分配手段をシール可能に閉鎖する分配キャップを備える。
【0067】
好ましくは、加圧ガスを発生する手段はガス発生器を含み、そのガス発生器は、ガス出口オリフィスおよび所定の量のガスを発生する火工材料を備えた筐体を含む。
【0068】
本発明はまた、機械を作用させることができる液圧エネルギーを提供するように航空機用の緊急液圧式発生器として定められたばかりの特徴を含む射出装置の使用にも関する。
【0069】
有利には、前記流体は油である。
【0070】
本発明はまた、本発明の他の態様に従って、順次空にすることができる前記流体のN個のリザーバを備える流体射出装置を提案する。Nは2以上であり、N個のリザーバが、規定した圧力差の影響下で引裂くことができるキャップを含む連結部を通して流体を分配するために同じ回路に並列に連結され、少なくともN−1個のリザーバは、空にするのを終了する際にリザーバの内側の回路との前記連結部を最終的にブロックできる手段を含む。回路との連結部が、各流体リザーバを空にするのを終了する際にブロックされるので、有用な点、例えば消火領域に向ける代わりに、流体が、すでに空になっているリザーバを満たすリスクなしに他のリザーバを順次空にすることが可能である。こうした複数リザーバの解決策で、より小さいリザーバ中により多くの利用可能な射出される流体を有することが可能であり、したがってこの装置は、前記回路中にバルブまたはゲートがないので分配回路中に過度の圧力損失を生じることなしに、限定された環境でより簡単に一体化可能であり、信頼性を高めながら設置およびメンテナンスを単純にする利点も有する。
【0071】
前記空になる装置は、特許文献2に記載されているような「膜を有する」タイプのものを、空にするのを終了する際に膜を引裂く手段が阻止され適切な形態のものに替えられるように修正したものでよく、その結果、膜が分配回路との連結部のオリフィスにフィットし、火工式発生器のガスによってリザーバ中に発生した圧力の影響下でこのオリフィスをブロックする。しかし、前記リザーバは、有利には、流体に作用するピストンの平行移動によって実質的にシリンダ形のリザーバからの流体が射出される、ピストン装置から構成される。ピストンの変位は、当業者に知られた任意の手段によって、例えば電気、液圧または圧気によるアクチュエータによって引き起こすことができ、ピストン上の磁場の直接の作用によって、または膜装置の場合と同様にして加圧ガスをピストンの背後に導入することによってもたらすこともできる。膜装置と比較して、こうしたピストン装置では、シリンジのようにリザーバをより良好に確実に空にすることが可能であるが、この装置はまた、移動の終端でのオリフィスのブロックも単純にし、ピストンの面が、直接の接触または適切なシール手段によって分配回路との連結部のオリフィスをブロックする。
【0072】
この実施形態によれば、ピストンまたは膜上にかかる力を、移動の終端でアクチュエータまたはガスの圧力によって維持して、連結部をブロックしたままにすることが絶対に必要である。
【0073】
より有利な実施形態によれば、この装置は、移動の終端でピストンの位置をロックする手段を含む。これらの状況下では、移動の終端で分配回路への連結をブロックする力を維持するためにアクチュエータが負荷を受ける状態に維持することもピストンに作用するガスが圧力を受ける状態に維持することも不要であり、これにより、ピストン上に力をかける装置の圧力損失に関する装置の動作の信頼性、および装置を起動した後の物および人の安全性も改善することができ、それにより、この装置が受ける可能性がある破裂および突然の圧力除去のリスクを有する加圧要素を維持することが避けられる。
【0074】
特に有利な実施形態によれば、リザーバは、ピストンによって分割された2つのチャンバを含み、それらのチャンバの一方は射出される流体を含み、ピストンの変位は、もう一方のチャンバ中に導入されるガスの圧力によって引き起こされる。ピストンの変位が圧気、液圧または電気アクチュエータの作用によって実現される実施形態と比較して、この実施形態は、アクチュエータがないのでより小型であり、限定された環境への設置がより簡単である。加圧ガスを発生する手段は、適切なパイプを通してこれらの手段に連結された装置の設置位置から離れた位置に移動することができ、前記パイプは剛体でも可撓性でもよい。
【0075】
さらにより有利な実施形態によれば、火工式手段によって加圧ガスを発生する。前記手段が非常に小型なので、その手段を、各流体リザーバまたはリザーバの近傍に直接設置することができる。これらの状況下で、流体リザーバはそれぞれ、自立型の装置、具体的には小型であり、一体化が簡単である装置を形成し、起動手段は、構成要素および可動式パーツの数が大幅に削減されるので非常にわずかなメンテナンスしか必要としない。
【0076】
各リザーバから分配回路中に射出される流体全体が、実際に十分な流量で確実に使用点に到達するには、具体的には消火できる流体を射出する装置が使用される場合に、流体を使用点に向けて押しやり分配ネットワークを完全に空にするように、各リザーバを空にするのを終了する際に加圧ガスを分配回路中に噴射することが有利である。したがって、この装置は、有利には、空にするのを終了する際に分配回路と連通した、ガスを加圧できる手段を含む。これらの装置を、ピストンのうちチャンバ間を分割する面に作製されたオリフィスによって形成することができる。前記オリフィスは、ピストンにもはや流体の圧力がかからないとき、すなわちピストンがロックされるときに空にするのを終了する際に、分配回路との連結のためのオリフィスに向かって加圧ガスを流し、それにより流体を追い出すためにバルブが開放するように調整したバルブによって閉鎖されている。前記バルブは、例えば、ガスの圧力が所定の値より小さくなるときにばねの作用下で閉鎖する。
【0077】
バルブの開放が早過ぎるかまたは開放しないことを防止するために、それらのばねの重さを適切に量るべきである。しかし、こうしたタイプの調節は、例えばばねを形成する手段を構成する材料のクリープの影響下で、徐々に変化することが可能である。チェックすること、必要な場合はこうした調整を補正することは、流体射出装置の開放を必要とする複雑なメンテナンス動作を伴う。このような理由で、より有利な実施形態によれば、ピストンはリザーバの内面でシールした2つの領域含む。前記領域は、軸方向に分割され配置されて、ピストンとリザーバの内面との間に環状のチャンバを形成する。ブロック可能な連通オリフィスが、前記環状のチャンバと加圧チャンバとの間に配置され、ピストンの移動の終端で、環状のチャンバを、流体を収容するチャンバと連通させる。この実施形態によれば、ピストンはスカートを含む。ブロック可能なオリフィスは、前記スカート上に横方向に位置し、環状のチャンバと連通し、それらのチャンバは両方とも、空にする動作全体の間に2つのシールした領域によって流体および加圧ガスから分離される。前記オリフィスは、前述のように、調節したバルブによって閉鎖される。ピストンが移動の終端に達するとき、すなわち空にするのを終了する際に、それがロックされているときに、リザーバの内面は、直径がより大きいショルダを備え、そのため、第1のシールした領域はもはやリザーバの壁と接触せず、それにより、両シール領域間に備えられた環状のチャンバを、流体を収容する(空の)チャンバおよび分配回路と連結するためのオリフィスと連通させる。もう一方のチャンバ中でピストン上にかけられるガスの圧力は、ガスを環状のチャンバ、したがって分配回路と連結させるピストンのスカート上に作られたオリフィスをブロックするバルブを開放する。圧力が所与の値より低くなるときは、ばねを形成する手段は、ブロックバルブを閉鎖する。この構成は、バルブのばねの特定の負荷を必要としないので有利である。実際に、空にしている間に圧力の影響下でバルブが開放する場合でも、ガスの漏出を起こさず、これにより流体と混合できず、環状のチャンバは、2つのシールした領域によってシール可能に閉鎖される。これは、射出した流体が、フッ化ケトン、例えば3M商標のNOVEC(登録商標)1230の名で市販されている流体など、消火できる流体である場合に特に重要である。この反応によって発生したガスがその流体に接する場合に、比熱が非常に高いこのタイプの流体は、火工反応の熱量を吸収することになり、これは、流体の射出の効率を低下させる結果になる。したがって、シールした環状のチャンバ中に開放したブロック可能なオリフィスをピストンのスカート上に配置することによって、一方では、空にする間に射出した流体とガスが接触するのを避けることが可能であるが流体とガスとの間のピストンの正面によって効率的な断熱性を得ることも可能である。
【0078】
より単純でより有利な実施形態によれば、オリフィスをブロックする手段は、弾性のリングによって形成される。前記のように、弾性リングは、ピストンのスカートの周りの環状のチャンバ中に配置され、弾性によってこのスカートで作られたオリフィスをブロックする。材料および形状の点からのこのリングの特徴は、リングが拡張できそれによりオリフィスを開放できるように選択される。こうした構成により、オリフィスをブロックするための装置を単純にすることができ、したがって、サイクル全体の分配回路中の流体の流量を確実に高くし、それにより圧力損失を制限するように、オリフィスの数を多くし空にするのを終了するときにガスの急速な排気を促進することができる。
【0079】
特定の実施形態によれば、弾性リングはスリットリングによって形成される。この実施形態は、具体的には経済的であり信頼性が高く、こうしたスリットの存在によって与えられる追加の拡張の可能性もリングの取付けを容易にする。スリットはさらに、前記リングの角度位置を保証するために用いられ、その結果リングはハウジング中で回転できず、シールのロスを引き起こすことになる、スリットがオリフィスに面することがない。
【0080】
こうした流体射出装置は、小型で簡単に一体化可能であり空にする段階の前後で圧力下にはないので、簡単に航空機エンジンのポッドなど限定された環境に組み込むことができ、したがって、周囲の取付けに関して、いかなるリスクもなく、特に破裂のリスクを生じることなく、できるだけ火元の近くに設置することができ、そして最後に、非常に限定されたメンテナンスしか必要としない。したがって、過度のメンテナンスコストを生じることなしに、利用し易さが限定された領域に設置することができる。
【0081】
あるいは、こうした装置を、航空機用の緊急液圧式発生装置として用いることができる。こうした装置では、機械的制御に必要な液圧エネルギーを提供することができる。その機械的制御とは、例えば制動タイプ、および地上での操舵、あるいは着陸装置の開放およびロックの用途に関するものである。こうしたタイプの使用に関して、追い出された流体は液圧油である。この場合には、ガスと油を混合することを避けるために、ガスを分配回路中に追い出すことによってからにすることを促進しないことが好ましい。いくつかのリザーバが並列に存在すると、いくつかの対策を順次開始することによって実行することが可能である。
【0082】
次に、添付の図面を参照して、非限定的な例として本発明の実施形態を説明する。
【図面の簡単な説明】
【0083】
【図1】いくつかのリザーバを接続し制御バルブおよび逆止バルブを分配回路に適用する先行技術による、すでに説明した装置の概略図である。
【図2A】本発明による流体射出装置の長手方向断面の斜視図である。
【図2B】本発明による流体射出装置の長手方向断面の斜視図である。
【図3】本発明の実施形態による分割手段および第2の端部分の断面図である。
【図4】本発明による射出装置が備える圧力制御手段の長手方向断面図である。
【図5A】動作中の圧力制御手段の長手方向断面図である。
【図5B】動作中の圧力制御手段の長手方向断面図である。
【図5C】動作中の圧力制御手段の長手方向断面図である。
【図6A】分割手段の例示的な位置に関する流体射出装置の長手方向断面の上面図である。
【図6B】分割手段の例示的な位置に関する流体射出装置の長手方向断面の上面図である。
【図6C】分割手段の例示的な位置に関する流体射出装置の長手方向断面の上面図である。
【図7】分割手段が破損領域を備え第2の端部分が当接部を形成する部分を備えた、本発明の実施形態による射出装置の長手方向断面の斜視図である。
【図8A】射出段階の例に関する図6に示す実施形態による射出装置の長手方向断面図である。
【図8B】射出段階の例に関する図6に示す実施形態による射出装置の長手方向断面図である。
【図8C】射出段階の例に関する図6に示す実施形態による射出装置の長手方向断面図である。
【図8D】射出段階の例に関する図6に示す実施形態による射出装置の長手方向断面図である。
【図9】シンブルを備えた、起動前の本発明の一実施形態の装置の全体的な断面図である。
【図10】シンブルが破損しピストンが適位置でロックされているときの、排出を終わる際の装置の詳細図である。
【図11A】空にするためにリザーバ中に噴射される加圧ガスから流体を分割する膜を備えた、球形のリザーバを用いた本発明の実施形態による装置の断面図である。膜が分配回路に連結するためのオリフィスをブロックする、空にするのを終了する際の前記リザーバを示す。
【図11B】シリンダ形のリザーバを用いリザーバ中を軸方向に移動するピストンによって流体を射出する、本発明の実施形態による装置の断面図である。
【図12】移動の終端にピストンの位置をロックする装置を有する分配回路に連結するためのオリフィスの側面の部分断面図である。
【図13】リザーバ中に配置した火工カートリッジを作動させることによって装置を起動させる、本発明の実施形態による装置の断面図である。
【図14】空にするのを終了する際に火工式装置によって発生するガスが分配回路とそれによって連通できる手段を組み込む、本発明の実施形態による装置のピストンの部分断面詳細図である。
【図15】本発明による装置のピストンの特定の実施形態の断面図を示し、前記ピストンがスカートおよびシール手段によって区切られた環状の領域を有し、前記領域が、空にするのを終了する際に火工式装置の作動中に発生するガスを分配回路とそれによって連通させることができる手段を備える。
【図16】オリフィスを有するスカートピストンと、拡張可能なリングの形態の、これらのオリフィスをブロックできる手段とを備えた、本発明の実施形態による装置の全体的な断面図である。
【図17】ピストンが移動の端部に到達し、加圧ガスを分配回路向けて通すためにリングが拡張するときの図16による装置の詳細断面図である。
【図18】ブロック弾性リングがピストンのスカート中に作られた管腔をブロックするように締められた姿勢の、ブロック弾性リングを備えたピストン単独の図である。
【図19】ブロック弾性リングが拡張した姿勢であり、それにより加圧ガスが環状のチャンバに向かって通過できる、ピストンを単独で示す。
【発明を実施するための形態】
【0084】
図2〜図8は本発明の第1の態様を示す。
【0085】
図2Aおよび図2Bに概略的に示すように、流体射出装置は、主な要素として、射出される流体14を収容するリザーバ1を備え、そのリザーバ1は、中空のシリンダ形本体2によって形成され、2つの端部において第1の端部分3および第2の端部分4によってシール可能に閉鎖される。シリンダ形本体2は、円形、楕円形、長円形の断面、または同種の他の任意の形状を有することができる。本発明は、より具体的には液相の流体14に適用する。しかし、流体14は粉、ペースト状の流体またはスラリを呈することもできる。
【0086】
リザーバ1は1つまたは複数の射出オリフィス16Aを含み、その射出オリフィス16Aは、流体14を射出し所定の領域まで運ぶことができるように、分配手段(図示せず)に連結されてよい。射出オリフィス16Aは、シリンダの第2の端部分4またはこの端部分の近傍に位置する。有利には、射出オリフィス16Aはそれぞれ、作動する必要がない限り流体をリザーバ1中に維持するために分配キャップ16によってシール可能に閉鎖される。具体的には、射出オリフィス16Aが単一のものである場合は、分配キャップ16は、例えば、調整したキャップ、すなわちリザーバ1内部の圧力が特定の閾値に達するとすぐに壊れるかまたは開放する膜でよい。分配キャップは、有利には遠隔制御されたバルブでもよい。他の閉鎖装置が、例えば特許文献4または特許文献5によって知られており、市販されている。
【0087】
本発明による射出装置は、加圧ガスを発生する手段を含む。加圧ガスを発生する手段は、連通手段を介してリザーバ1に連結される。有利には、リザーバ1と加圧ガスを発生する手段との間の連通手段は、リザーバ1中で射出オリフィス16Aの反対側に、すなわち第1の端部分3またはこの端部分の近傍に開放している。加圧ガスを発生する手段は、本発明の示していない実施形態では、加圧ガスの1つまたは複数のリザーバ中にあってよい。この場合には、連通手段のバルブにより、例えば、リザーバ1が使用されない限り加圧ガスリザーバをリザーバ1から分離することが可能である。
【0088】
他の実施形態はガス発生器7に関する。有利には、混雑しないように、また図2Aおよび図2Bに示すように、発生器7はリザーバ1の内部に位置する。発生器7は燃焼筐体8から構成され、その燃焼筐体8は、点火装置9を備え、適切な量のエネルギーを与える材料または火工材料を含む。こうした材料は、例えば、慎重に設計した形状のビーズまたはタブレットのような、あるいはさらにはブロックのような固体の状態でよい。エネルギーを与える材料または火工材料の燃焼によって発生したガスは、筐体8の出口オリフィスを介してリザーバ1に向けられる。こうした発生器7は当業者に知られている。有利には、ディフューザ11を燃焼筐体8の周りに配置すると、第1の筐体A内でガス発生器7によって発生したガスの分配を改善することが可能になり、それにより、第1の筐体Aの表面に集中する熱インパクトが最小限に抑えられる。
【0089】
射出の段階では、前記流体14は、発生したガスから大量の熱エネルギーを吸収することがある。これは特に、3Mによって市販されているNOVEC(登録商標)1230の場合である。こうした流体14によって熱が吸収されると、発生したガスの温度が低下し、それにより、リザーバ1中で発生したガスによって射出される流体14に加えられる圧力が低下する。このように射出される流体14に加えられる圧力が低下すると、流体の射出量が減少し、したがって本発明による装置の効率が低下する。両方の段階の間での熱交換を制限するために分割手段5が必要である。
【0090】
分割手段5は第1の端部分3と前記流体14との間に配置され、一方で、加圧チャンバと呼ばれる、分割手段5と第1の端部分3との間に位置する第1の筐体Aを、もう一方で、分割手段5と第2の端部分4との間に位置する前記流体14を収容する第2の筐体Bをシール可能に形成する。
【0091】
分割手段5は、実質的にリザーバ1の径方向に沿って延びる中心部分5Cと、実質的にリザーバ1の軸方向に沿って延びる側方部分5Lとを備えることができる。側方部分5Lは、中心部分5Cにその部分5Cの円周で連結される。それらの部分5Cおよび5Lは剛体である。分割手段5の中心部分5Cは、第1の筐体Aに位置する表面5Aと、第2の筐体Bに位置する表面5Bとを備える。
【0092】
分割手段5は、ピストンの効果を有するようにリザーバ1の軸方向に沿って移動可能であり、射出の段階では、表面5Aは発生したガスの圧力を受け、その圧力は、リザーバ1から流体14を射出するために中心部分5Cの表面5Bを通して流体14に与えられる。
【0093】
好ましくは、分割手段5は、断熱材料、例えばプラスチック材料、またはエラストマーなどの断熱材料で被覆した任意の剛体材料である。したがって、流体14は発生したガスのエネルギーを吸収することができず、それにより、本発明による装置の射出効率が最適化される。
【0094】
分割手段5は、シールガスケットまたはセグメント6を含むことができ、そのシールガスケットまたはセグメント6は、側方部分5Lのうちシリンダ形本体2の内壁2Iに向いた部分の円周方向の凹所中に配置される。シリンダ形本体2の内壁2I上でこすれるシールセグメント6によって、筐体Aと筐体Bとの間でどんな物質移動も防止することができる。
【0095】
伝熱を避けるという利点に加えて、分割手段5はまた、流体14が発生したガスに混合され希釈され、それにより射出装置の効率を低下させるようになること避けるという利点も有する。流体14が発生したガスに希釈されないことは、特許文献1で説明するように、規定により関連の火災領域では所与の期間中は最低の濃度の消火剤を提供すべきである航空機のエンジン火災を消すなど、特定の用途の場合に特に重要である。実際に、これらの火災領域は、ほとんどの場合、新たな大量の空気流によって換気される。また、やはり消火器の重さを最小限に抑える目的で最小量の消火剤を用いて認証基準を得るために、できるだけ純粋な消火剤を前記領域中に非常に速く噴射することが不可欠である。
【0096】
図3に示す本発明の実施形態では、分割手段は、実質的に分割手段5の径方向に沿って延びる断熱領域5Iを備える。こうした断熱領域5Iは、図3に示すように分割手段5の表面5Aと表面5Bとの間の中心部分5Cの内側に位置する閉鎖した凹所でよい。表面5Aまたは5Bあるいは表面5Aおよび5Bの両方を断熱材料のプレートで適切な厚さで被覆するなど、他の解決策が可能である。それにより、第1の筐体Aと第2の筐体Bとの間の断熱が改善される。
【0097】
図4に、本発明による流体射出装置が備える圧力制御手段12を示す。本発明による射出装置は、いくつかの圧力制御手段12を備えることができる。図4に、ここではバルブに該当する圧力制御手段の非限定的な例を示す。しかし、例えばゲートまたはバルブなど、他の手段が適切なことがある。後でバルブと呼ぶ圧力制御手段12は、第1の筐体Aとリザーバの外部環境との間で確実に連通するように、第1の端部分3に配置される。そのバルブ12は、分割手段5の軸方向位置には関係なく、前記第1の筐体Aを確実に外気にさらすように、リザーバ1中に発生するガスが存在しない開放した構成と、前記第1の筐体Aを確実にシールするように、リザーバ1中に発生したガスが存在する閉鎖した構成とを取り入れることができる。バルブ12は、第1の筐体A中で発生したガスの圧力下でシール可能に閉鎖するように設計されている。したがって、バルブ12を介したリザーバ1の第1の筐体Aと外部環境との間の圧力の変化が遅いと、バルブ12の閉鎖を作動させることができない。こうした遅い変化のタイプは、例えば航空機の高度変化によって本発明による射出装置の外側で気圧が変化するときに生じる。これは、流体14の体積の変化に応じて分割手段5が変位するとき、したがって分割手段5の変位によって第1の筐体A中の圧力が変化するときにも生じることがある。実際に、周囲の空気の温度に応じて、流体14は、所与の温度、例えば+20℃の場合に規定した基準体積に対して相対的に体積が変化することがある。高温の場合は、流体14は膨張し、次いで分割手段5に第1の端部分3の方向に圧力を加える。次いで、分割手段5は第1の端部分3に向かって動く。
【0098】
したがって、流体14の体積変化によって分割手段5が変位すると、第1の筐体Aの体積、したがってこの筐体A内部のそのときの圧力が修正される。したがって、バルブ12を介して第1の筐体Aを外気にさらすことにより、射出以外の段階中に本発明による射出装置の筐体AもBも確実に加圧されない。
【0099】
一方、加圧ガスが発生することにより、第1の筐体Aの圧力が速く大きく変化すると、バルブ12を閉鎖させることができる。
【0100】
したがって、分割手段5の軸方向位置には関係なく、バルブ12によって確実に第1の筐体Aを外気にさらすことによって、本発明による射出装置において射出以外の段階中に加圧ガスを有することができる。それにより、射出装置を壊れ易くする不必要な機械的なストレスが避けられる。さらに、航空機上で本発明を使用する場合には、流体射出装置の内部圧力が常に外部とのバランスが取れているので、航空規定によって課される制限への応答を容易にしながら、流体14を供給する領域のできるだけ近くにその流体射出装置を配置することが可能になる。これにより、射出装置を関連の領域に連結する分配用導管の長さを短縮することも可能である。したがって、分配用導管の圧力損失が線形に低減され、それにより、所与の射出圧力に関してより大きい流体の流量14を得ることが可能である。それにより装置の射出効率が改善される。最後に、分配用導管の長さを短縮し、射出装置の壁の厚さを最適化することによって、航空機の重量削減要件を満たすことが可能である。
【0101】
本発明の実施形態を示す図4を参照すると、バルブ12はバルブ本体32を備え、そのバルブ本体32は、好ましくはリザーバ1の第1の端部分3に取り付けられる。バルブ本体32は、中空であり、好ましくは実質的に管状の形状である。それにより、リザーバ1の第1の筐体Aと外部環境との間のガスの連通が可能になる。プラグ35が、バルブ本体32のうち外部環境と連通する部分をシール可能に閉鎖する。前記バルブ本体32は、少なくとも1つの連通用導管34を備え、その連通用導管34は、バルブ32本体の内側をリザーバ1の外部環境に連結する。内面32Iはバルブシート32Sを含み、そのバルブシート32Sは、実質的にバルブ本体32のうち第1の筐体Aと連通する方の端部の近傍に位置する。可動式パーツ31が、バルブ本体32の軸方向に沿って移動することができ、ヘッド31Tを含む。そのヘッド31Tは、前記バルブシート32Sと接触し、それによりバルブの前記閉鎖位置を画定するように適合される。
【0102】
バルブ12はさらに、バルブ本体32の軸方向に沿って可動式分割手段33を備え、その可動式分割手段33は、バルブ本体32と可動式パーツ31との間で径方向に位置する。前記分割手段33は、連通用導管34を通る発生したガスのどの流れもブロックするようにバルブ本体の前記連通用導管34に面するように適合され、それにより第2の閉鎖安全装置が形成される。静止時には、可動式分割手段33は、例えば可動式分割手段33とプラグ35との間で圧縮されたばね36の作動下で、バルブ本体32の当接部を形成する部分32Bに当たり、その結果分割手段33は前記連通用導管34に面していない。
【0103】
可動式パーツ31は、当接部を形成する部分38とプラグ35との間で圧縮したばね37の作動下で、可動式パーツ31と相互依存した当接部を形成する部分38を介して可動式分割手段33に当たる。これにより、リザーバ1の第1の筐体Aと連通する第1のバルブ筐体30Aと、外部環境と連通する第2のバルブ筐体30Bとを画定する。筐体30Aおよび30Bは両方とも、可動式パーツの内側に位置する連通用導管39を介して互いに連通し、その連通用導管39は、実質的に第1のバルブ筐体30Aに位置する入口39Aと、第2のバルブ筐体30Bに位置する出口39Bとを備える。
【0104】
図5Aに示すように、可動式パーツ31上で当接部を形成する部分38を(設計または調整によって)正確に位置決めすると、可動式パーツとバルブ本体32との間のわずかな遊び40が決まり、それにより、本体32の導管34および可動式パーツ31の導管39を介したリザーバ1の第1の筐体Aと外部環境との間の連通が可能になる。
【0105】
第1の筐体A中で発生したガスの圧力下でバルブ12を閉鎖するためには、遊び40ならびに連通用導管34および39は、慣性流れを可能にしない寸法を有する。そのためには、遊び40ならびに導管34および39の特有のサイズは、1ミリメートル程度でよい。
【0106】
流体の射出中に、図5Bおよび図5Cに示すように発生したガスの作用の下で、リザーバ1の第1の筐体Aの加圧を開始するときから、可動式パーツ31のヘッド31Tは、可動式パーツ31と相互依存した当接部を形成する部分38と可動式分割手段33が接触するまでは前記可動式パーツ31ならびに戻るように移動する可動式分割手段33への圧力の組合せの作用によって、バルブ本体32のシート32Sに接触する。図5Bに示すように、移動している可動式分割手段33は、本体32の導管34をブロックし、これは、確実に2重にシールする(一方では本体32のシート32Sとの可動式パーツ31のヘッド31Tの接触、もう一方では分割手段33による本体32の導管34の閉鎖)。さらに、可動式パーツ31が閉鎖しているときは、可動式パーツ31の導管39の出口39Bは、プラグ35に相互依存した突起35Eによってブロックされる。
【0107】
図5Cに示すように、分割手段33と本体32との間で、次いで本体32の導管34に向かってわずかに漏出が起きる場合は、分割手段33上への圧力が低下する。ばね36によって押された前記分割手段33は、本体32に当たるまで戻るように移動し、これは、可動式パーツ31の導管39をブロックする効果を有し、それにより2重のシールが再構築される。
【0108】
図2Aおよび図2Bを参照すると、ばね手段13を、前記リザーバ1の前記第1の筐体Aに配置し、第1の端部分3と分割手段5との間に置いて、前記リザーバ1の軸方向に沿って前記分割手段5上に、やはり第2の端部分4の方向に向いた圧縮力をかけることができる。やはり同じ方向に向いたこの圧縮力は、第2の筐体Bの体積を最小にし、射出される流体14との分割手段5の接触を常時維持する。したがって、分割手段5の表面5Bは、射出される流体14と全体的に接触する。図6Aに、ばね手段13をコイルばねとして示すが、他のタイプのばねを用いることができる。
【0109】
高温の場合は、図6Bに示すように、流体14が膨張し、次いで分割手段5上に第1の端部分3の方向に圧力がかかる。次いで、分割手段5は第1の端部分3の方向に移動する。ばね手段13は変形し、その見返りとしてやはり第2の端部分4に向いた圧縮力を分割手段5上にかける。ばね手段13によってかけられる力の強さは、ばね手段13の変形の大きさに応じて変わる。したがって、分割手段の表面5Bは射出される流体14との接触が全体的に常時維持され、第2の筐体Bの体積は最小である。
【0110】
低温の場合は、流体14は体積が減少する。ばね手段13によって分割手段5上に圧力がかけられているので、分割手段5は、完全に常時、射出される流体14との分割手段5の中心部分5Cの表面5Bの接触を維持するように第2の端部分4の方向に移動する。第2の筐体Bは常に体積が最小である。
【0111】
したがって、シールした分割手段5と射出される流体14とが常時接触するので、流体14を射出するための全段階中に、発生したガスと流体14との間の混合はリザーバ1内部で起きない。したがって、射出される流体14は、最大濃度で流体14を供給すべき領域に到達し、これは本発明による射出装置の効率を向上させる。さらに、どんなばね手段13も存在しない場合は遅延時間が存在し、この遅延時間は、分割手段5がもはや流体14と接触していないときに、流体14と接触するようになる時間に対応する。発生したガスによって分割手段5上にかけられた圧力は、すぐに分割手段5を通して射出される流体14に伝達されるので、ばね手段13によって、流体14を射出する際の遅延時間がなくなる。ばねの効果がその上に加えられる分割手段5で第2の筐体Bを最小にすることにより、本発明による射出装置の方向の制約を除くことが可能であることにも留意されたい。もはや、射出装置を重力の方向に向けて射出オリフィス16Aが底部にある状態にする必要はない。さらに、分割手段5の面5Aがばね手段13からの圧縮力と発生したガスの圧力の両方を受けるので、流体14を射出するための効率は改善され、これにより、射出オリフィス16Aを通した流体14の射出量が増大する。
【0112】
航空機への適用の範囲内では、特に消火への適用の場合や緊急液圧式発生器としての適用の場合にも、モニタリング装置が流体射出装置の完全性を継続的にチェックすることが有利である。
【0113】
本発明の実施形態では、モニタリング装置は、分割手段5が第1の端部3と第2の端部4との間の所定の軸方向位置で検出されるときに、開放状態と閉鎖状態との間で状態が変化するような電気回路から構成される。有利には、前記電気回路は、分割手段が前記所定の位置と第2の端部4との間で検出されるときに開放し、第1の端部分3と前記所定の位置との間で検出されるときに閉鎖する。こうした電気回路は、2つの導体、例えば電線またはトラックから構成され、それらの電線またはトラックは、シリンダ形本体2の内面2Iに配置されリザーバ1の軸方向に沿って延びる。それらの電線の一端部は、第1の端部分3に位置するシールしたコネクタ21を介して電気回路に接続される。少なくとも1つの導体の他端部は、第2の端部分4から所定の距離の位置に配置され、それにより、電気回路の開放位置が画定される。導体は両方とも、分割手段5を通して、例えばやはり導電性材料から作られたブロック手段19を通して電気的に接続される。したがって、分割手段5は、第1の端部分3と前記開放位置との間に位置するときに電気回路を確実に閉鎖し、前記開放位置と第2の端部分4との間に位置するときに電気回路は開放している。回路の開放は、モニタリングシステムにより流体射出装置が完全性を欠いていると認識される。
【0114】
本発明の他の実施形態によれば、モニタリング装置20は、少なくとも1つの、好ましくは2つの導線20によって形成される。図6A、図6Bおよび図6Cに示すように、それらの導線20は、一方は分割手段5に取り付けられ、もう一方は例えば第1の端部分3に位置するシールしたコネクタ21を介して接地回路に接続される。導線の長さは、図6Aおよび図6Bによって示すように、分割手段5が射出装置の極端な動作温度に応じてリザーバ1中で仮定することができる異なる位置に適合される。したがって、導線は、射出以外の段階において過度の機械的ストレスを受けない。例えば微少の漏出に関連して、より具体的には、3MのNOVEC(登録商標)1230など、簡単に蒸発する流体で起こり易い、流体14の量が蒸発によって減少する場合は、分割手段5は、ばね手段13によってかけられる圧力下でリザーバ1の第2の端部分4に向かって変位を続ける。次いで、導線上のストレスは継続的に増大する。負荷のない射出装置が分割手段5の所定の位置を越えて見られる図6Cに示すように、ストレスにより少なくとも1つの導体の破損または切断が起きる。
【0115】
少なくとも1つの導線20の破損または切断により接地回路が開放し、開放することにより信号が生成され、これは、モニタリングシステムにより流体射出装置14が完全性を欠いていると認識され、メンテナンス動作を引き起こし、そのメンテナンス動作中に速く問題を特定する。例えば分割手段5をブロックする手段19を用いて分割手段5とシリンダ形本体2との間で確実に電気的に導通させることによって、例えばリザーバ1のシリンダ形本体によって大地帰路が実現される限り、2つの導体20のうち1つを除くことが可能であり、これは以下で詳細に説明する。ブロック手段19が分割手段5の変位中にシリンダ形本体2の内壁2Iと接触するときに、接地導通を確実にすることができる。
【0116】
図6Cに示すように、前と同じようにして、射出装置の排出中に、分割手段5は移動によってこれらの導線にも破損または切断を速く引き起こし、したがって接地回路が開放する。連続する射出からの自主的な指令に続くこのときの事象は、モニタリングシステムによって射出装置の排出の証拠として解釈され、この証拠はまた、航空機への適用における規制要件である。
【0117】
図3に、分割手段5が少なくとも1つの、好ましくは4つの連通用導管15を有することができる本発明の実施形態を示す。それらの連通用導管15は、シリンダ形本体2の内壁2Iに対して90度に配置され、横断方向かつ垂直に開放している。シリンダ形本体2は、実質的に、第2の端部分4の近傍にショルダ17を含む。このショルダ17により、第1の筐体Aの圧力を除去し、流体14の射出、続いて発生したガスの分配手段中への射出を完了することが可能になる。実際に、分割手段5が実質的に第2の端部分4の近傍の移動の終端で当接しているときは、第1の筐体Aは分配手段と連通しており、そのため発生したガスが、ショルダ17に向くように配置されたオリフィス15を通って流れ、第2の端部分4の内面4Iに位置する少なくとも1つの凹所18中に流れて射出オリフィス16Aに至る。発生したガスが流れて射出オリフィス16Aに至ることが可能になるように、凹所18を分割手段5の面5Bに作ることもできる。したがって、流体14を射出し、発生したガスを分配手段中に排出する。それにより、射出される流体14および発生したガスの両方において流体射出装置を完全に空にすることができる。これにより、リザーバ1を外気にさらし、それにより可能性のある残りの過剰圧力に関する機械的ストレスを避けることも可能になる。これにより、内部の過剰圧力をなお有する装置への介入によるリスクは無視されるので、特に、例えばメンテナンス動作中に、オペレータの安全を保証することができる。
【0118】
本発明の実施形態では、図3に示すように分割手段5はブロック手段19を備える。このブロック手段19は、例えば弾性のセグメントまたは金属製のロッド/ばねアセンブリであり、シールセグメント6の間でオリフィス15の上方に配置され、このブロック手段19の機能は、可能性のある衝撃荷重への応答によって、または排出効率に有害になる分配手段の逆圧によって前記分割手段5が後方へ戻るのを避けるために、移動の終端に分割手段5をロックすることである。流体14の射出の最後に、分割手段5の側方部分5Lはショルダ17に面している。ばねの影響によって、セグメントは、このショルダ17のリザーバ1の径方向に沿って移動し、したがって、分割手段5が後方へ戻るのを防止する機械式当接部を形成する。
【0119】
図7に、分割手段5が破損領域5Rを備える本発明の代替の実施形態を示す。その破損領域5Rは、中心部分5Cの円周で延び、分割手段5の中心部分5Cと側方部分5Lとの間に位置する。第2の端部分4は、第1の筐体Aと射出オリフィス16Aとの間の連通を可能にするために、発生したガスの圧力下で前記中心部分5Cが当接部を形成する部分4Bに接触するようになり、それにより分割手段5の破損領域5Rが破損するように、当接部を形成する部分4Bを備える。したがって、発生したガスを排出することができ、次いでそのガスは分配手段を通って流れる。それにより、射出される流体および発生したガスの両方について流体射出装置を完全に空にすることができる。これにより、リザーバ1を外気にさらし、それにより可能性のある残りの過剰圧力に関する機械的ストレスを避けることも可能になる。
【0120】
図8Aに、図7に示す本発明の実施形態による静止時の射出装置を示す。ばね手段13は、図を明確にするために示していない。分割手段5は第1の端部分3の近傍に配置される。図8Bに、発生したガスが第1の筐体A中に導入され分割手段5の表面5A上に圧力をかける射出の初期段階を示す。次いで、分割手段5は、射出される流体14上に第2の端部分4の方向に力をかける。したがって、分配キャップ16は開放し、射出オリフィス16Aを通して流体14が排出される。図8Cでは、分割手段5は、発生したガスによってかけられる圧力およびばね手段13によってかけられる圧縮力の両方を組み合わせた影響下で第2の端部分4に向かって移動する。分割手段の中心部分5Cは、第2の端部分4の当接部を形成する部分4Bと接触しており、分割手段5の側方部分5Lは当接部を形成するどの部分とも接触していない。また、中心部分5Cは、当接部を形成する部分4Bと接触するので第2の端部分4に向かって変位し続けることができず、側方部分5Lは変位し続けることができる。したがって、分割手段5による変位中に運動エネルギーが得られるので、側方部分5Lは破損領域5Rの破損によって中心部分5Cから外れる。図8Dに、射出段階の最後の射出装置を示す。分割手段5の側方部分5Lは、中心部分5Cから外れ、第2の端部分4に当たっており、それにより、円周方向に延び分割手段5の側方部分5Lと中心部分5Cとの間に位置する開口部が作られる。図8Dに示す本発明の実施形態では、射出導管は、第2の端部分4に設けられ、流体14および発生したガスが排出されて射出オリフィス16Aに至ることが可能になる。したがって、発生したガスを排出し、次いでそのガスが分配手段を通って流れることが可能である。それにより、射出される流体および発生したガスの両方について流体射出装置を完全に空にすることができる。これにより、リザーバ1を外気にさらし、それにより可能性のある残りの過剰圧力に関する機械的ストレスを避けることも可能になる。
【0121】
有利には、この装置を航空機用のいわゆる「最後の緊急事態」用の液圧式発生システムとして用いることができる。その場合には、航空機がインシデントの後で全ての電気式および液圧式の発生を失っているときに、こうした装置は機械的制御を作動させるのに必要な液圧エネルギーを提供することができる。その機械的制御とは、例えば、装備の特徴により単純な重力によってこれらの動作を行うことができないときの、制動タイプ、および地上での操舵、あるいは着陸装置の開放およびロックの用途に関するものである。こうしたタイプの使用に関して、追い出された流体は、関連の用途に適した特徴を有する液圧油である。
【0122】
図9および図10に本発明の第2の態様を示す。
【0123】
図2および図3と同一の参照番号は同一または同様の要素を指す。
【0124】
図9に本発明の実施形態による流体射出装置を示す。その流体射出装置は、リザーバ1と、リザーバ1の本体2とを備え、その本体2は、実質的にシリンダ形であり、ピストンタイプの分割要素5によって2つのチャンバAおよびBに分割されており、分割要素5はリザーバ中で長手方向に摺動することができる。チャンバのうち一方Bは、射出される流体を収容し、分配回路の流体からチャンバBを隔てるキャップ16を備えた端部分4またはフランジによって閉鎖される。
【0125】
ピストン5は、リザーバの内側の側壁とのシール手段を備え、そのシール手段は、弾性のセグメント19、および/またはリップ6を有するガスケット、あるいはシールセグメントの形態である。加圧チャンバAはまた、もう一方の端部分3、すなわちフランジによっても閉鎖されており、火工式ガス発生器7を収容する。有利には、加圧チャンバを閉鎖するフランジ3は、バルブを形成する手段(図示せず)を備え、その手段によって加圧チャンバを遅い圧力変化に関して外気と連通させることができる。
【0126】
有利には、その装置は、完全性をモニタリングするシステム、例えばすでに説明したような所定の長さの導線20によって閉鎖された接地回路を含む。こうした導線の長さは、所与の範囲にわたるピストンの位置変化に追従することができる。こうした位置変化は、例えば射出される流体の熱膨張に関連する。装置が起動したとき、または射出される流体のレベルが規定した最小値に達したときに、外側へのわずかな漏出による蒸発現象によって、例えば、導線20が破損して、接地回路を開放する。したがって、システムの完全性、すなわち、射出装置が起動していないこと、射出される流体の体積が限界閾値より低くなっていないことをチェックするために、上側フランジ3上に位置する接点21で行う単純な電気測定法でモニタリングすることが可能である。限界閾値より低くなっていると、装置がこれ以上消火器または油圧式のバックアップの役割を完全に保証することができなくなる。
【0127】
すでに説明したように、ピストンは、シリンダの長手方向軸に沿ってピストンに作用するばねを形成する手段によって、射出される流体との接触が維持される。これらのばねを形成する手段を、上側フランジ3とピストン5との間に配置された長手方向軸を有するコイルばね(図示せず)で形成することができるか、または装置が加圧チャンバを外気にさらす手段を有しない場合は、最初に加圧チャンバ中に収容されるガスによって形成することができる。この実施形態によれば、加圧チャンバAは外部に対して封鎖される。前記ガス、好ましくは不活性ガスは、装置を取り付ける際に例えば上側フランジ3上に位置するバルブ(図示せず)を介して、気圧よりわずかに高い圧力でその中に導入される。こうした加圧チャンバ中の初期のガスの圧力は、熱膨張の影響下で前記流体の体積が最小である場合でもピストンが射出される流体を押圧するように選択され、流体の圧力が最大のときに、熱膨張の影響下で流体の体積が最大であるときは、装置を起動させる場合を除いてキャップを破損するリスクが存在できないように、キャップを破損する圧力とは十分に異なる。
【0128】
本発明によれば、両チャンバ間のシールは、ピストン5と加圧チャンバAの上側フランジ3との間に備えられたシンブル50の存在によって改善される。有利には、こうしたシンブルは、加圧チャンバ中の圧力上昇中にシールの役割を保証することができるように、径方向に拡張可能な材料から構成される。シンブル50は、ピストンが射出される流体を常時押圧することを防止しないように、こうした流体の熱膨張の影響下で射出される流体と接触しながらピストンが占めることができる2つの最端の位置の間で長手方向に延長可能な材料から構成される。有利な実施形態によれば、シンブル50は、少なくとも1つの折り目51を含み、その折り目51によりその延長が容易になる。
【0129】
ガスケット6のシールがゆっくりと劣化することにより、ある量の射出する薬剤が徐々にシンブル50の下に捕捉される場合は、こうした残物が、空にする段階中に適合されるタイプのシールガスケットを通して押し戻される。リップガスケットはこうした動作に完全に適合される。
【0130】
加圧チャンバA中の圧力が上昇する影響、およびシンブル50が破損するまで延長する影響を組み合わせると、シンブルが加圧チャンバの壁に押し付けられ、それにより流体の残りがガスケット6によって射出される。しかし、全ての薬剤の残りがガスケット6によって全て押し戻されない場合は、空にする手順の第5の段階で薬剤の残りを射出することになる。
【0131】
リザーバの排出の起動は、火工式ガス発生器7を起動させることによって行われる。加圧チャンバ中である体積のガスが発生すると、このチャンバ中の圧力が上昇し、その圧力は、ピストンを介してもう一方のチャンバBの射出される流体に伝達される。こうした圧力の影響下で、キャップ16が破損して、分配回路中に流体を流し、加圧チャンバ中で発生した圧力によって流体に押し付けられるピストンを平行移動させる。
【0132】
加圧チャンバ中の圧力はまた、シンブル50を径方向に拡張させる。
【0133】
規定の位置を越えてピストンが平行移動すると、導線20が破損し、次いでシンブルが破損する。
【0134】
移動の終端で、端部の近傍において流体を収容するチャンバBの壁上に作製されたショルダ17により、ピストンの弾性のセグメント19の拡張が可能になる。セグメントが拡張すると、ピストンが上方向に移動する可能性、したがってリザーバ中の流体が上方向に移動する可能性が妨げられる。
【0135】
有利には、ピストンはバルブ60を備え、そのバルブ60は、火工反応からのガスを、それをパージするために分配回路に通すことができる。
【0136】
図11〜図19に本発明の第3の態様を示す。
【0137】
図2および図3と同一の参照番号は同一または同様の要素を指す。
【0138】
図11Aに、リザーバを2つのチャンバA、Bに分割する内膜105を備えた実質的に球形のリザーバ1を用いた、本発明の前記第3の態様による流体射出装置の第1の実施形態を示す。第1のチャンバAをバルブ700を介して圧縮したガスと連通させることができる。第2のチャンバBは、消火のための消火剤など、射出すべき流体を収容する。
【0139】
加圧ガスがチャンバAを充填しているときは、膜105は、流体を収容するチャンバBに向かって変形し、それにより生じる前記流体中の圧力上昇により、引裂き可能なキャップ16が破損して、リザーバを流体分配回路25に連結するオリフィスを解放する。したがって、リザーバは分配回路25と連通し、流体は使用点に向かって分配回路25中に注がれる。
【0140】
図11Aに空にし終わったこうした装置を示す。チャンバBはもはや流体を収容しないかまたは非常に少量しか収容していない。次いで、膜105は、リザーバと分配回路との間の連通オリフィスに対する圧力によってつぶれ、このオリフィスをブロックし、その結果、リザーバ中に流体を再導入することが不可能になり、このタイプのいくつかのリザーバを、同じ分配回路上に並列に取り付け、すでに空になっているリザーバの1つをリザーバからの射出された流体で満たすことなしに順次起動することができる。先行技術(図1)に関して等価の機能を有した状態で、この実施形態では、回路上の逆止バルブを除去し、したがって報告された圧力損失がある場合はそれらを除去することが可能である。しかし、こうした装置は、膜の選択、ならびにその挙動の予測、およびそれに続く装置の信頼性の予測に関して困難を抱えている。実際に、膜105は、確実にリザーバを完全に空にし射出オリフィスとも呼ばれる連結オリフィスを効率的にブロックするために、十分に可撓性があり、圧力または空にし終わるときにオリフィスと出合うことによる影響下で穿孔されないために、十分抵抗力があるものとすることができる。一例として、膜105は非強化エラストマーから構成することができる。
【0141】
これらの欠点に関して装置を改良するために、本発明による装置の実施形態はリザーバ1を備え(図2B)、リザーバ1の本体2はシリンダ形であり、本体2の内側で、ピストン5が前記ピストンとリザーバの内壁との間にシール手段6を備えることが分かる。ピストンは、シリンジの形で流体をリザーバの外に射出するようにリザーバ中で軸方向に移動することができる。ピストンの変位は、特にアクチュエータを介して、またはピストンの流体に接触している面の反対側の面に加圧ガスをリザーバ中に導入することによって、当業者に知られた任意の手段によって行われる。
【0142】
ピストン5が軸方向に変位する(図11Bに前記ピストン5を変位させるための2つのステップを示す)ことによって、流体の圧力が上昇して、その後引裂き可能なキャップ16が破損して、分配回路25とのリザーバの連結部16Aのオリフィスをブロックする。流体は、ピストン5を矢印の方向に変位させることによってリザーバから射出され、次いで、使用点に向かって分配回路25中に流れる。移動の終端で、ピストン5は、直接の接触によってまたはシール手段6を介して回路と連結するためにオリフィスをブロックし、そのシール手段6は、ピストン上に配置する(図2Bの場合)か、あるいは分配回路との連結部16Aの近傍でリザーバに取り付けることができる。
【0143】
分配回路との連結部のオリフィス16Aがピストンによってブロックされるので、流体は、続いて同じ分配回路25上に並列に取り付けられた他のリザーバを空にしている間に、すでに空になったリザーバ中に戻ることができない。しかし、前述のもの(図2A)と同様のこうした解決策は、図2Aによる実施形態の場合に、連結オリフィスの外周上にピストン5または膜105の作動力を、少なくとも全てのリザーバを空にする間は保持すべきであることが課される。加圧ガスをリザーバ中に噴射することによってこうした作動力が得られる場合には、こうした作動力によりリザーバが圧力下で維持され、これは、動作後に、特にメンテナンス動作後にリザーバを再構成する際にこれらのリザーバの破裂または突然の圧力除去のリスクを伴うことを意味する。こうした突然の破裂または圧力除去は、これらのリザーバの近傍に位置する構成要素に対して非常に有害なことがある。
【0144】
これらの欠点の改善法を見つけるためには、有利な実施形態(図12)が、移動の終端にピストン5をロックする手段を含む。ピストン5の溝に配置された弾性リング19または弾性のセグメントと、分配回路25との連結部を含む端部でリザーバ本体中に作られたショルダ17との協働によって、これらのロック手段を得ることができる。
【0145】
弾性の反応によって、ピストンの溝に配置された弾性のセグメントまたはリング19は、拡張する、すなわち直径が増大する傾向がある。流体を射出するためにリザーバ中で軸方向に変位する間にピストン5が移動の終端の領域に到達するときに、弾性リング19はショルダ17の直径に達するまで離れる方に移動する。したがって、ピストンは、それに機械的な作用が加えられなくなってももはや元に戻ることができない。
【0146】
これらの状況下で、単独の回路との連結部を完全にはブロックしていない場合でも、他のリザーバを空にすることから生じる少量の流体が、空のリザーバ中に浸入することができ、ロック手段17、19によって適位置にロックされたピストン5は、リザーバの内壁2Iとのシール手段によってリザーバを満たすのを防止する。したがって、ピストンをロックした後で、ピストンの背後に配置されたリザーバの体積は、もはや加圧ガスを収容せず、したがって加圧された要素の存在に固有のリスクを避けるようにパージすることができる。
【0147】
有利な実施形態(図13)によれば、リザーバ中に直接またはその近くに配置された火工カートリッジ70を起動させることによって、流体を射出するのに必要な加圧ガスを発生することができる。次いで、ピストンは、シールして分割された2つのチャンバA、Bを画定し、第1のチャンバAは、ピストンを軸方向に変位させるのに必要な加圧ガスを受けることが意図されている。第2のチャンバBは流体を収容する。
【0148】
火工カートリッジ70が点火すると、加圧ガスが発生し、これはもう一方の端部に向かってピストンを推進する効果を有し、それにより、チャンバB中で流体が圧縮される。流体は、所与の圧力に達するときに、キャップを引裂き分配回路中に注がれる。空にするのを終了する際に、ピストンは弾性リング19とショルダ17との作用が組み合わさってロックされ、それによりリザーバ中に逆止要素が形成される。
【0149】
例えばすでに説明したように、リザーバは、圧力のバランスを取るためのバルブ12を備えることができる。こうした特定のバルブは、前記圧力がゆっくり変化する場合はチャンバAの内部とリザーバの外部との間の圧力のバランスを取り、圧力がピークの場合に閉鎖する。火工式ガス発生器70が点火する際または加圧ガスを導入する際に、それによってチャンバA中の圧力が突然変化すると、バルブ12が閉鎖しピストン5がリザーバのもう一方の端部に向けて推進され、それによりキャップ16が破損した後で流体が射出される。空にするのを終了する際に、弾性リング19はショルダ17中で離れる方に移動して、ピストンが戻るのを防止し、それにより分配回路中の流体に対する逆止システムを形成する。次いで、チャンバA中の圧力は、本体外部の圧力より大きい値に安定する。次いで、バランスバルブ12により、ガスがチャンバAの外に逃げ、圧力がチャンバA中で低くなることが可能になる。あるいは、移動の終端にロックしたピストン5の位置に連結するシステムによって開放する際に、バランスバルブ12を通常閉鎖し制御することができ、そのためチャンバAの圧力除去が可能になる。
【0150】
この実施形態によれば、動作後に圧力下にとどまらない自立型の射出装置が利用可能になる。
【0151】
しかし、リザーバを空にするのを終了する際は、分配ネットワークを全て確実に空にするために、加圧ガスをチャンバA中に分配回路に向けることが有利である。
【0152】
図14に、加圧ガスを収容するチャンバAと流体を収容するチャンバBとを連通させることができる、バルブを形成する手段を組み込んだピストン5の部分断面図を示す。バルブを形成するこのような手段は、ピストン5中に孔110を備え、前記孔は、2つのシート212、213に当たるバルブ111によってブロックされ、加圧ガスを収容するチャンバA側に位置するシート213は、孔によって直接作られ、流体側に位置するシート212は追加のリング214になるように形成される。バルブ111は、理想的には、ばねを形成する手段112によってシート212、213のそれぞれに対して押圧される。
【0153】
有利な実施形態によれば、リング214の軸方向位置は、バルブ111の両方の端部をシート212、213上に確実に完全に支持するために調節可能である。ばねを形成する手段112、およびバルブ111の両端の外径は、空にする間に、ガスの圧力によって生じバルブを開放する傾向があるバルブ上にかかる軸方向の力が、流体によってバルブの他方の端部上にかかる力と、ばね112の力との合計とバランスが取れるように選択される。後者の2つの力はバルブを閉鎖する傾向がある。したがって、流体を収容するチャンバB中に流体がある限り、バルブは閉鎖されシールされる。リザーバが空のときに、ガスによってバルブ111上にかかる圧力はもはや流体の圧力によってバランスが取れておらず、バルブが開放し、加圧ガスを通し、それにより分配回路25中に浸入し、流体の射出を促進する。
【0154】
ガスを収容するチャンバA中の圧力が降下するときは、ばね112の影響下でバルブ111が閉鎖する。バルブが閉鎖されているときは、ピストン5はやはりシールされ、分配回路25に収容される流体に対して逆止の役割を果たす。
【0155】
有利には、バルブを形成する手段(図14)を径方向に配置することができる。この実施形態(図15)によれば、ピストン5は、軸方向に延びるスカート113を備え、前記スカートは、溝の両側に軸方向に配置されたシール手段121、122中を備える環状の溝を含む。スカート113を備えたピストン5がリザーバ中に存在するときは、シール手段121、122および溝はシールした環状のチャンバ80を形成する。
【0156】
バルブを形成する手段140は径方向に取り付けられ、環状のチャンバ80を、加圧ガスを収容するチャンバAと連通させることができる。
【0157】
空にする間は、ピストンの環状の溝の両側に配置されたシール手段121、122は両方とも、シリンダの内壁と接触する。加圧ガスは、バルブ140を開放する傾向があり、バルブのばねの作用下で圧力が互いにつりあいバルブが閉鎖するまでシールした環状のチャンバに入る。
【0158】
ピストンの移動の終端に、弾性リング19はショルダ17中で拡張して、ピストン5が戻るのを防止する。ショルダ17が存在するので、ピストン5の正面の近傍に位置するシール手段122は、もはやリザーバの壁と接触しておらず、もはやシール機能を保証しない。ガスの圧力の影響下で、バルブ140は開放し、加圧ガスを分配回路25と連通させる。
【0159】
代替の実施形態(図16および図17)によれば、ピストンのスカート113中のバルブを形成する手段の代わりに、前記スカートで作製されシールした環状チャンバ80中に解放する単純な管腔115を用いる。前記管腔は円形の弾性リング116によってブロックされ、その弾性リング116は、ピストンの溝に配置され、弾性によってこの溝の底部に対して押圧する傾向があり、そのためスカート115の管腔はリング116によってブロックされる。そのために設けられたチャンバA中に加圧ガスが導入されるときに、圧力によってリング116が拡張し、そのリング116はもはや溝の底部で押圧されないので、加圧ガスを収容するチャンバAをシールした環状のチャンバ80と連通させる。
【0160】
有利には、リザーバの底部は、移動の終端にピストン5を受けることができる当接部101を備える。空にするのを終了する際に、ピストンは、弾性リング19がショルダ17中に係合することによってピストンが戻るのをブロックするのと同時に、前記当接部101と接触するようになる。シール手段122の一部がもはやリザーバの内壁とショルダで接触しないときは、チャンバ80はもはや移動の終端でシールされない。ガスの圧力がリング116を拡張し続けると、ガスは管腔115中を通って分配回路に向かって流れることができる。ガスの圧力が降下するときに、リング116は、管腔上で細くなって、やはりピストンのシールおよび分配回路中に収容される流体に対する逆止システムの役割を保証する。
【0161】
管腔115をブロックできる弾性リング116は、有利には、スリットリング(図18および図19)として存在する。追加の弾性の拡張の容量をもたらすことに加えて、リング116に角度を付け、前記スリットを確実に管腔115に面して配置するために有利にはこうしたスリットを用いることができる。このために、リング116を受けるピストンの溝は、有利には、溝の底部に突起部215を備える。ブロックするスリット弾性リング116が溝に取り付けられるときは、スリットの両方の縁部が前記突起部215の両側に配置される。したがって、スリットと突起部215との間の協働は、ピストンのスカートの溝においてリング116の回転を止めることができる。
【符号の説明】
【0162】
1 リザーバ
2 シリンダ形本体
2I 内壁
3 第1の端部分、フランジ
4 第2の端部分
4B 当接部を形成する部分
4I 内面
5 分割要素、ピストン、分割部分
5A 表面
5B 表面
5C 中心部分
5I 断熱領域
5L 側方部分
5R 破損領域
6 シール手段、シールガスケット
7 圧力を修正することができる手段、火工式ガス発生器
8 燃焼筐体
9 点火装置
11 ディフューザ
12 圧力制御手段、バルブ
13 ばね手段
14 流体
15 連通用導管、オリフィス
16 分配キャップ
16A 射出オリフィス
17 ショルダ
18 凹所
19 シール手段、ブロック手段、弾性リング
20 モニタリング装置、導線、導体
21 コネクタ
25 流体分配回路
30A 第1のバルブ筐体
30B 第2のバルブ筐体
31 可動式パーツ
31T ヘッド
32 バルブ本体
32B 当接部を形成する部分
32I 内面
32S バルブシート
33 可動式分割手段
34 連通用導管
35 プラグ
35E 突起
36 ばね
37 ばね
38 当接部を形成する部分
39 連通用導管
39A 入口
39B 出口
40 遊び
50 シンブル、ソックス
51 折り目
60 バルブ
80 環状のチャンバ
101 当接部
105 内膜
110 孔
111 バルブ
112 ばねを形成する手段
113 スカート
115 管腔
116 弾性リング
121 シール手段
122 シール手段
140 バルブを形成する手段
212 シート
213 シート
214 追加のリング
215 突起部
700 バルブ
A 第1のチャンバ、第1の筐体、加圧チャンバ
B 第2のチャンバ、第2の筐体

【特許請求の範囲】
【請求項1】
流体を射出する装置であって、実質的にシリンダ形のリザーバ(1)と、前記リザーバ(1)を2つのチャンバ(A、B)に分割する分割要素(5)と、前記分割要素と前記リザーバの側壁との間のシール手段(6)とを備え、前記分割要素(5)が、前記チャンバの相対体積を変更するように前記リザーバ中で前記リザーバの長手方向軸に沿って摺動でき、前記第1のチャンバ(B)が、流体で充填され、キャップによって閉鎖されたオリフィスを備え、その結果、前記分割要素の平行移動および前記キャップの開放の影響下で前記リザーバから前記オリフィスを通して前記流体を射出することができ、流体射出装置がさらに、前記分割要素を平行移動させるためにもう一方のいわゆる加圧チャンバ(A)中の圧力を修正することができる手段(7)を備える流体射出装置において、
前記加圧チャンバ(A)が、前記加圧チャンバの内側を前記リザーバの前記側壁からシール可能に分割することができるシンブル(50)を備えることを特徴とする流体射出装置。
【請求項2】
前記シンブル(50)が、前記分割要素(5)の2つの長手方向位置の間で常時前記加圧チャンバ(A)と前記シリンダの壁との間を確実にシールすることができることを特徴とする、請求項1に記載の流体射出装置。
【請求項3】
前記シンブル(50)が、径方向に拡張可能な可撓性材料から構成されることを特徴とする、請求項2に記載の装置。
【請求項4】
前記シンブルの前記シールが、前記分割要素の規定した長手方向位置を越えると破損することを特徴とする、請求項3に記載の装置。
【請求項5】
前記シンブルが、前記分割要素(5)の前記平行移動の影響下で広げることができる少なくとも1つの折り目(51)を含むことを特徴とする、請求項1または4に記載の装置。
【請求項6】
前記加圧チャンバ(A)と連通する火工式ガス発生器(7)を含むことを特徴とする、請求項1から5のいずれかに記載の装置。
【請求項7】
前記チャンバの遅い体積の変化に対して内部の圧力を一定に維持し、前記火工式ガス発生器(7)の作動によって生じた圧力および体積の変化に対して前記チャンバを閉鎖するために、前記加圧チャンバ(A)が、前記チャンバ(A)を外部と連通させることができる装置を含むことを特徴とする、請求項6に記載の装置。
【請求項8】
前記流体の射出が終わる際に前記火工反応によって発生したガスを前記流体分配回路に連通させることができる手段(60)を含むことを特徴とする、請求項5または6に記載の装置。
【請求項9】
ガスまたは流体を完全に排出した後で、ガスまたは流体が前記分配回路から前記リザーバ中に戻るのを防止できる手段(6、19、17)を含むことを特徴とする、請求項1から8のいずれかに記載の装置。
【請求項10】
前記射出される流体が、フッ化ケトンタイプの消火剤であることを特徴とする、請求項1から9のいずれかに記載の装置。
【請求項11】
前記射出される流体が液圧油であることを特徴とする、請求項1から10のいずれかに記載の装置。
【請求項12】
請求項9または10に記載の装置を備える航空機。

【図1】
image rotate

【図2A】
image rotate

【図2B】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5A】
image rotate

【図5B】
image rotate

【図5C】
image rotate

【図6A】
image rotate

【図6B】
image rotate

【図6C】
image rotate

【図7】
image rotate

【図8A】
image rotate

【図8B】
image rotate

【図8C】
image rotate

【図8D】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11A】
image rotate

【図11B】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate


【公表番号】特表2011−500242(P2011−500242A)
【公表日】平成23年1月6日(2011.1.6)
【国際特許分類】
【出願番号】特願2010−530489(P2010−530489)
【出願日】平成20年10月29日(2008.10.29)
【国際出願番号】PCT/EP2008/064689
【国際公開番号】WO2009/056574
【国際公開日】平成21年5月7日(2009.5.7)
【出願人】(509230403)エアバス・オペレーションズ (30)
【Fターム(参考)】