説明

熱分析装置

【課題】炉体と冷媒槽との間の熱抵抗を調節することができる熱分析装置を提供する。
【解決手段】炉体2、ヒータ4、冷媒槽6及び移動機構8が設けられている。炉体2にはヒータ4が取り付けられている。冷媒槽6は移動機構8によって炉体2に対して相対的に移動できるように設けられている。炉体2を冷却する際は冷媒槽6を炉体2に接触又は近接させて炉体2と冷媒槽6の間の移動熱量を大きくし、炉体2を加熱する際は冷媒槽6を炉体2から離してその間に空気層を介在させ、炉体2と冷媒槽6の間の移動熱量を小さくする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、例えば示唆走査熱量計(以下、DSCと記す。)などの熱分析装置に関するものである。
【背景技術】
【0002】
例えばDSCなどの熱分析装置は、炉体にヒータが取り付けられるとともに炉体を冷却するための冷却装置が設けられ、炉体に保持された試料及び基準物質を昇降温させてそのときの試料の変化(例えばエンタルピー変化など)を測定するものである。このような熱分析装置では、測定時に−150℃〜700℃程度までの広い範囲で炉体を昇高温できることが要求されるため、冷却装置として液体窒素を冷媒槽に供給する形式のものを用いることが一般的である(例えば特許文献1、特許文献2を参照。)。
【特許文献1】特開平9−229884号公報
【特許文献2】特開平11−174009号公報
【発明の開示】
【発明が解決しようとする課題】
【0003】
液体窒素を冷媒槽に供給する形式の冷却装置を用いた場合、冷媒槽と炉体、ヒータの位置関係は冷却又は加熱の効率や応答速度に大きな影響を与えるため、それらの位置関係が問題となる。DSCのような熱分析装置での測定は、加熱−冷却−加熱・・といったサイクルで炉体を昇降温させる。その場合、冷媒槽を炉体に接触又は近接させていると、炉体の昇温時に液体窒素が邪魔になり、一定以上の昇温速度を得ることができない。
【0004】
上記の問題を避けるために、冷媒槽を炉体及びヒータから離して配置し、空気層を介して又は伝熱板などの媒体を介して炉体との間で熱交換を行なうようになっていることが一般的である。しかし、そうすると、炉体と冷媒槽の間の熱交換は常に空気層又は伝熱板を介して行なわれるため、炉体の冷却時の冷却速度が遅く、応答性が悪いという問題があった。
【0005】
以上の問題に鑑みれば、炉体と冷媒槽との間での熱の移動量を必要に応じて調節できることが好ましい。
そこで本発明は、炉体と冷媒槽との間の熱抵抗を調節することができる熱分析装置を提供することを目的とするものである。
【課題を解決するための手段】
【0006】
本発明の熱分析装置は、ヒータを内蔵し、中央上面が試料を保持するための試料保持面となっている熱伝導性の炉体と、冷媒槽及び冷媒槽に液体窒素を供給する冷媒供給部からなる冷却装置と、冷媒槽と炉体とを相対的に移動させる移動機構と、を備え、炉体は冷媒槽との間で熱交換を行なうための炉体側熱交換部をもち、冷媒槽は炉体側熱交換部と接触又は近接して炉体との熱交換を行なう冷媒槽側熱交換部をもち、移動機構による冷媒槽と炉体との相対的な移動により、炉体側熱交換部と冷媒槽側熱交換部との間の距離が調節されるように構成されているものである。
【0007】
移動機構による冷媒槽と炉体との相対的な移動により、炉体側熱交換部と冷媒槽側熱交換部との間の距離が調節されるように構成されているので、炉体側熱交換部と冷媒槽側熱交換部との間に介在させる空気層の厚さを調節することができ、両熱交換部間の熱抵抗の調節が可能になる。
【0008】
炉体には熱電対などの測温素子が取り付けられている。そのような炉体を上下方向に移動させると測温素子による測定にノイズが入る虞がある。そのため、炉体は固定されており、移動機構は冷媒槽を上下方向に移動させるように構成されていることが好ましい。 上記の場合、冷媒槽は、移動機構が駆動されていない状態では冷媒槽側熱交換部が炉体側熱交換部に接触又は近接した状態で保持されており、移動機構が駆動されたときに上方に持ち上げられるようになっているものが挙げられる。
【0009】
移動機構の一例として、所定電圧が印加されたときに変位する点をもつピエゾアクチュエータ、及びピエゾアクチュエータの変位点の変位を利用して冷媒槽を持ち上げる変位伝達部からなるものが挙げられる。
【0010】
ピエゾアクチュエータを用いた移動機構の具体例として、ピエゾアクチュエータは駆動時に変位点が下方に変位するように配置されており、変位伝達部はピエゾアクチュエータの変位点の下方への変位を冷媒槽を上方に持ち上げる変位に増幅するように構成されたテコ機構からなるものを挙げることができる。一般的にピエゾアクチュエータの変位点の変位量は小さい。変位量を増幅するテコ機構を用いれば、冷媒槽と炉体との間に十分な厚さの空気層を介在させるために必要な冷媒槽の変位量を確保することができる。
【0011】
上記の場合、ピエゾアクチュエータの変位点からテコ機構の支点までの長さが調節可能であることが好ましい。そうすれば、ピエゾアクチュエータの変位点の変位から冷媒槽を上方に持ち上げる変位への増幅率を可変にすることができ、炉体と冷媒槽の間に介在させる空気層の厚さの調節幅を広げることができる。
【0012】
また、移動機構の他の例として、下端部が固定された状態で冷媒槽の下方に挿入され、加熱されることによって膨張して上端部が上方に変位する樹脂製の支持部材、及び支持部材を加熱するために支持部材に取り付けられた支持部材用ヒータからなり、支持部材の上端部の変位により冷媒槽が上方に持ち上げられるように構成されているものが挙げられる。
【0013】
以上のような熱分析装置においては、冷媒槽の下方に弾性体が圧縮状態で挿入されていることが好ましい。そうすれば、冷媒槽を上方に持ち上げる際に弾性体の弾性力も利用することができるため、移動機構にかかる負荷を軽減することができる。
【0014】
また、本発明の熱分析装置は、試料の測定における炉体の温度プログラムを保持したプログラム保持部と、炉体に取り付けられて炉体の温度を測定する測温素子と、プログラム保持部で保持された温度プログラムと測温素子による測定温度に基づいて、ヒータ、冷却装置及び移動機構の駆動を制御する制御部と、をさらに備えていてもよく、その場合の制御部は、温度プログラムが炉体を冷却する工程にあるときは冷媒槽側熱交換部と炉体側熱交換部とを接触又は近接させ、温度プログラムが炉体を加熱する工程にあるときは冷媒槽側熱交換部と炉体側熱交換部とを離間させるように移動機構を制御するものであることが好ましい。
ここで、冷媒槽側熱交換部と炉体側熱交換部とを「近接させる」とは、冷媒槽側熱交換部と炉体側熱交換部との間の距離を数μm以下にすることを意味する。冷媒槽側熱交換部と炉体側熱交換部との間の距離を数μm以下にすることで、両熱交換部間の熱抵抗を冷却工程時に炉体を効率よく冷却するために十分に小さいものとすることができる。
【0015】
温度プログラムが炉体を冷却する工程にあるときに冷媒槽側熱交換部と炉体側熱交換部とを接触又は近接させることで、冷却工程時の炉体の冷却効率を高めることができる。また、温度プログラムが炉体を加熱する工程にあるときも冷媒槽側熱交換部と炉体側熱交換部とを離間させることで、炉体と冷媒槽とが接触又は近接している場合に比べてヒータによる炉体の加熱効率を高めることができる。
【0016】
ところで、冷媒槽内では、冷却工程から加熱工程に移行する際に冷媒槽内で液体窒素の沸騰が起こり、液体窒素が蒸発するときに温度変動を生じる。このようなときに炉体と冷媒槽とを接触又は近接させていると炉体が冷媒槽内の温度変化の影響を受けてしまい、炉体温度のDSC信号のベースラインが安定しない。DSCによる分析において重要なことはDSC信号のベースラインが安定していることである。
【0017】
そこで、制御部は、炉体を冷却する工程中に測温素子による測定温度が冷却目標温度付近となったときも冷媒槽側熱交換部と炉体側熱交換部とを離間させるように移動機構を制御するものであることが好ましい。そうすれば、炉体が受ける冷媒槽内の液体窒素が沸騰して蒸発する際の温度変動の影響を小さくしてDSC信号のベースラインを安定させることができる。
【発明の効果】
【0018】
本発明の熱分析装置は、移動機構による冷媒槽と炉体との相対的な移動により、炉体側熱交換部と冷媒槽側熱交換部との間の距離が調節されるように構成されているので、炉体側熱交換部と冷媒槽側熱交換部との間に介在させる空気層の厚さを調節して、両熱交換部間の熱抵抗を調節することができる。
【発明を実施するための最良の形態】
【0019】
図1は本発明の熱分析装置の一例を概略的に示すブロック図であり、(A)は冷媒槽と炉体とを接触又は近接させた状態、(B)は冷媒槽と炉体とを離間させた状態、を示している。
【0020】
熱分析装置1の主要な構成として、炉体2、ヒータ4、冷媒槽6及び移動機構8が設けられている。炉体2は測定対象である試料と基準物質を保持してそれらを昇降温させるものである。炉体2にはヒータ4が取り付けられている。冷媒槽6は冷媒である液体窒素を収容して炉体を冷却するものであり、移動機構8によって炉体2に対して相対的に移動できるように設けられている。ここでの図示は省略されているが、炉体2を冷却する際に冷媒槽6に液体窒素を供給する冷媒供給部が設けられており、冷媒供給部と冷媒槽6とで冷却装置を構成している。
【0021】
炉体2と冷媒槽6の間の間隔と両者間の熱移動には以下の関係がある。
移動熱量Q(W)は熱通過率(熱抵抗)K(W/m2K)、熱移動間の温度差T(K)、面積S(m2)を用いて以下の式(1)で表わすことができる。
Q=K×T×S (1)
重ね合わされた2枚の板(板1、板2とする)の熱通過率K(W/m2K)は、板1の厚さをd1(m)、板2の厚さd2(m)、板1の熱伝導率L1(W/mK)、板2の熱伝導率L2(W/mK)を用いて以下の式(2)で表わすことができる。
K=1/(d1/L1+d2/L2) (2)
【0022】
表1は、炉体2の表面から冷媒槽6内の液体窒素までの熱通過率を空気層を板1と見なして上記式(2)を用いて計算したものである。なお、熱伝導率は実際には温度依存性があるが、ここでは冷媒槽6の材質としてのステンレスの熱伝導率を16W/mK、空気の熱伝導率を0.02W/mKと固定して計算を行なった。
【表1】

【0023】
表1からわかるように、炉体2と冷媒槽6の間に空気層を50μm介在させるだけで、炉体2と冷媒槽6を接触させた(空気層の厚さ=0(mm))場合に比べて熱通過率Kが約1/40になる。式(1)に示されているように、熱移動量Q(W)は熱通過率Kに比例することから、炉体2と冷媒槽6の間に空気層を50μm介在させるだけで、両者間の熱移動量が1/40になる。
【0024】
以上のことから、炉体2を冷却する際は、図1(A)に示されているように、冷媒槽6を炉体2に接触又は近接させることで炉体2の冷却効率を向上させることができ、急速冷却も可能になる。一方、炉体2を加熱する際は、(B)に示されるように、炉体2から冷媒槽6を離間させて炉体2と冷媒槽6の間にある程度の厚さ(例えば数百μm)の空気層を介在させることで、液体窒素による昇温の妨害を防ぎながら効率よく炉体2の温度を上昇させることができる。また、冷媒槽6内の液体窒素が沸騰状態のときに炉体2と冷媒槽6の間に空気層を介在させることで、炉体2への液体窒素の沸騰による急激な温度変動の影響を小さくすることができ、DSC信号のベースラインを安定させることができる。
【0025】
図2は図1に示した熱分析装置をより具体的に示す断面図であり、(A)は冷媒槽と炉体とを接触又は近接させた状態、(B)は冷媒槽と炉体とを離間させた状態、を示している。
【0026】
炉体2は中央上面に試料容器3a,3bを載置するための円形の試料保持面2aもつ。試料容器3a,3bのいずれか一方には試料が収容され、他方に基準物質が収容される。試料保持面2aの下方に試料保持面2aを中心としてその周囲方向に均一に伸びたフランジ2bが設けられ、フランジ2bの上面は冷媒槽6との間で熱交換を行なうための炉体側熱交換部となっている。フランジ2bよりも下部の炉体2の周面にヒータ4が巻かれている。なお、この図2において炉体2は宙に浮いた状態で示されているが、実際にはベース10に固定されている。
【0027】
フランジ2bの上方の炉体2の周囲は冷却ユニット5で囲われている。冷却ユニット5は冷媒槽6とその周囲を覆う断熱材16で構成されている。冷媒槽6の下面の内側領域はフランジ2bの上面に対向して炉体2との間で熱交換を行なう冷媒槽側熱交換部となっている。
【0028】
ベース10は円筒形状の支持ガイド部12を備えている。支持ガイド部12の内側に支持ガイド部12の内径よりも少しだけ小さい外形をもつ円筒形状の内筒14が摺動可能に挿入されている。内筒14は冷却ユニット5に固定具22によって固定されている。これにより、冷却ユニット5は内筒14とともに支持ガイド12の内側面に沿って上下方向に移動させることができる。
【0029】
炉体2の試料保持面2aの上方に試料保持面2aを含む空間を覆う断熱性の内蓋18が設けられており、さらにその上方に冷却ユニット5に着脱可能に取り付けられた外蓋20が設けられている。内蓋18は外蓋20に固定されており、外蓋20が取り外されると同時に内蓋18も取り外されるようになっている。
【0030】
図2(A)は通常状態である。この状態では、内筒12の下端部がベース10に接して支持され、フランジ2bと冷媒槽6とが接触又は近接している。これにより、炉体2−冷媒槽6間の移動熱量が大きくなっている。炉体2を冷却するときにこの状態にすることで、炉体2の冷却効率を向上させることができる。
【0031】
一方、図2(B)は図示されていない移動機構によって冷却ユニット5が上方に持ち上げられた状態である。この状態では、冷却ユニット5が上方に持ち上げられることによって冷媒槽6が炉体2のフランジ2bから離間しており、冷媒槽6と炉体2の間にある程度の厚さの空気層が形成されている。これにより、炉体2−冷媒槽6間の移動熱量が(A)の状態に比べて極端に小さくなっている。炉体2を昇温させるときにこの状態にすることで、液体窒素による炉体2の昇温の妨害を防ぐことができる。また、炉体2の冷媒槽6内の液体窒素が沸騰しているときにこの状態にすれば、炉体2が受ける液体窒素の沸騰による温度変動の影響を小さくすることができ、DSC信号のベースラインの安定化を図ることができる。
【0032】
冷却ユニット5を上下方向に移動させるための移動機構の一例を図3に示す。図3は移動機構を説明するための熱分析装置の図であり、(A)は正面図、(B)は側面図である。
ピエゾアクチュエータ24を備えた移動機構が設けられている。ピエゾアクチュエータ24は、下端がベース10に固定された支持部材26に固定され、下向きに吊り下げられている。ピエゾアクチュエータ24は下端部24aが変位点となっており、電圧が印加されたときにその下端部24aが下方に変位するものである。ピエゾアクチュエータ24上端の支持部材26への固定部分には、ピエゾアクチュエータ24の高さを調節するための高さ調節ネジ24bが設けられている。
【0033】
ピエゾアクチュエータ24の変位点24aの下方への変位を冷却ユニット5を上方へ持ち上げる変位に増幅するように、梁28がピン30によって支持部材26に回転可能に支持されたテコ機構が構成されている。梁28が水平になっている状態のときに梁28の一端側に非駆動状態のピエゾアクチュエータ24の変位点24aが上方から接し、梁28の他端側で冷却ユニット5の中央の均等な2点32を支持するように梁28の長さ、ピン30の高さ及びピエゾアクチュエータ24の高さがそれぞれ調節されている。
【0034】
テコの原理で言えば、梁28を支持するピン30は支点、梁28のピエゾアクチュエータ24の変位点24aが接している点が力点、梁28が冷却ユニット5を支持している点32が作用点となる。この実施例では、変位点24a及び作用点32として、梁28のピン30を中心とした回転に対応できるように鋼球が用いられている。
【0035】
この構成によれば、ピエゾアクチュエータ24に電圧を印加すると梁28の一端が力点である鋼球24aによって下方に押し下げられ、それによって梁28が支点であるピン30を中心に回転して作用点である鋼球32を上方に押し上げる。それにより冷却ユニット5は持ち上げられ、冷媒槽6とフランジ2bとの間に空気層が形成される。
【0036】
このように、ピエゾアクチュエータ24の変位をテコ機構を介して増幅して冷却ユニット5に伝達することで、ピエゾアクチュエータの欠点である変位量の少なさを増幅によって改善することができる。また、この構造によってピエゾアクチュエータ24をヒータ4や冷媒槽6から離れた場所に配置することができるので、ピエゾアクチュエータ24をDSCの熱影響(−150℃〜700℃)下から分離することができるという利点もある。ピエゾアクチュエータ24の変位量については、ピエゾアクチュエータ24を構成するピエゾ素子の積層数を多くすることで変位量を多くすることは可能であるが、そうするとスペースやコストが増大してしまうという問題がある。
【0037】
そこで、ピエゾアクチュエータ24を梁28の長さ方向に移動可能にして、力点24aと支点30の間の距離を調節できるようにする方法もある。そうすれば、テコ機構のスパン比を調節することができ、変位量の増幅率を調節することができる。例えば、ピエゾアクチュエータ24の変位点24aの変位量が30μmであった場合には、力点24aと支点30の間の距離を5mm、支点30と作用点32の間の距離を100mmにすることでスパン比が1:20となり、作用点32において600μmもの変位量を得ることができる。上述の熱通過率の例(表1)から、空気層の厚さが0.6mmもあれば炉体2‐冷媒槽6間の熱通過率を十分に激減させることができる。
【0038】
一方で、スパン比を1:20にした場合には、ピエゾアクチュエータ24に冷却ユニット5の重さの20倍の負荷が加わることになる。例えば冷却ユニット5の重さが2kgfであった場合にはピエゾアクチュエータ24には40kgfの負荷が加わる。ピエゾアクチュエータの発生力はピエゾ素子の面積によって変化するが、一般的には100kgf程度の発生力があるため上記の条件にも十分に耐えることはできるが、負荷の増大によってピエゾアクチュエータ24の変位量は減少してしまう。
【0039】
そこで、図4に示されているように、冷却槽5の下方に圧縮状態のコイルバネ(弾性体)34を挿入して冷却槽5をコイルバネ34によっても支持することも可能である。図4の例では、冷却槽5とベース10の間にコイルバネ34が2本挿入されている。コイルバネ34の発生力を例えば0.5kgfとすれば、2kgfの冷却ユニット5の重さを1kgfと見なすことができ、ピエゾアクチュエータ24に加わる負荷を軽減することができる。
【0040】
上記の移動機構の駆動方法の一例を図2及び図3を参照しながら説明する。
(1)まず、高さ調節ネジ24bで冷媒槽6の下面がフランジ2bの上面に接触するようにピエゾアクチュエータ24の高さを調節する。
【0041】
(2)炉体2を冷却する冷却工程時(急速冷却)は、ピエゾアクチュエータ24に電圧を印加せずに冷媒槽6の下面をフランジ2bの上面に接触させた状態に、又はフランジ2bの上面と冷媒槽6の下面との間に微小(例えば数μm)の厚さの空気層が形成されるようにピエゾアクチュエータ24に電圧を印加した状態にして、炉体2−冷媒槽6間の移動熱量を大きくする。
【0042】
(3)炉体2の温度が目標冷却温度付近(例えば目標冷却温度+5℃)になったときは、フランジ2bの上面と冷媒槽6の下面との間にある程度(例えば数百μm程度)の空気層が形成されるように、ピエゾアクチュエータ24に一定電圧を印加して炉体2−冷媒槽6間の移動熱量を抑え、炉体2が液体窒素の沸騰・蒸発による温度変動の影響を受けにくくしてDSC信号のベースラインを安定させながら炉体2の温度を目標冷却温度に導く。
【0043】
(4)炉体2を昇温させる昇温工程時も、フランジ2bの上面と冷媒槽6の下面との間にある程度(例えば数百μm程度)の空気層を形成した状態でヒータ4による加熱を行なって液体窒素による昇温の妨げを防止し、緩やかに液体窒素を蒸発させてDSC信号のベースラインの変動を抑える。
【0044】
上記(2)〜(4)の操作は分析者が手作業で行なってもよいが、予め設定された分析プログラムに応じてヒータ4や冷却装置を駆動しながら炉体2の昇降温を制御する制御部が移動機構の駆動も制御するように構成して自動化してもよい。
【0045】
なお、上記の実施例では移動機構として直動機構型のピエゾアクチュエータ24を示したが、同様の直動機構型アクチュエータとしてソレノイドや空気圧シリンダ、油圧シリンダなどを利用したものを用いることもできる。
【0046】
次に、冷却ユニット5を持ち上げる移動機構の他の例を図5に示す。図5は移動機構の他の例を説明するための熱分析装置の断面図である。なお、同図において図2の熱分析装置と同じ機能をもつ構成部材には同じ符号を付し、その説明を省略する。
【0047】
冷却ユニット5の下方で支持ガイド12の外周を囲うようにして樹脂製の円筒部材36が設けられている。支持ガイド12にはボルトとナットからなる円筒支持部材40が取り付けられており、円筒部材36の下端部は円筒支持部材40によって支持されている。円筒部材36の上端部は冷却ユニット5の下部に接して冷却ユニット5を支持している。円筒支持部材40はボルトとナットを緩めて支持ガイド12上での高さ調節を行なうことができるようになっている。
【0048】
円筒部材36の周囲にはヒータ38が巻かれている。ヒータ38は例えばシリコンラバーヒータである。
円筒部材36の材質である樹脂として、不燃で耐熱性(約260℃)のあるPTFE(ポリテトラフルオロエチレン)を用いることができる。
【0049】
この例の移動機構は、ヒータ38により円筒部材36を加熱したときの円筒部材36の熱膨張を利用して冷却ユニット5を持ち上げるものである。円筒支持部材40の高さは、円筒部材36が加熱されていないときに冷媒槽6の下面が炉体2のフランジ2bに接触した状態となるように調節されている。
【0050】
ヒータ38を駆動して円筒部材36を所定温度に加熱すると、円筒部材36が膨張してその上端部が上方に変位し、冷却ユニット5が上方に持ち上げられ、炉体2と冷媒槽6との間に空気層が形成される。炉体2と冷媒槽6との間に形成される空気層の厚さは円筒部材36の加熱温度によって制御することができる。例えば、円筒部材36又はヒータ38に測温素子を取り付けておき、その測温素子での測定温度が所定の温度になるようにヒータ38の駆動を制御する。逆に、炉体2と冷媒槽6との間の空気層の厚さを小さくするときは、円筒部材36を自然冷却によって収縮させるか、又はファンなどの冷却機構を用いて円筒部材36を強制的な冷却により収縮させる。
【0051】
ここで、円筒部材36の、(a)熱膨張による伸び量、(b)熱膨張による発生力、(c)熱容量について検討する。この検討において、円筒部材36の材質をPTFEとし、寸法は外形78mm、内径72mm、長さ40mmとした。
【0052】
(a)熱膨張による伸び量
円筒部材36を室温+100℃に加熱したときの伸び量は、PTFEの線膨張係数を0.0001とすると、
0.0001×40×100=0.4mm
となる。表1に示したように、炉体2と冷媒槽6との間に0.4mmの厚さの空気層が形成されれば、炉体2‐冷媒槽6間の熱通過率は炉体2と冷媒槽6とが接触している場合に比べて激減するので、十分な伸び量ということができる。
【0053】
(b)熱膨張による発生力
同様に円筒部材36を室温+100℃に加熱したときの発生力は、PTFEの圧縮弾性率を4200kg/cmとすると、
4200×0.0001×7(円筒部材36の断面積(cm2))=290kg
となる。この数字は円筒部材36の両端が完全に拘束されている場合の発生力を示しているが、重さ数kgの冷却ユニット5を持ち上げるには十分な発生力といえる。
【0054】
ただし、冷媒槽5の重さが数kgであっても円筒部材36が繰り返し熱膨張−収縮を行なうことによって円筒部材36が円周方向に変形することも考えられるので、円筒部材36に加わる荷重をできるだけ小さくすることが好ましい。そこで、図6に示されているように、冷却ユニット5の下方に圧縮状態のコイルバネ(弾性体)42を挿入して、円筒部材36に加わる負荷を軽減することが考えられる。
【0055】
(c)熱容量
円筒部材36の温度を100℃上昇させるのに必要な熱量を以下の数値に基づいて計算すると、
体積 0.000028m2
比重 2100kg/m3
比熱 1200J/kg・K
必要な熱量:0.000028×2100×1200×100=7056(J)
上記結果から、円筒部材36の温度を1分で100℃上昇させるには120W以上のヒータを用いる必要がある。
【0056】
なお、この例での移動機構の応答性は、上記の(a)熱膨張による伸び量、(b)熱膨張による発生力、(c)熱容量の3要素の設計のバランスによって調整することができる。
【図面の簡単な説明】
【0057】
【図1】本発明の熱分析装置の一例を概略的に示す、(A)冷媒槽と炉体とを接触又は近接させた状態、(B)冷媒槽と炉体とを離間させた状態、でのブロック図である。
【図2】熱分析装置の構造をより具体的に示す断面図であり、(A)は冷媒槽と炉体とを接触又は近接させた状態、(B)は冷媒槽と炉体とを離間させた状態、を示している。
【図3】移動機構を説明するための熱分析装置の図であり、(A)は正面図、(B)は側面図である。
【図4】同実施例の冷却ユニットの下方に圧縮状態の弾性体を挿入した例を示す熱分析装置の正面図である。
【図5】移動機構の他の例を説明するための熱分析装置の断面図である。
【図6】同実施例の冷却ユニットの下方に圧縮状態の弾性体を挿入した例を示す熱分析装置の正面図である。
【符号の説明】
【0058】
1 熱分析装置
2 炉体
2a 試料載置面
2b フランジ
3a,3b 試料容器
4,38 ヒータ
5 冷却ユニット
6 冷媒槽
8 移動機構
10 ベース
12 支持ガイド
14 内筒
16 断熱部材
18 内蓋
20 外蓋
22 固定具
24 ピエゾアクチュエータ
24a ピエゾアクチュエータ変位点(力点)
26 支持部材
28 梁
30 ピン(支点)
32 作用点
34,42 コイルバネ
36 円筒部材
40 円筒支持部材

【特許請求の範囲】
【請求項1】
ヒータを内蔵し、中央上面が試料を保持するための試料保持面となっている熱伝導性の炉体と、
冷媒槽及び前記冷媒槽に液体窒素を供給する冷媒供給部からなる冷却装置と、
前記冷媒槽と前記炉体とを相対的に移動させる移動機構と、を備え、
前記炉体は前記冷媒槽との間で熱交換を行なうための炉体側熱交換部をもち、前記冷媒槽は前記炉体側熱交換部と接触又は近接して前記炉体との熱交換を行なう冷媒槽側熱交換部をもち、
前記移動機構による前記冷媒槽と前記炉体との相対的な移動により、前記炉体側熱交換部と前記冷媒槽側熱交換部との間の距離が調節されるように構成されている熱分析装置。
【請求項2】
前記炉体は固定されており、
前記移動機構は前記冷媒槽を上下方向に移動させるものである請求項1に記載の熱分析装置。
【請求項3】
前記冷媒槽は、前記移動機構が駆動されていない状態では前記冷媒槽側熱交換部が前記炉体側熱交換部に接触又は近接した状態で保持されており、前記移動機構が駆動されたときに上方に持ち上げられる請求項2に記載の熱分析装置。
【請求項4】
前記移動機構は、所定電圧が印加されたときに変位する点をもつピエゾアクチュエータ、及び前記ピエゾアクチュエータの変位点の変位を利用して前記冷媒槽を持ち上げる変位伝達部からなる請求項2又は3に記載の熱分析装置。
【請求項5】
前記ピエゾアクチュエータは、駆動時に前記変位点が下方に変位するように配置されており、
前記変位伝達部は、前記ピエゾアクチュエータの前記変位点の下方への変位を前記冷媒槽を上方に持ち上げる変位に増幅するように構成されたテコ機構からなるものである請求項4に記載の熱分析装置。
【請求項6】
前記ピエゾアクチュエータの前記変位点から前記テコ機構の支点までの長さが調節可能である請求項5に記載の熱分析装置。
【請求項7】
前記移動機構は、下端部が固定された状態で前記冷媒槽の下方に挿入され、加熱されることによって膨張して上端部が上方に変位する樹脂製の支持部材、及び前記支持部材を加熱するために前記支持部材に取り付けられた支持部材用ヒータからなり、
前記支持部材の上端部の変位により前記冷媒槽が上方に持ち上げられるように構成されている請求項2又は3に記載の熱分析装置。
【請求項8】
前記冷媒槽の下方に弾性体が圧縮状態で挿入されている請求項3から7のいずれか一項に記載の熱分析装置。
【請求項9】
試料の測定における炉体の温度プログラムを保持したプログラム保持部と、
前記炉体に取り付けられて前記炉体の温度を測定する測温素子と、
前記プログラム保持部で保持された温度プログラムと前記測温素子による測定温度に基づいて、前記ヒータ、冷却装置及び移動機構の駆動を制御する制御部と、をさらに備え、
前記制御部は、前記温度プログラムが前記炉体を冷却する工程にあるときは前記冷媒槽側熱交換部と前記炉体側熱交換部とを接触又は近接させ、前記温度プログラムが前記炉体を加熱する工程にあるときは前記冷媒槽側熱交換部と前記炉体側熱交換部とを離間させるように前記移動機構を制御するものである請求項1から8のいずれか一項に記載の熱分析装置。
【請求項10】
前記制御部は、前記炉体を冷却する工程中に前記測温素子による測定温度が冷却目標温度付近となったときも前記冷媒槽側熱交換部と前記炉体側熱交換部とを離間させるように前記移動機構を制御するものである請求項9のいずれか一項に記載の熱分析装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2009−180507(P2009−180507A)
【公開日】平成21年8月13日(2009.8.13)
【国際特許分類】
【出願番号】特願2008−17069(P2008−17069)
【出願日】平成20年1月29日(2008.1.29)
【出願人】(000001993)株式会社島津製作所 (3,708)
【Fターム(参考)】