説明

照明装置、照明方法、露光装置、および電子デバイスの製造方法

【課題】照明光の照度均一性を向上できる照明装置、照明方法、露光装置、および電子デバイスの製造方法を提供すること。
【解決手段】光入射端面20inと、光出射端面20outを備えたロッドインテグレータと、複数の光束を光入射端面20inに入射させる光導入部10Aと、を備え、光出射端面20outから出射した光を照明光として用いる照明装置1Aであって、光導入部10Aは、複数の光束LB2を、光入射端面20inの長手方向の中心が対称中心となるように長手方向に沿った位置に入射させるように設定した。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ロッドインテグレータを介した照明光を照明対象に照射する照明技術、露光技術、およびこの露光技術を用いる電子デバイスの製造技術に関する。
【背景技術】
【0002】
半導体素子や液晶表示素子等を製造する際に利用されるフォトリソグラフィ技術では、マスク(レチクルまたはフォトマスク等)に形成されたパターンをレジスト等の感光性材料が塗布された基板に投影し、基板上に微細なパターンを形成するために、マスクをほぼ均一な照度で照明することが求められている(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2004−289123号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
このようなフォトリソグラフィ技術では、基板上に形成するパターンの更なる微細化または高精度化にともない、線幅誤差の許容度が小さくなり露光量の制御が厳しくなるため、マスクを照明する照明光の照度均一性の向上が必要となる。
【0005】
そこで、本発明の態様は、照明光の照度均一性を向上できる照明装置、照明方法、露光装置、および電子デバイスの製造方法を提供することを目的としている。
【課題を解決するための手段】
【0006】
本発明の一態様によれば、光入射端面と、光出射端面と、互いに対向する第1及び第2側面と、を有し、前記光入射端面から入射した光を前記第1及び第2側面で反射して前記光出射端面から光を出射するロッドインテグレータを備え、該ロッドインテグレータを介した照明光を照明対象に照射する照明装置であって、前記光入射端面上の複数の入射位置から前記ロッドインテグレータに前記照明光を入射させる光導入部を備え、前記光導入部は、前記第1及び第2側面が対向する方向に沿って前記第1側面と前記第2側面との間の中心位置に対して互いに対称な配置に設定される前記複数の入射位置から前記ロッドインテグレータに前記照明光を入射させる照明装置が提供される。
【0007】
また、本発明の一態様によれば、光入射端面と、光出射端面と、互いに対向する第1及び第2側面と、を有し、前記光入射端面から入射した光を前記第1及び第2側面で反射して前記光出射端面から光を出射するロッドインテグレータを介した照明光を照明対象に照射する照明方法であって、前記第1及び第2側面が対向する方向に沿って前記第1側面と前記第2側面との間の中心位置に対して互いに対称な配置に設定される前記光入射端面上の複数の入射位置から前記ロッドインテグレータに前記照明光を入射させる照明方法が提供される。
【0008】
また、本発明の一態様によれば、マスクに形成されたパターンを介した光によって感光性基板を露光する露光装置であって、上記の本発明の一態様に係る照明装置を備えた露光装置が提供される。
【0009】
また、本発明の一態様によれば、上記の本発明の一態様に係る露光装置を用いて、前記感光性基板に前記パターンを転写する工程と、前記パターンが転写された前記感光性基板を処理する工程と、を含む電子デバイスの製造方法が提供される。
【発明の効果】
【0010】
本発明の態様によれば、照明光の照度均一性を向上できる照明装置、照明方法、露光装置、および電子デバイスの製造方法を提供できる。
【図面の簡単な説明】
【0011】
【図1】図1は、本発明の第1の実施形態に係る露光装置の概略を示す斜視図である。
【図2】図2は、第1の実施形態に係る露光装置に用いる照明光学系と投影光学装置の一部の構成を示す立面図である。
【図3】図3は、第1の実施形態に係る露光装置に用いるマスクの構成を示す平面図である。
【図4】図4は、第1の実施形態に係る露光装置の照明光学系の一部による視野と投影光学装置の一部による像野の関係を示す平面図である。
【図5】図5は、第1の実施形態に係る照明装置の概略を示す構成図である。
【図6】図6は、第1の実施形態に係る照明装置における光導入部とロッドインテグレータの位置関係を示す斜視図である。
【図7】図7は、第1の実施形態に係る照明装置に用いられるロッドインテグレータの平面図である。
【図8】図8は、ロッドインテグレータに入射する光束の作用および効果を示す図である。
【図9】図9は、石英でなるロッドインテグレータに、NA=0.20のガウス型分布の光束を光入射端面の中心から入射した場合の光出射端面での幅方向(長手方向)の位置(座標)と出射光量との関係を示す図である。
【図10】図10は、ロッドインテグレータの性能を示す指数L×NA(n×w)と出射光量との関係を示し、ロッドインテグレータの光出射端面の一番端での出射光量をプロットした図である。
【図11】図11は、ロッドインテグレータの光入射端面へ光束を入射する位置をずらした場合の出射光量との関係を示す図である。
【図12】図12は、ロッドインテグレータの光入射端面の中心からの距離が異なる場合の出射光量との関係を示す図である。
【図13】図13は、ロッドインテグレータの中心軸からd1およびd2だけずれて光束が垂直入射した場合に、ロッドインテグレータの光出射端面での出射光量を示す図である。
【図14】図14は、ロッドインテグレータの光入射端面に3つの光束を入れる場合を示す説明図である。
【図15】図15は、ロッドインテグレータの光入射端面に4つの光束を入れる場合を示す説明図である。
【図16】図16は、ロッドインテグレータの光入射端面に2つの光束を入射させた場合に照度が均一になる条件での場合と、光束の間隔を狭めた場合と、光束の間隔を広げた場合での出射光量の分布を示す図である。
【図17】図17は、本発明の第2の実施形態に係る照明装置におけるロッドインテグレータの光入射端面に2×2列の4本の光束を入射させる入射位置を示す平面図である。
【図18】図18は、第2の実施形態に係る照明装置における光導入部とロッドインテグレータとを示す斜視図である。
【図19】図19は、第2の実施形態に係る照明装置の平面図である。
【図20】図20は、本発明の第3の実施形態に係る照明装置の概略を示す構成図である。
【図21】図21は、本発明の第4の実施形態に係る照明装置の概略を示す構成図である。
【図22】図22は、ロッドインテグレータの光入射端面の中央に垂直に開口光束0.3のガウス型分布をした光が入射した場合の光出射端面20での出射光量分布を示す図である。
【図23】図23は、光出射端面から出射される光の出射角度方位を光出射端面の幅方向の座標に沿ってプロットした図である。
【図24】図24は、入射位置がロッドインテグレータの光入射端面の長手方向の幅の半分だけ離れ、光入射端面の中心が対称中心となるように2つの光束を光入射端面に垂直に入射させたときの照度分布を示す図である。
【図25】図25は、光出射端面での長手方向の座標に応じて出射角度方位を算出した結果を示す図である。
【図26】図26は、2つの入射光束の入射位置をそのままにして入射角度を内側(光束同士が互いに近づくように内側)に向けたときの光出射端面での長手方向の座標に沿って出射角度方位をプロットした図である。
【図27】図27は、光出射端面の中心からロッドインテグレータの幅の1/4だけ離れた点での出射角度方位と入射光束の傾きとの関係を示す図である。
【図28】図28は、光出射端面の中心からロッドインテグレータの幅の1/4だけ離れた点から出射する光の経路を示す図である。
【図29】図29は、光出射端面における図28における点yでの出射光束の角度方位がロッドインテグレータの光出射端面に垂直に近くなる場合の照度(出射光量)を示す図である。
【図30】図30は、本発明の第1の実施形態に係る露光装置を用いて電子デバイスを製造する方法の一例として液晶表示素子の製造方法を示すフローチャートである。
【発明を実施するための形態】
【0012】
以下、図面を参照して、本発明の実施形態について詳細に説明する。なお、図面は模式的なものを含み、図面相互間において互いの寸法の関係や比率が異なる部分が含まれている。
【0013】
[第1の実施形態]
図1〜図7は、本発明の第1の実施形態に係る露光装置に関する図である。
〔露光装置〕
図1において、露光装置100は、ステップ・アンド・スキャン方式の走査型の投影露光装置であり、パターンが形成されたマスクM(照明対象)を照明する照明部IUと、マスクMを保持して移動するマスクステージ(不図示)と、マスクMのパターンの拡大像をプレートP(露光対象)上に投影する複数の投影光学系PL1〜PL7を含む投影光学装置PLと、プレートPを保持して移動するプレートステージ(不図示)と、マスクステージおよびプレートステージを駆動するリニアモータ等を含む駆動機構(不図示)と、この駆動機構等の動作を統括的に制御する主制御系(不図示)と、を備えている。
【0014】
露光装置100は、図示しないマスクホルダを介してマスクステージ上にマスクMが吸着保持されており、そのマスクステージの位置はマスク側のレーザ干渉計によって計測されている。また、プレートPは、プレートホルダを介して移動鏡150を備えるプレートステージ上に吸着保持されており、その移動鏡150を介してプレートステージの位置がプレート側のレーザ干渉計によって計測されている。このマスク側およびプレート側のレーザ干渉計の計測値に基づいて、主制御系(不図示)が駆動機構を介してマスクステージ(マスクM)およびプレートステージ(プレートP)の位置、姿勢および速度等を制御する。
【0015】
本実施形態のプレートPは、一例として、液晶表示パネル(電子デバイス)製造用のフォトレジスト(感光材料)が塗布された1.9×2.2m角、2.2×2.4m角、2.4×2.8m角、または2.8×3.2m角等の矩形の平板状のガラスプレートであり、他の一例としては、一辺の長さ又は対角長が500mmより大きいガラスプレートである。なお、プレートPとしては、薄膜磁気ヘッド製造用のセラミックス基板または半導体素子製造用の円形の半導体ウェハ等も適用可能である。
【0016】
なお、この露光装置100の説明においては、図1中に設定したXYZ直交座標系を参照しつつ各部材の位置関係について説明する。このXYZ直交座標系は、X軸およびY軸がプレートPに対して平行となるように設定されており、Z軸がプレートPに対して直交する方向に設定されている。また、図1中のXYZ座標系は、一例として、XY平面が水平面に対して平行に設定されて、Z軸が鉛直方向に設定されている。この実施形態では、マスクMおよびプレートPを同期させて移動させる方向(走査方向)をX方向に設定している。
【0017】
照明部IUは、7つの部分照明光学系IL1、IL2、IL3、IL4、IL5、IL6、IL7を含み、部分照明光学系IL1〜IL7のそれぞれを介してマスクMを部分的に照明するように構成されており、それぞれマスクM上の対応する照明領域を均一に照明する。各部分照明光学系IL1〜IL7は、照明光としてレーザ光を出射する光源部LSと、ロッドインテグレータ20と、光源部LSから出射される照明光をロッドインテグレータ20に導く光導入部10Aと、ロッドインテグレータ20から出射される照明光をマスクMに導くリレー光学系40と、を備える。
【0018】
また、各部分照明光学系IL1〜IL7は、ロッドインテグレータ20の光出射端面20out(図2参照)の近傍に、マスクM上の視野V1〜V7に対応する視野絞り(不図示)が配置されており、リレー光学系40によって視野絞りの像が所定の倍率でマスクMに結像するように設定されている。すなわち、視野絞りとマスクMとは、リレー光学系40によって互いに光学的に共役にされている。なお、本実施形態では、光源部LSとリレー光学系40との間に設けられたロッドインテグレータ20および光導入部10Aを含む部分を照明装置1Aとしている。
【0019】
投影光学系PL1、PL2、PL3、PL4、PL5、PL6、PL7は、マスクMとプレートPとの間に配置され、部分照明光学系IL1〜IL7によってそれぞれ照明されるマスクMの視野V1〜V7(ここでは照明領域に等しい)内のパターンの拡大像を、プレートP上にそれぞれ投影し、プレートPの上面(露光面、感光面)上に結像する。
【0020】
走査方向に直交する非走査方向(Y方向)に沿って並ぶ第1列の部分照明光学系IL1、IL3、IL5、IL7に対応する同第1列の投影光学系PL1、PL3、PL5、PL7は、それぞれマスクMのパターン面が配置される面(第1面)上の非走査方向に沿った視野V1、V3、V5、V7を持ち、プレートPの上面が配置される面(第2面)上の非走査方向に沿って所定間隔で配列された像野(投影領域)I1、I3、I5、I7にマスクMのパターンの像をそれぞれ形成する。同様に、非走査方向に沿って並ぶ第2列の部分照明光学系IL2、IL4、IL6に対応する同第2列の投影光学系PL2、PL4、PL6は、それぞれ第1面上の非走査方向に沿った視野V2、V4、V6を持ち、第2面上の非走査方向に沿って所定間隔で配列された像野(投影領域)I2、I4、I6(I2、I4は不図示)に像をそれぞれ形成する。
【0021】
なお、図1では、部分照明光学系IL2、IL4は、部分照明光学系IL1,IL3,IL5,IL7の背面側に位置しており、部分投影光学系PL2,PL4は、部分投影光学系PL1,PL3,PL5,PL7の背面側に位置しているため、図示が省略されている。
【0022】
また、第1列の投影光学系と第2列の投影光学系との間には、プレートPの位置合わせを行うために用いる計測系としてのオフアクシスのアライメント系152と、マスクMおよびプレートPのフォーカス位置(Z方向の位置)を合わせるために用いる計測系としてのオートフォーカス系154とが配置されている。
【0023】
投影光学系PL1を一例にして詳細に説明すると、図2に示すように、この投影光学系PL1は、マスクMとプレートPとの間の光路中に配置される凹面反射鏡CCMと、マスクMと凹面反射鏡CCMとの間の光路中に配置されたZ軸に平行な光軸AX11を持つ第1レンズ群G1と、第1レンズ群G1と凹面反射鏡CCMとの間の光路中に配置される第2レンズ群G2と、第2レンズ群G2とプレートPとの間の光路中に配置されて、第2レンズ群G2から+Z方向に進行する光を−X方向に偏向させて光軸AX11を横切る光軸AX12に沿わせる第1偏向部材FM1と、第1偏向部材FM1とプレートPとの間の光路中に配置されて、第1偏向部材FM1から−X方向に進行する光を−Z方向に偏向させる第2偏向部材FM2と、第2偏向部材FM2とプレートPとの間の光路中に配置されて、第1レンズ群G1の光軸AX11と平行な光軸AX13を有する第3レンズ群G3と、を備えている。
【0024】
第2レンズ群G2および凹面反射鏡CCMの光軸は、第1レンズ群G1の光軸AX11と共通である。すなわち、投影光学系PL1は、凹面反射鏡CCMを用いた軸外れ光学系であり、第1、第2レンズ群G1、G2を通過したマスクMを介する光は、その凹面反射鏡CCMで再度反射した後に、第1、第2偏向部材FM1、FM2を介して第3レンズ群G3を介してプレートP上に、マスクMの視野V1を投影して像野I1に像を形成する。なお、凹面反射鏡CCMと第2レンズ群G2との間の光路中の凹面反射鏡CCMの反射面の近傍には、投影光学系PL1のプレートP側の開口数を決定するための開口絞りASが備えられており、開口絞りASは、マスクM側およびプレートP側が略テレセントリックとなるように位置決めされている。この開口絞りASの位置は投影光学系PL1の瞳面とみなすことができる。
【0025】
また、投影光学系PL1は、凹面反射鏡CCMを用いた軸外れ光学系による有効な結像光束として、第1、第3レンズ群G1、G3の各レンズでは光軸AX11、AX13に対して−X方向側の半面内を通過するようになっており、このために、より大型のレンズから構成される第3レンズ群G3の各レンズでは、結像光束が通過しない部分である光軸AX13から+X方向側の半分を切断している。
【0026】
ところで、露光装置100にセットされるマスクMは、図3に示すように、非走査方向(Y方向)に沿って配置されて、図1の投影光学系PL1〜PL7の台形状(円弧状、または端部が三角形状等でもよい、以下同様)の視野V1〜V7が位置決めされる7列の列パターン部M10〜M16を備えている。視野V1〜V7が台形状であるのは、継ぎ誤差を低減するために、視野V1〜V7の両端部に対応するパターンの像をプレートP上に重ねて露光するためであり、そのために、列パターン部M10〜M16の両端部には交互に同じパターンが形成されている。ここで、交互に同じパターンが形成されるのは、投影光学系PL1〜PL7の結像特性として、走査方向(X方向)に関してはXZ面内で光の進行方向を直角に変える反射面が奇数含まれていてかつ一回結像のため正立像になり、非走査方向(Y方向)に関してはYZ面内で光の進行方向を直角に変える反射面が含まれておらずかつ一回結像のため倒立像になるからである。
【0027】
ただし、Y方向の両端部の視野V1、V7の内側のエッジ部の像は重ねては露光されない部分であるため(非走査方向には倒立像となるため)、視野V1、V7のY方向の一方の端部は、X軸に平行な直線状となっている。
【0028】
図4は、第1列の投影光学系PL1、PL3のマスクM上の視野V1、V3およびプレートP上の像野(投影領域)I1、I3と、第2列の投影光学系PL2のマスクM上の視野V2およびプレートP上の像野I2の関係を示す平面図である。投影光学系PL1〜PL3は、視野V1、V2、V3内のパターンをX方向に正立で、Y方向に倒立で拡大した像を像野I1、I2、I3内に形成する。視野V1および像野I1は、それぞれ光軸AX11、AX13から−X方向に外れており、視野V2および像野I2は、それぞれ光軸AX21、AX23から+X方向に外れている。このため、第3レンズ群G3を構成するレンズの形状を凹面反射鏡CCM側の半分を切り落とした回転非対称にしても、像野I1、I2に向かう結像光束にケラレが生じない。
【0029】
また、第1列の視野V1、V3等の中心VC1等を結ぶY軸に平行な直線と、第2列の視野V2等の中心VC2等を結ぶY軸に平行な直線とのX方向(走査方向)の間隔をLnとし、同様に、第1列の像野I1、I3等の中心IC1等を結ぶY軸に平行な直線と、第2列の像野I2等の中心IC2等を結ぶY軸に平行な直線とのX方向の間隔をLpとし、各投影光学系PL1,PL2,PL3の投影倍率をβとすると、間隔LnとLpとの間には式(A)の関係が成立する。
Lp=Ln×|β| ・・・(A)
【0030】
これにより、露光装置100では、図3に示すように、第1列の投影光学系用の列パターン部M10、M12等と、第2列の投影光学系用の列パターン部M11、M13等とをX方向の同じ位置に形成して、マスクオフセットMOを0にしておいても、その投影像をプレートP上で正確に繋ぎ合わせて露光できる。
【0031】
ただし、間隔Lnと間隔Lpとが以下の式(B)の関係を満足する場合、以下の式(C)で求められるマスクオフセットMOの分だけ、図3の2点鎖線の位置21A〜21Cで示すように、第1列の視野V1、V3等用の列パターン部M10、M12等と、第2列の視野V2、V4等用の列パターン部M11、M13等との間にX方向のオフセットを設ける必要がある。
Lp<Ln×|β| ・・・(B)
MO=Ln−Lp/|β| ・・・(C)
【0032】
したがって、この露光装置100では、走査露光時に、マスクMのパターンをプレートP上に投影露光した状態で、例えば、マスクMを矢印SM1(図2参照)で示す+X方向に速度VMで移動するのに同期して、プレートPが矢印SP1で示す+X方向に速度VM×|β|で移動することになる。これによって、図3のマスクMの列パターン部M10〜M16の拡大倍率βの像を繋ぎ合わせたパターンがプレートP上に露光される。なお、マスクMおよびプレートPを−X方向に走査することも可能である。
【0033】
〔照明装置および照明方法〕
次に、図5〜7を用いて照明装置1Aについて説明する。なお、図5は照明装置1Aの構成の概略を示す構成図、図6はロッドインテグレータ20と光導入部10Aとを示す斜視図、図7はロッドインテグレータ20の光入射端面20inを示す平面図である。
【0034】
図5に示すように、光導入部10Aは、集光レンズ3A,3Bと、光ファイバ4A,4Bと、ファイバリレーレンズ5A,5Bと、調整機構30Aと、を備えて構成される。集光レンズ3A,3Bには、光源部LSが備える第1光源部LSaおよび第2光源部LSbからそれぞれ光束LB1が入射されるようになっている。
【0035】
光源部LSa,LSbは、ほぼ同一な波長帯域で光強度が同等な光束LB1を発生させるものを用いる。光源部LSが備えるレーザ光源としては、例えばArFエキシマレーザやYAGレーザの高調波発生光源等のレーザ光源を用いることができる。また、レーザ光源の代わりに水銀ランプ等のランプ光源を用いることも可能である。露光用途の光としては、i線(波長365nm)、g線(波長436nm)、h線(波長405nm)の光や、i線,g線,h線の合成波や、波長193nm、355nm等の紫外パルス光等を例示することができる。
【0036】
集光レンズ3A,3Bは、光源部LSから出射された光束LB1を光ファイバ4A,4Bの入射側端面4Ain,4Binにそれぞれ集光して、光ファイバ4A,4Bに光束LB1を導くように設定されている。光ファイバ4A,4Bは、出射側端面4Aout,4Boutが互いに所定間隔を隔てて、ロッドインテグレータ20の光入射端面20inに対して所定の位置関係となるように配置されている。また、光ファイバ4A,4Bの出射側端面4Aout,4Boutから出射された光束は、それぞれファイバリレーレンズ5A,5Bで集光された光束LB2となり、所定の開口角(開口数)でロッドインテグレータ20の光入射端面20inに入射するように設定されている。
【0037】
図6に示すように、調整機構30Aは、接続支持部材6A,6Bと、これらがそれぞれ固定された調整用可動フレーム7A,7Bを備えている。光ファイバ4A,4Bの出射側は、それぞれ接続支持部材6A,6Bに支持されている。この接続支持部材6A,6Bは、所定の厚みを有する板状の部材であり、上下に貫通する図示しない貫通孔が形成され、この貫通孔の上部に、光ファイバ4A,4Bの出射側端面4Aout,4Boutを支持する。また、貫通孔の下部には、レンズ支持筒8A,8Bが取り付けられている。これらレンズ支持筒8A,8B内には、ファイバリレーレンズ5A,5Bが、出射側端面4Aout,4Boutに対向した状態で支持されている。
【0038】
調整用可動フレーム7A,7Bは、互いに平行をなし、ロッドインテグレータ20の光入射端面20inにおける長手方向(Y方向)に沿って互いに近接および離間するように、図示しない調整駆動装置により駆動される。また、これら調整用可動フレーム7A,7Bは、同期してX方向に移動可能となっている。このように調整機構30Aは、複数(本実施形態では2つ)の光束LB2がロッドインテグレータ20の光入射端面20inへ入射する位置を、後述するロッドインテグレータ20の中心軸CAを基準にして互いに対称の位置となるように調整することができる。
【0039】
ロッドインテグレータ20は、例えば石英ガラスで形成される直方体形状のガラスロッドで構成され、上下一対の互いに平行な光入射端面20in,光出射端面20outと、互いに平行な、二対の側面20A,20B、側面20C,20D(図7参照)を有し、所定の長さ(Z軸方向の長さ)Lに設定されている。光入射端面20in,光出射端面20outは、細長い長方形状を有している。このようなロッドインテグレータ20は、光入射端面20inから入射した光を各側面20A,20B,20C,20Dで反射して光出射端面20outから光を出射するようになっている。
【0040】
以下、本実施形態に係る照明装置1Aにおける照明方法について説明する。先ず、ロッドインテグレータ20の光入射端面20inを示す図7を用いて、光束LB2を光入射端面20inに入射させる入射位置LB2sについて説明する。
【0041】
ロッドインテグレータ20は、X方向の両側に位置する側面対である側面20C,20D間の距離Wxに比して、側面20A,20B間の距離wyが長く設定されている。また、距離Wxが長さLに比して十分に短い側面20C,20Dの間では、光入射端面20inから光出射端面20outに向けて、全反射が繰り返される回数は多くなり、X方向に関しては十分に光量分布の均一化が行われるようになっている。これに対して、Y方向に関しては、距離Wxに比して距離Wyが長く設定されているため、X方向に比して光量分布の均一化が行われ難くなっている。なお、このように光出射端面20outが扁平は長方形である理由は、投影光学系PL1〜PL7の視野が扁平であることに起因している。
【0042】
そこで、本実施形態では、光出射端面20inにおいて、Y方向(長手方向)に沿って2つの光束LB2が入射するように設定している。ここで、光入射端面20inにおいて、光束LB2が入射する位置を入射位置LB2sとする。2つ入射位置LB2sの配置は、図7に示すように、光入射端面20inにおけるロッドインテグレータ20の中心軸CAを通るY方向(長手方向)の線分Sy上に、中心軸CAが対称中心となるように配置している。換言すると、2つの入射位置LB2sは、側面20A,20Bが対向する方向(Y方向)に沿って側面20Aと側面20Bとの間の中心位置(中心軸CA)に対して互いに対称な配置に設定されている。
【0043】
また、本実施形態では、図5および図6に示すように、ファイバリレーレンズ5A,5Bの光軸LB2cが光入射端面20inに垂直になるように設定している。また、図7に示すように、2つの入射位置LB2s間の距離は、線分Syの長さすなわち距離wy(光入射端面20inの長手方向の長さ)を、光束LB2の数(本実施形態では2)で割った長さwy/2に設定されている。換言すると、互いに隣り合う2つの入射位置LB2sの間隔は、側面20A,20Bが対向する方向に沿って側面20A,20B間の距離wyを入射位置LB2sの数で割った長さwy/2に設定されている。このように、光入射端面20inに対して入射位置LB2sの配置を設定したことにより、ロッドインテグレータ20の光出射端面20outからの出射光の照度分布(光量分布)の均一性が向上されている。
【0044】
一般に、ロッドインテグレータ20の光入射端面20inに入射した光束LB2の一部は、直進して光出射端面20outからそのまま出射するが、ロッドインテグレータ20の構成に基づく所定の大きさ以上の入射角度を持った光束LB2は側面20A,20Bに到達する。側面20A,20Bによって光束LB2は全反射され、光出射端面20outに達するまで側面20A,20Bによる全反射が繰り返された後、光出射端面20outから出射する。これにより、ロッドインテグレータ20に入射した光束LB2は、ロッドインテグレータ20の幅で折り返され積算されて光出射端面20outから出射することになる。この積算により、光出射端面20outで光強度が平均化され、均一な強度分布になる。
【0045】
次に、図8を用いてロッドインテグレータ20による作用について説明する。本来は奥行き方向(本実施形態ではX方向)の広がりもあるが、説明の便宜のため二次元平面内での様子を見ていくことにする。
【0046】
長さL、幅wyのロッドインテグレータ20の光入射端面20inの中心(中心軸CA)から寸法dだけずれた位置に入射角θのガウス型の分布を持つ光束LB2が入射している。図8では、入射角θが大きく、側面20Aで一度反射して光出射端面20outに到達している様子を示している。ロッドインテグレータ20の側面20Aでの反射を考えないと、破線で示すように厚さ(長さ)Lの平行平板に光が入射している場合と同じ状況になる。入射した光束LB2は、図8に破線Vで示すように、ガウス型の分布をしているが、実際には側面20Aで反射され、光出射端面20outでそれぞれ実線Sのように折り畳まれて光量が積算される。その積算された結果が光出射端面20outでの光量分布となる。光出射端面20out上のY方向の任意の点yでの光量は下記の式1で近似的に表せる。なお、式1においては、ロッドインテグレータ20のY方向の幅をw、ロッドインテグレータ20を構成するガラス(石英ガラス)の屈折率をn、ロッドインテグレータ20に入射する光束LB2の開口角(光入射端面20inにおける開口数)をNAで示している。
【0047】
【数1】

【0048】
ここで、ロッドインテグレータ20の性能を示す指数として、ロッドインテグレータ20に入射した光束LB2がロッドインテグレータ20内で反射している最大の回数の場合のL×NA/(n×w)を考える。長さLが長くて幅wの細いロッドインテグレータ20内で光束LB2が十分な回数反射していると出射面での照度分布の平坦性がよくなる。現実的には、装置サイズの制約や光学部品の加工性からロッドインテグレータ20の長さLをできるだけ小さくし、光学系の配置の容易さから光束LB2の開口数NAはできるだけ小さいほうが望ましいため、ロッドインテグレータ20の性能を示す指数L×NA/(n×w)は小さな値であることが望ましい。
【0049】
図9には、長さ(L)400mm、幅(wy)36mmの石英でなるロッドインテグレータ20に、開口数NAが0.20のガウス型分布の1本の光束LB2を光入射端面20inの中心に垂直に入射させたときの、光出射端面20outでの光量分布を計算した結果を示す。このときのロッドインテグレータ20の性能を示す指数L×NA/(n×w)は約1.5である。図9において、横軸は、原点を光出射端面20outの中心とする光出射端面20outでの幅方向の座標をとっており、縦軸は、光出射端面20outの中心の値で規格化した出射光量をとっている。このように光入射端面20inの中心に垂直に光束LB2を入射させた場合は、光出射端面20outの周辺(周縁)が中央部より0.011%の光量低下はあるものの、かなり高い照度均一性を示す。
【0050】
図10は、横軸にロッドインテグレータ20の性能を示す指数L×NA/(n×w)を1から2までとり、縦軸にロッドインテグレータ20の照度均一性を示す指標として光出射端面20outの一番端(幅方向の端部)での照度を光出射端面20outの中心の値で規格化した値をプロットした結果を示す図である。図10に示すように、ロッドインテグレータ20の性能を示す指数L×NA/(n×w)に対して、照度均一性は指数関数的に良くなっていることが判る。
【0051】
図11は、上記ロッドインテグレータ(長さ400mm、幅36mmの石英でなるロッドインテグレータ)20に、上記と同じ条件のNA=0.20のガウス型分布の1本の光束LB2を、以下のように光入射端面20inの中心から幅方向(長手方向)の3つの位置にずらして入射させた場合の、光出射端面20outでの照度分布(光出射端面20outの中心の値で規格化した出射光量の分布)を示している。図11において、光束LB2を光入射端面20inの中心から幅方向に3mmずらして入射させた場合を破線で、6mmずらして入射させた場合を一点鎖線で、9mmずらして入射させた場合を二点鎖線で示す。同図に示すように、光束LB2が光入射端面20inの中心からずれているため、照度均一性は傾斜成分を持ってしまう。光出射端面20outの中心での光量はほとんど変化しないため、光出射端面20outの一番端の位置(中心から18mmの位置)での照度均一性のずれは3mmずらしたときに約3%、6mmずらしたときに約6%、9mmずらしたとき約8.5%とずれの長さとほぼ比例するような関係になっている。
【0052】
次に、光束LB2の入射位置により照明光が傾斜成分を持つということから、光入射端面20inの中心に対して対称になるように2つの光束LB2を光出射端面20inの長手方向に沿った2箇所の位置に入射させて、傾斜成分を無くすことを考える。図12は、NA=0.20の二つの入射光束LB2を、光出射端面20inの中心からの距離がそれぞれ±3mm(破線)、±6mm(一点鎖線)、±9mm(二点鎖線)となるように入れた場合の、光出射端面20outでの照度分布(光出射端面20outの中心の値で規格化した出射光量の分布)を示す。実線はロッドインテグレータ20の中央に、NA=0.20の一つの光束LB2を入れた場合の出射光量をプロットしている。
【0053】
図12に示すように、二つの光束LB2が中心からの間隔が9mm(二点鎖線)に入射した場合に照度均一性が完全に平坦になっていることがわかる。これは二つの光束LB2の間隔(18mm)がロッドインテグレータ20の幅W(36mm)のちょうど1/2になる状態である。このとき、図13に示すように、ロッドインテグレータ20の中心軸CAからd1およびd2だけずれて垂直入射した光束LB2は、光出射端面20out出射面でそれぞれ図13の下方に実線で描いたようなガウス型の分布をしている。そのときの光強度は、以下の式2で表すことができる。
【数2】

【0054】
このときに、光出射端面20outの中心x=0と周辺x=w/2との強度差Δは以下の式3で表せる。
【数3】

【0055】
ロッドインテグレータ20の性能を示す指数L×NA/(n×w)が比較的小さい場合には、図13に示すように側面20A,20Bで反射しないで光出射端面20outに到達する光量の割合が多い。そこで、上の式でk=0の場合について光量差がなくなるように計算すると、d1=w/4、d2=−w/4の場合となる。これは、図13に示すように、光出射端面20outから見たときに、入射光束LB2(入射位置LB2s)が等間隔に並んでいる状態に等しい。
【0056】
さらに、光束LB2の数を増やしても、光出射端面20outから見たときに、入射光束LB2(入射位置LB2s)が等間隔に並んでいるように配置することで照度均一性を保つことができる。入射光束の数がn個ある場合には、ロッドインテグレータ20の幅wに対して入射位置LB2sの間隔はw/nとしてロッドインテグレータ20の長手方向に沿って光入射端面20inの中心に対して線対称に配置することで均一な照度を得ることができる。
【0057】
図14は、光入射端面20inに3つの光束LB2を入れる場合の光入射端面20inでの様子を示す。3つの光束LB2を光入射端面20inに入射させる場合は、一つの光束LB2が光入射端面20inの中心に入射され、その光束LB2の長手方向の両側に、それぞれ間隔W/3を隔てて光束LB2を入射させることで、光出射端面20out側の照度分布の均一性を達成することができる。
【0058】
図15は、4つの光束LB2を入れる場合の光入射端面20inでの様子を示す。4つの光束LB2を入れる場合は、これら光束LB2を光出射端面20inの中心に対して対称になる長手方向に沿った位置に入射させ、光束LB2の入射位置LB2s同士の間隔をW/4とすることで、光出射端面20out側の照度分布の均一性を達成することができる。なお、各光束LB2の光強度は同じに設定することが好ましい。
【0059】
図16は、2つの光束LB2を光入射端面20inへ入射させるときに、光出射端面20outでの出射光量が均一になる条件にした場合(実線)、光束LB2の間隔を狭めた場合(破線)、光束の間隔を広げた場合(一点鎖線)を示す。図16の縦軸に示す出射光量は、光出射端面20outの中心の値で規格化した値を示している。これより、光入射端面20inの中心が対称中心となるように長手方向に沿って2つの光束LB2の入射位置の間隔を調整することで照度均一性を制御することができることがわかる。なお、図14に示したように光束LB2が3本の場合や、図15に示したように4本の場合においても、光出射端面20out側での照度均一性の制御が可能である。
【0060】
しかしながら、光出射端面20outで均一な照明が得られても、例えば露光装置100にこの照明装置1Aを適用した場合、照明リレーレンズやコンデンサレンズや投影レンズ等を通過する際に収差や反射防止コートの角度特性等により周辺の光量が低下することがあり、プレートP(感光性基板)上で周辺の光量が低下してしまうような場合がある。このような光量低下を補償するために、図16において一点鎖線で示すような照度分布にすることで対応することが可能である。
【0061】
ところが、ロッドインテグレータ20の性能を示す指数L×NA/(n×w)がある程度高い値では、平均化効果が強すぎて補正をすることができない。上記した露光装置等で必要な照度均一性は1%程度なので、この程度の照度均一性を制御するにはロッドインテグレータ20の性能を示す指数L×NA/(n×W)は比較的小さい1.0以上、2.0以下の範囲、さらには1から1.5程度の値である必要がある。
【0062】
なお、上記したように、ロッドインテグレータ20に入射する光束LB2の位置調整は、図5および図6に示した調整機構30Aを用いる。図6に示すように、光束LB2の位置調整30Aは、調整用可動フレーム7A,7BをY軸方向(側面20A,20Bの距離方向)に移動させることで実現できる。なお、この調整機構30Aは、調整用可動フレーム7A,7Bが、光入射端面20inにおける中心を通る線分Syに沿って、光束LB同士がロッドインテグレータの中心軸CAに対して線対称となるように同期して移動するように設定されていることが好ましい。このような調整機構30Aにより、図16に示すような、光出射端面20outでの照度分布を平坦化する制御を容易にする効果がある。なお、本実施形態に係る照明装置1Aでは、光導入部10Aが調整機構30Aを備える構成であるが、照明装置としては調整機構30Aを備えないものであってよい。
【0063】
本実施形態に係る照明装置1Aにおいては、光出射端面20outから照射される照明光の照度が均一であり、ロッドインテグレータ20内の無駄のない光の伝播により高い照明光量が得られる。したがって、この照明装置1Aを適用した露光装置100の露光光の照度分布の均一性などの露光性能を向上させることができる。
【0064】
露光装置100では、上記の照明装置1Aにおける調整機構30Aを以下のように調整すればよい。すなわち、図6および図7に示すように、調整機構30Aは、調整用可動フレーム7A,7Bが、光入射端面20inにおける線分Syに沿って、光束LB同士がロッドインテグレータの中心軸CAに対して常に線対称となるように設定する。また、ロッドインテグレータ20の幅wyに対して入射位置LB2s同士の間隔はwy/2となるように配置することで均一な照度を得ることができる。
【0065】
光入射端面20inにおける入射位置LB2s同士の配置関係をロッドインテグレータ20の中心線CAに対して線対称となる関係を保って調整することで、光出射端面20outでの照度均一性の2次関数的成分が調整できる。このため、本実施形態に係る露光装置100では、投影光学装置PLのレンズのコート等の原因で視野周辺の光量が低下することを補償でき、照度均一性を確保することができる。
【0066】
露光光の照度分布を均一化するための具体的な操作方法としては、例えば、プレートP面の露光領域で露光光に傾斜成分が出ていれば光量の低いほうへ入射光束をずらし、投影光学系PL1〜7から出射された露光光が入射するそれぞれの露光領域の中心が高くなっていればロッドインテグレータ20の中心に対してほぼ対称な位置に入射している光束を同じ量だけ離す方向に移動させて照度が均一になるように調整すればよい。
【0067】
なお、本実施形態では、例えば1つの照度センサ(不図示)で露光光の照度分布を算出する構成としてもよく、また、プレートPを保持するステージ(不図示)に校正の行われた複数の照度センサを配置し一度に照度分布を検出する構成としてもよい。
【0068】
露光光の照度均一性を補正する作業は、光源や装置の安定性にもよるが、安定しているのであれば露光装置100を組み上げた際やランプの交換等の装置メンテナンスの際に行う程度でよい。照度均一性が安定していないような場合には、マスク(レチクル)Mにパターン投影領域のほかに光透過領域を作っておいて露光動作直前にステージ(不図示)上の照度センサ(不図示)で照明光量を測定し、前述の通りロッドインテグレータ20に入射する光束LB2の位置調整を行って常に均一な照明状態になるようにして露光動作を始めることが望ましい。
【0069】
このような調整機構30Aにより、光出射端面20outでは、図16の実線で示すように、光出射端面20outの照度分布を平坦化する制御を容易にする効果がある。また、投影光学装置PL等を通過することに伴って照度にムラが発生している場合も、このような調整を行うことにより、照度分布の均一化を図ることができることは云うまでもない。
【0070】
[第2の実施形態]
図17〜19は、本発明の第2の実施形態に係る照明装置1Bに関する。図18に示すように、この照明装置1Bは、光導入部10Bとロッドインテグレータ20とを備える。本実施形態は、光入射端面20inおよび光出射端面20out(不図示)が、X方向にも長さ(奥行き)を有する長方形の照明領域を持つ例である。すなわち、図17および図18に示すように、光入射端面20inには奥行き方向(X方向)にも複数(2つ)の光束LB2を入射させるため、全部で4本の光束LB2が入射するようになっている。また、図18および図19に示すように、この第2の実施形態に係る照明装置1Bは、上記第1の実施形態と異なる構成の調整機構30Bを備えている。
【0071】
図17〜19に示すように、この実施形態では、光入射端面20inに入射する4本の光束LB2は、光入射端面20inにおいてX方向に伸びる2本の線分Sxと、Y方向に伸びる2本の線分Syの交差する4つ入射位置LB2sに入射させるように設定されている。
【0072】
以下に、図17を用いて線分Sx,Syの決定方法について説明する。光入射端面20inのX方向の幅寸法をwx、Y方向の幅寸法をwyとする。図17において、光入射端面20inにおいてX方向に沿って伸びる一対の線分Sxは、側面20A,20B側の辺からwy/4の距離に位置する。したがって、これら一対の線分Sxの間隔はwy/2となる。光入射端面20inにおいてY方向に沿って伸びる一対の線分Syは、側面20C,20D側の辺からwx/4の距離に位置する。したがって、これら一対の線分Syの間隔はwx/2となる。そして、これら4本の線分Sx,Syが交差する点が入射位置LB2sとなり、4本の光束LB2の中心線がこれら入射位置LB2sに重なるように設定されている。したがって、4本の線分Sx,Syそれぞれに沿って配置された2つの入射位置LB2sは、これら線分Sx,Syの中心Sxc,Sycに対称となるように設定されている。
【0073】
このような入射位置LB2sの位置調整は、図18および図19に示す調整機構30Bで行う。また、この場合の入射光束LB2の位置調整は、X方向Y方向それぞれ独立に行うことができるようになっていることが望ましい。
【0074】
以下、図18および図19を用いて、調整機構30Bについて説明する。この調整機構30Bは、光入射端面20inに対向するように配置されている。調整機構30Bは、Y方向に沿って延びて互いに平行に配置される一対のX方向調整用可動フレーム31A,31Bと、X方向に沿って延びて互いに平行に配置される一対のY方向調整用可動フレーム32A,32Bと、を備えている。
【0075】
X方向調整用可動フレーム31A,31BはX方向のみの移動が可能であり、Y方向調整用可動フレーム32A,32BはY方向のみの移動が可能となっている。すなわち、一対のX方向調整用可動フレーム31A,31Bと、一対のY方向調整用可動フレーム32A,32Bは、常に平行状態を保って近接、離間するようになっている。図18および図19に示すように、一対のX方向調整用可動フレーム31A,31Bは、一対のY方向調整用可動フレーム32A,32Bのわずかに下側に配置され、図19に示すように、平面的に見て交差するように配置されている。
【0076】
図18に示すように、これらX方向調整用可動フレーム31A,31BとY方向調整用可動フレーム32A,32Bの側面には、それぞれの長手方向に沿ってガイドスリット33が形成されている。そして、X方向調整用可動フレーム31A,31Bと、Y方向調整用可動フレーム32A,32Bと、が平面的に見て交差する4箇所のそれぞれの位置には、移動体34が、X方向調整用可動フレーム31A,31BおよびY方向調整用可動フレーム32A,32Bのガイドスリット33に対してスライド可能に設けられている。
【0077】
移動体34は、下側に位置するX方向調整用可動フレーム31A,31Bにスライド可能な下側スライド部35と、上側に位置するY方向調整用可動フレーム32A,32Bにスライド可能な上側スライド部36とを備える。したがって、4つの移動体34の下側スライド部35はX方向調整用可動フレーム31A,31Bのガイドスリット33にスライド可能に設けられ、上側スライド部36はY方向調整用可動フレーム3LS,3LSのガイドスリット33にスライド可能に設けられている。
【0078】
なお、下側スライド部35と上側スライド部36は、それぞれ対応するX方向調整用可動フレーム31A,31BおよびY方向調整用可動フレーム32A,32B内でスライド可能な図示しないスライドブロックと、ガイドスリット33を通して連結されている。
【0079】
図18に示すように、下側スライド部35と上側スライド部36は、連結筒体37で一体的に結合されている。下側スライド部35の下部には、鉛直方向下向きに突出するように、レンズ支持筒38が設けられている。なお、レンズ支持筒38内には、この筒中心軸と、光軸が一致するように、図示しないファイバリレーレンズが装着されている。また、上側スライド部36は、連結筒体37が貫通して上方に向けて突出するように設けられている。そして、上側スライド部36の上方に突出する連結筒体37には、光ファイバ4A,4B,4C,4Dを、それぞれの端部が図示しないファイバリレーレンズと対向するように装着している。
【0080】
このような構成の調整機構30Bでは、一対のX方向調整用可動フレーム31A,31BをX方向に沿って互いに近接、離間させることにより、移動体34をX方向に移動させることができる。このとき、X方向に沿って並ぶ一対の移動体34は、常にX方向に1列をなしている。一対のY方向調整用可動フレーム32A,32BをY方向に沿って互いに近接、離間させることにより、移動体34をY方向に移動させることができる。このとき、Y方向に沿って並ぶ一対の移動体34は、常にY方向に1列をなしている。
【0081】
このような調整機構30Bを用いることにより、図示しないファイバリレーレンズから出射される光束LB2が光入射端面20in上に入射する4つの入射位置LB2sが、XY方向に縦横の辺を持つ長方形の4つの頂点をなす状態を維持しつつ移動させることが可能となる。なお、一対のX方向調整用可動フレーム31A,31Bや一対のY方向調整用可動フレーム32A,32Bを、互いに近接、離間するように平行移動させるために、互いに平行なフレーム同士を、互いにねじ切り方向が逆のねじ部を有するボールネジで連結してもよい。
【0082】
調整機構30Bを用いることにより、図17に示すように、Y方向に列をなす一対の入射位置LB2sの間隔をwy/2となるように配置させ、X方向に列をなす一対の入射位置LB2sの間隔をWx/2となるように配置させ、しかも、4本の線分Sx,Syのそれぞれに沿って配置された2つの入射位置LB2sは中心Sxc,Sycに線対称となるように配置させることが容易となる。
【0083】
また、この調整機構30Bを用いることで、4つの入射位置LB2sの位置関係を上記のような関係に保ちつつ、4つの入射位置LB2sの配置的均衡を考慮しつつ微調整させることも容易に行える。このように配置的均衡を保たせる場合は、X方向調整用可動フレーム31A,31B同士の距離の中心が、常に光入射端面20inのX方向の幅寸法の中心線上にあるようにすればよい。同様に、Y方向調整用可動フレーム32A,32Bの距離の中心が、常に光入射端面20inのY方向の幅寸法の中心線上にあるようにすればよい。このような調整機構30Bにより調整が完了したら、X方向調整用可動フレーム31A,31BとY方向調整用可動フレーム3LS,3LSを固定すればよい。
【0084】
本実施形態は、光入射端面20inに4つの入射位置LB2sが2列×2列の配列の場合であるが、光入射端面20inの形状や大きさに応じて任意の数のm列×n列の光束LB2を入射させることができる。このように、本実施の形態に係る照明装置1Bでは、比較的面積の広い矩形状の光入射端面20inを有するロッドインテグレータ20に対しても光出射端面20outでの照度均一性を向上させることができる。したがって、この照明装置1Bを適用した露光装置の露光性能を向上させることができる。
【0085】
[第3の実施形態]
次に、図20を用いて、本発明の第3の実施形態に係る照明装置1Cについて説明する。本実施形態に係る照明装置1Cの構成は、光導入部10Cとロッドインテグレータ20とを備える。照明装置1Cは、上記した第1の実施形態に係る照明装置1Aで用いたファイバリレーレンズ5A,5Bに代えて、光軸を共通とするように互いに平行に配置したファイバリレーレンズ5C,5Dを用いた光導入部10Cを備えるものである。本実施の形態におけるその他の構成は、上記した第1の実施形態の構成と同様である。
【0086】
本実施形態では、ファイバリレーレンズ5C,5Dを配置したことにより、光ファイバ4A,4Bでこれらファイバリレーレンズ5C,5Dを共通化して縮小投影することで光ファイバ4A,4Bの出射側端面4Aout,4Boutの位置公差を緩めて調整することもできる。なお、本実施形態では、図20に示すように、ファイバリレーレンズ5Dから出射させる光束LB2の間隔を調整するには、光ファイバ4A,4Bの出射側端面4Aout,4Boutを矢印yで示す方向に平行移動させるだけでよい。なお、本実施形態では、上記した第1の実施形態に係る照明装置1Aの調整機構30Aと同様な構成の調整機構30Cを用いて、光ファイバ4A,4Bの出射側端面4Aout,4Bout側を接続支持部材6A,6B(図6参照)に支持すればよい。
【0087】
本実施形態に係る照明装置1Cにおいては、上記した第1の実施形態に係る照明装置1Aと同様に、光出射端面20outから照射される照明光の照度が均一であり、ロッドインテグレータ20内の無駄のない光の伝播により高い照明光量が得られる。したがって、この照明装置1Cを上記の照明装置1Aに代えて露光装置100に適用すれば、均一な露光光を得ることができるため、露光性能を向上させることができる。
【0088】
[第4の実施形態]
図21は、本発明の第4の実施形態に係る照明装置1Dの概略構成を示している。なお、本実施形態における光入射端面20inでの入射位置は図7に示した第1の実施形態と同様である。図21に示すように、照明装置1Dは、光導入部10Dと、ロッドインテグレータ20とを備えて概略構成されている。なお、この照明装置1Dは、上記第1の実施形態に係る投影型露光装置の照明装置1Aに代えて用いることができる。本実施の形態に係る照明装置1Dは、照度分布の均一性と、特に照明光のテレセントリシティの向上を図ることができる。
(光導入部の構成)
【0089】
図21に示すように、本実施形態において、光導入部10Dは、集光レンズ3A,3Bと、光ファイバ4A,4Bと、ファイバリレーレンズ5A,5Bと、調整機構30Dと、を備えて構成されている。
【0090】
図21に示すように、集光レンズ3A,3Bは、第1光源部LSaおよび第2光源部LSbから出射された光束LB1を光ファイバ4A,4Bの入射側端面4Ain,4Binにそれぞれ集光して、光ファイバ4A,4Bに光束を光ファイバ4A,4B内に導くように設定されている。光ファイバ4A,4Bは、出射側端面4Aout,4BoutがY方向に沿って所定間隔を隔てて並び、しかもロッドインテグレータ20の中心軸CAに対して線対称の関係となるように配置されている。
【0091】
また、図21に示すように、光ファイバ4A,4Bの出射側端面4Aout,4Boutから出射された光は、それぞれファイバリレーレンズ5A,5Bで集光された光束LB2となり、所定の開口角で光入射端面20inに入射するように設定されている。さらに、光束LB2の中心線LB2cが光入射端面20inになす角度は、ロッドインテグレータ20内を通過する光束LB2の中心線(図中破線で示す)が光出射端面20outの中心20outcを通るような角度に設定する。
【0092】
図21に示すように、調整機構30Dは、光ファイバ4A,4Bおよびファイバリレーレンズ5A,5Bを一体的に保持してファイバリレーレンズ5A,5Bから出射される光束LB2の光入射端面20inへの入射角度や、入射位置LB2s同士の間隔の調整が可能である。
【0093】
本実施形態に係る照明装置1Dにおける光入射端面20inに入射する入射位置LB2sの配置は、図7に示した上記第1の実施形態と同様である。
【0094】
本実施形態では、図7に示すように、光入射端面20inにおいて、光束LB2が、幅寸法wyを有するY方向に沿って配置された2つ(複数の)の入射位置LB2sに入射するようになっている。2つの入射位置LB2sは、光入射端面20inにおけるロッドインテグレータ20の中心軸CAを通ってY方向(長手方向)に光入射端面20inの幅wyに亘る線分Sy上に、中心軸CAを中心として対称となるように配置する。
【0095】
特に、本実施形態では、図21に示すように、2つの光束LB2は、中心線LB2cが光出射端面20outの中心20outcを通過するように、光入射端面20inに対して所定の角度で入射されるように設定されている。すなわち、光入射端面20inから入射した光束LB2が光出射端面20outの中心20outcに向かうように設定されている。さらに、図7に示すように、入射位置LB2s同士の距離は、光入射端面20inの中心を通る線分Syの長さ、すなわち幅wyを光束LB2の数(本実施形態では2)で割ったwy/2に設定されている。
【0096】
この実施形態では、図7に示すように、光入射端面20inに対して入射位置LB2sを上述の配置に設定すると共に、ロッドインテグレータ20に導入された2つの光束LB2が光出射端面20outの中心20outcに向かうように設定したことにより、光出射端面20outからの出射光である照明光のテレセントリシティを改善することができる。さらに、この照明装置1Dでは、光出射端面20outからの出射光である照明光の光量分布(強度分布)を均一化することができる。
【0097】
ロッドインテグレータ20に入射する光束LB2は、ファイバリレーレンズ5A,5Bと、光ファイバ4A,4Bと、が支持された調整機構30Dにより、光束LB2の光入射端面20inにおける位置と、光束LB2を光入射端面20inに入射させる入射角度との調整を可能としている。
【0098】
ロッドインテグレータ20に入射した光線のうち一部は、光出射端面20outに直進するが、その他の光線は、図8に示すように、ロッドインテグレータ20の側面で反射し、必要に応じて側面での反射を繰り返して光出射端面20outに向かう。そのため、ロッドインテグレータ20に入射した光束LB2は、図8に示すように、ロッドインテグレータ20の幅wyで折り返されて重なり、光出射端面20out上の光強度がほぼ均一になる。光出射端面20out上の一点から見ると、折り返された先にある光入射端面20in上にあるそれぞれの光束LB2の像からの光が加算されていると考えればよいことがわかる。このとき光量のみを加算したものが照度分布を与える。また、それぞれの光線の入射方位を光強度で加重平均をとると、光束中心(中心線)の進行方向が計算できる。
【0099】
長さ200mm、幅32mm、空気に対する屈折率が1.5の光入射端面20inの中央に垂直に開口光束0.3のガウス型分布をした光が入射した場合の、光出射端面20outでの出射光量分布を図22に、出射角度方位を図23にプロットした。なお、図22の縦軸に示す出射光量は、光出射端面20outの中心の出射光量で規格化した値を示している。
【0100】
図22に示すように、ロッドインテグレータ20内での折り返しの回数がやや少ないために、中心に対して約0.3%の光量低下が見られる。また、図23に示すように、出射角度方位については光出射端面20outの中心20outcおよび幅方向(Y方向)両端では、ほぼ垂直に出射しているのに対し、光出射端面20outにおける幅方向両端からwy/4だけ中心側の位置では光束が中心から広がる方向に0.79mradほど傾いて出射していることがわかる。
【0101】
ここで、このロッドインテグレータ20に複数の光束LB2を入射させる場合を考える。まず、図7に示すように、2つの光束LB2の入射位置LB2s同士が光入射端面20inの幅wyの半分だけ離れ、しかも光入射端面20inの中心に対して対称に配置するように設定し、2つのLB2を光入射端面20inに垂直に入射させる。図24は、それぞれの光束LB2による照度分布を破線および一点鎖線で示し、合成の照度分布を実線で示す。図24に示すように、2つの光束LB2を上記の位置関係にて入射させた場合、照度分布はほぼ打ち消され、かなりよい均一性を示す。なお、図24の縦軸に示す出射光量は、光出射端面20outの中心の出射光量で規格化した値を示している。
【0102】
図25は、出射角度方位を計算した結果を示す。図25では、図24と同様に個々の光束LB2による照度分布を破線および一点鎖線で示し、両方の光束LB2を合成した場合の照度分布を実線で示す。ロッドインテグレータ20に入射する位置をずらすと、光出射端面20outの中心部の出射角度方位は変化するが、側面が近い位置にある周辺部は変化しない。
【0103】
さらに、図25において、2つの入射光束LB2を合成した場合の光束の出射角度方位をみると、光出射端面20outの幅方向両端からwy/4の位置でおよそ0.58mradとなっている。これはちょうど1つの入射光束LB2をロッドインテグレータ20の中心に入れたとき(図23参照)よりわずかに改善されている。
【0104】
2つの入射光束LB2の入射位置はそのままにして入射角度を内側(光束LB2同士が互いに近づくように内側)に向けたときの出射角度方位の様子を図26にプロットした。図26において、実線は入射光束LB2をロッドインテグレータ20の中心軸CAに平行に入れた場合、一点鎖線は光出射端面20outの中心に入射光束LB2の中心線LB2cが通過するように入れた場合、破線はその中間の入射角度で入れた場合を示す。これを見ると、ちょうど一点鎖線の状態で出射角度方位のばらつきが小さくなっていることがわかる。
【0105】
そこで、出射角度方位のばらつきがもっとも大きくなる点つまり、光出射端面20outの中心からロッドインテグレータ20の幅wyの1/4だけ離れた点での出射角度方位と入射光束LB2の傾きとの関係を、図27に示す。図27において、縦軸は出射角度方位(rad.)、横軸は入射光束の傾きである。図27から、ちょうど光出射端面20outの中心に入射光束LB2の中心線LB2cが通過するように入れた場合に出射角度方位の振れが最小になっていることが判る。
【0106】
図28は、光出射端面20outの中心からロッドインテグレータ20の幅wyの1/4だけ離れた点から出射する光の経路を示す。図28に示すように、ロッドインテグレータ20に入射する光束LB2の間隔がロッドインテグレータ20の幅wyの1/2でロッドインテグレータ20の中心軸に対称な位置に配置されているので、光出射端面20outから見た入射光束LB2は等間隔に並んでいる。そのため、出射する光線の出射方位はほぼ一定の角度をなして並んでいる。また、図28に示す出射点yが右側に寄っているので出射光束も外側に寄って配置されている。ロッドインテグレータ20に入射する位置を変えなければ光線の進む光路は変わらない。ロッドインテグレータ20に入射する光束LB2を傾けるということは、それぞれの光線を通過する光量を変化させることになる。ロッドインテグレータ20の側面で奇数回反射した光線の進む方向は反転している。
【0107】
そこで、入射光束LB2を光入射端面20inに対して傾けると、偶数回反射の光線の光量変化と奇数回反射の光線の光量変化は逆向きになる。各光線についてロッドインテグレータ20の出射方位と、入射方位と、入射光束LB2が垂直の場合の光量(光強度)と、入射光束LB2の中心線LB2cが光出射端面20outの中心を通る場合の光量(光強度)を下表1に示す。
【0108】
【表1】

【0109】
上記表1の中で、Lをロッドインテグレータ20の長さ、wをロッドインテグレータ20の長手方向の幅、nをロッドインテグレータ20の屈折率、NAを入射光束LB2の開口数とする。入射光束LB2の中心線LB2cが光出射端面20outの中心20outcを通過するように入射する場合には、2つの入射光束LB2に対するそれぞれの光線の強度の割合が等しくなっている。ロッドインテグレータ20による平均化は側面で反射した光が折り返されて重なることによるので、テレセントリシティのずれを最小にするには出射位置に対する光強度の傾斜成分が等しい必要がある。
【0110】
本実施形態では入射光はガウス型分布I(x)=Exp{-2x^2}を考えているが、ガウス分布はI(0.1)≒0.98からI(0.897)≒0.2の範囲でほぼ傾斜が一様になっているように見える。そこで、この範囲に照明光を形成する光線が入るようにするには、上記表1の出射端中心の光強度値の最大値は、下式4のときであり、
【数4】

【数5】

として解くと、
【数6】

より、(n・w)/(NA・L)>0.402を得る。同様に、
【数7】

として解くと、
【数8】

より、(n・w)/(NA・L)<0.717を得る。つまり、テレセントリシティのずれを最小にするには、0.402<(n・w)/(NA・L)<0.717を満たす必要がある。
【0111】
光出射端面20outにおける点y(図28参照)での出射光束の角度方位が光出射端面20outに垂直に近くなる場合の照度(出射光量)均一性を図29に示す。図29の縦軸に示す出射光量は、光出射端面20outの中心の出射光量で規格化した値を示している。図29において、実線は入射光束LB2をロッドインテグレータ20の中心軸CAに平行に入れた場合、一点鎖線は光出射端面20outの中心に入射光束LB2の中心線LB2cが通過するように入れた場合、破線はその中間の入射角度で入れた場合を示す。この例では、光出射端面20outの中央部に比べ周辺部が0.3%程低下していることがわかる。照度均一性の程度と出射光束の角度方位のばらつきがトレードオフの関係になる。
【0112】
本実施形態の照明装置1Dを走査型の投影露光装置に適用する場合には、走査範囲で照度均一性を制御することも可能であるため、照明光束の角度のばらつきを抑えるほうが重要となる。この場合は、入射光束LB2の中心線LB2cが光出射端面20outの中心20outcを通るように光導入部10Dを配置することが望ましい。また、ロッドインテグレータ20に入射する光束の数を3本、4本とさらに増やしても光出射端面20outの中心20outcをそれぞれの入射光束LB2の中心線IL2cが通過するように狙えば、光出射端面20outから出射する光束の角度方位の振れは最小に抑えることができる。
【0113】
さらに、本実施形態に係る照明装置1Dでは、必要に応じて照度均一性と出射光束の角度特性とをバランスさせて中間的な角度にしてもよい。また、説明の簡素化のためにロッドインテグレータの効果を平面内で説明してきたが、奥行き方向にも同様に角度をつけることで正方形に近い照明領域に対応できる。また、走査型露光装置のように扁平な照明領域を持つ場合には、扁平な照明領域に合わせたロッドインテグレータ20を用いる。このとき、短手方向にはロッドインテグレータ20による積算は十分行われるので、長手方向のみに入射光束を並べて長手方向のみ本発明を適用してもよい。
【0114】
本実施形態では、照明均一化素子としてのロッドインテグレータ20を用いた際に生じるテレセントリシティのズレを最小限に抑えることができる。したがって、上記の第1の実施形態に係る露光装置100に用いる場合、フォーカス変動があったとしても転写位置の変化や倍率変化が発生しにくく、パターン転写性能が良好で、電子デバイスの歩留まりを向上させることに寄与する照明光学系を提供することができる。
【0115】
[電子デバイスの製造方法]
次に、図1に示す上記の第1の実施形態に係る走査型の(投影)露光装置100を用いて、ガラス基板(プレートP)上に所定のパターン(回路パターン、電極パターン等)を形成することによって、電子デバイスとしての液晶表示素子を得ることもできる。以下、図30のフローチャートを参照して、電子デバイスの製造方法の一例としての液晶表示素子の製造方法について説明する。
【0116】
図30のステップS11(パターン形成工程)では、先ず、露光対象のガラス基板上にフォトレジストを塗布して感光基板としてのプレートPを準備する塗布工程、上記の露光装置100を用いて液晶表示素子用のマスクMのパターンをその感光基板上に転写露光する露光工程、及びその感光基板を現像する現像工程が実行される。この塗布工程、露光工程、及び現像工程を含むリソグラフィ工程によって、そのプレートP上に所定のレジストパターンが形成される。このリソグラフィ工程に続いて、そのレジストパターンをマスクとしたエッチング工程、及びレジスト剥離工程等を経て、そのプレートP上に多数の電極等を含む所定パターンが形成される。そのリソグラフィ工程等は、そのプレートP上のレイヤ数に応じて複数回実行される。
【0117】
その次のステップS12(カラーフィルタ形成工程)では、液晶セルを構成する一方の基板に、赤R、緑G、青Bに対応した3つの微細なフィルタの組をマトリックス状に多数配列するか、又は赤R、緑G、青Bの3本のストライプ状の複数のフィルタの組を水平走査線方向に配列することによってカラーフィルタを備えた基板を作製する。その次のステップS13(セル組立工程)では、例えばステップS11にて得られた所定パターンを有するプレートPとステップS12にて得られたカラーフィルタを備えた基板を液晶封止領域(空間)を区画するシール材を介して貼り合わせ、この液晶封止領域に液晶を注入して、液晶パネル(液晶セル)を製造する。
【0118】
その後のステップS14(モジュール組立工程)では、そのようにして組み立てられた液晶パネル(液晶セル)に表示動作を行わせるための電気回路、及びバックライト等の部品を取り付けて、電子デバイスとしての液晶表示素子として完成させる。
【0119】
上述の液晶表示素子の製造方法によれば、フォトレジストが塗布されたプレートP上を露光装置100にて露光する場合に、照明装置1Aから出射される照明光の照度均一性が高いため、リレー光学系(導光光学系)、マスクM、および投影光学装置PLを経た露光光の照度均一性も高く、フォトレジストを均一に露光することができる。したがって、マスクMのパターンをプレートPに精度良く転写できるため、パターン精度の高い液晶パネルを作製することができる。このため、本実施形態によれば、液晶表示素子をはじめとする電子デバイスの製造歩留まりを向上できる。
【0120】
[その他の実施形態]
以上、各実施形態について説明したが、これらの実施形態の開示の一部をなす論述および図面はこの発明を限定するものであると理解すべきではない。本発明の範囲は、図示され記載された例示的な実施形態に限定されるものではなく、本発明が目的とするものと均等な効果をもたらすすべての実施形態をも含む。さらに、本発明の範囲は、請求項により画される発明の特徴の組み合わせに限定されるものではなく、すべての開示されたそれぞれの特徴のうち特定の特徴のあらゆる所望する組み合わせによって画され得る。
【0121】
例えば、上記各実施形態では、光導入部10A〜Dに調整機構30A〜Dを備える構成としたが、これらの調整機構30A〜D以外に各種の移動調整手段を備えた位置調整手段を用いることができる。また、照明装置としては、光入射端面20inに入射する光束LB2の入射位置や入射角度が上述の条件に設定されているものであれば、調整機構を備えない構成であってもよい。
【0122】
また、上記の各実施形態では、光源部LSから出射する光を集光レンズ3A,3Bで光ファイバ4A,4Bに導く例を示したが、光ファイバを用いずにレンズによるリレー等でロッドインテグレータ20に入射させる方法を用いてもよい。
【0123】
さらに、上記の第4の実施形態では、光束LB2が光入射端面20inの中心を対称中心として光入射端面20inに入射させ、かつロッドインテグレータ20内を通過する光束LB2の中心線が光出射端面20outの中心20outcを通り、しかも光束LB2の入射位置同士の間隔がインテグレータ20の幅wyを光束LB2の数で割った長さになるように設定したが、光束LB2の入射位置同士の間隔が、幅wyを光束LB2の数で割った長さにならなくてもよい。その場合、光出射端面20outから出射される照明光が光出射端面20outに対して直角をなす方向へ沿って出射されるように、光束LB2の光入射端面20inに対する入射角度を設定すればよい。
【0124】
なお、上記の実施形態にかかる照明装置1A〜1Dは、露光装置以外にも例えばプロジェクタ等の照明装置として用いることも可能である。
【符号の説明】
【0125】
1A〜D 照明装置
3A,3B 集光レンズ
4A,4B 光ファイバ
5A〜D ファイバレンズ
6A,6B 接続支持部材
7A,7B 調整用可動フレーム
8A,8B レンズ支持筒
10A〜D 光導入部
20 ロッドインテグレータ
20A〜D 側面
20in 光入射端面
20out 光出射端面
30A〜D 調整機構
31A,31B X方向調整用可動フレーム
32A,32B Y方向調整用可動フレーム
33 ガイドスリット
34 移動体
35 下側スライド部
36 上側スライド部
37 連結筒体
38 レンズ保持筒
40 リレー光学系
100 露光装置
IL1〜7 部分照明光学系
IU 照明部
LS 光源部
LB1,LB2 光束
LB2s 入射位置
M マスク
P プレート
PL 投影光学装置
PL1〜7 投影光学系

【特許請求の範囲】
【請求項1】
光入射端面と、光出射端面と、互いに対向する第1及び第2側面と、を有し、前記光入射端面から入射した光を前記第1及び第2側面で反射して前記光出射端面から光を出射するロッドインテグレータを備え、該ロッドインテグレータを介した照明光を照明対象に照射する照明装置であって、
前記光入射端面上の複数の入射位置から前記ロッドインテグレータに前記照明光を入射させる光導入部を備え、
前記光導入部は、前記第1及び第2側面が対向する方向に沿って前記第1側面と前記第2側面との間の中心位置に対して互いに対称な配置に設定される前記複数の入射位置から前記ロッドインテグレータに前記照明光を入射させることを特徴とする照明装置。
【請求項2】
前記複数の入射位置のうち互いに隣り合う入射位置の間隔は、前記対向する方向に沿った前記第1及び第2側面間の距離を前記複数の入射位置の数で割った長さに設定されていることを特徴とする請求項1に記載の照明装置。
【請求項3】
前記光導入部は、前記複数の入射位置のそれぞれから前記光出射端面の中心に向かうように前記照明光を前記ロッドインテグレータに入射させることを特徴とする請求項1または請求項2に記載の照明装置。
【請求項4】
前記光導入部は、前記光入射端面に入射させる前記照明光の位置および角度の少なくとも一方を調整する調整機構を備えることを特徴とする請求項1から3のいずれか一項に記載の照明装置。
【請求項5】
前記ロッドインテグレータの前記光入射端面から前記光出射端面までの距離をL、前記第1及び第2側面間の距離をw、前記ロッドインテグレータの屈折率をn、前記ロッドインテグレータに入射する前記照明光の開口数をNAで示したときに、
0.402<(n・w)/(NA・L)<0.717
を満足することを特徴とする請求項1から4のいずれか一項に記載の照明装置。
【請求項6】
光入射端面と、光出射端面と、互いに対向する第1及び第2側面と、を有し、前記光入射端面から入射した光を前記第1及び第2側面で反射して前記光出射端面から光を出射するロッドインテグレータを介した照明光を照明対象に照射する照明方法であって、
前記第1及び第2側面が対向する方向に沿って前記第1側面と前記第2側面との間の中心位置に対して互いに対称な配置に設定される前記光入射端面上の複数の入射位置から前記ロッドインテグレータに前記照明光を入射させることを含むことを特徴とする照明方法。
【請求項7】
前記複数の入射位置のうち互いに隣り合う入射位置の間隔を、前記対向する方向に沿った前記第1及び第2側面間の距離を前記複数の入射位置の数で割った長さに設定することを含むことを特徴とする請求項6に記載の照明方法。
【請求項8】
前記複数の入射位置のそれぞれから前記光出射端面の中心に向かうように前記照明光を前記ロッドインテグレータに入射させることを含むことを特徴とする請求項6または請求項7に記載の照明方法。
【請求項9】
前記光入射端面に入射させる前記照明光の位置および角度の少なくとも一方を調整することを含むことを特徴とする請求項6から8のいずれか一項に記載の照明装置。
【請求項10】
前記ロッドインテグレータの前記光入射端面から前記光出射端面までの距離をL、前記第1及び第2側面間の距離をw、前記ロッドインテグレータの屈折率をn、前記ロッドインテグレータに入射する前記照明光の開口数をNAで示したときに、
0.402<(n・w)/(NA・L)<0.717
を満足させることを含むことを特徴とする請求項6から9のいずれか一項に記載の照明装置。
【請求項11】
マスクに形成されたパターンを介した光によって感光性基板を露光する露光装置であって、
前記マスクを照明する請求項1から5のいずれか一項に記載の照明装置を備えたことを特徴とする露光装置。
【請求項12】
前記パターンを介した光によって該パターンを前記感光性基板に投影する投影光学系を備えたことを特徴とする請求項11に記載の露光装置。
【請求項13】
前記投影光学系は、前記パターンの拡大像を前記感光性基板に投影することを特徴とする請求項12に記載の露光装置。
【請求項14】
前記感光性基板は、一辺の長さ又は対角長が500mmより大きいことを特徴とする請求項11から13のいずれか一項に記載の露光装置。
【請求項15】
請求項11から14のいずれか一項に記載の露光装置を用いて、前記感光性基板に前記パターンを転写する工程と、
前記パターンが転写された前記感光性基板を処理する工程と、を含むことを特徴とする電子デバイスの製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate