説明

燃料電池

【課題】電極に掛かる面圧が不均一になることに起因する電池性能の低下を防止する。
【解決手段】燃料電池は、電解質層と、電解質層上に形成された触媒電極からなるMEA22と、触媒電極との間に空間を形成するように触媒電極と所定の距離をおいて配置されるガスセパレータ30とを備える。さらに、燃料電池は、上記空間を占めるように触媒電極とガスセパレータ30との間に設けられると共に、導電性粒子が移動可能に配置されて成るガス流路形成部26、27を備える。この導電性粒子が不均一な面圧分布にしたがって移動することにより、面圧の不均一さを緩和する。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、燃料電池に関する。
【背景技術】
【0002】
燃料電池においては、電解質層上に形成された電極とガスセパレータとの間に、電気化学反応に供するためのガスの流路が形成される。このようなガス流路としては、例えば、ガスセパレータ表面に互いに平行な複数の溝を形成し、この溝によって、ガスセパレータと電極との間に、ガス流路となる空間を形成する構成が知られている。あるいは、ガスセパレータと電極層との間の空間に導電性多孔質体を配置し、この導電性多孔質体内部の空隙を、ガス流路とする構成が知られている。ガス流路を形成するための導電性多孔質体としては、例えば、球状チタン粉末を焼成して成る多孔質体を用いる構成が知られている(特許文献1参照)。このように導電性多孔質体を用いてガス流路を形成する場合には、溝を有するガスセパレータによってガス流路を形成する場合に比べて、電極に対するガスの拡散性が向上するという効果が得られる。
【0003】
【特許文献1】特開2002−275676号公報
【特許文献2】特開2004−68112号公報
【特許文献3】特開2004−71456号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
しかしながら、導電性多孔質体を用いてガス流路を形成する場合には、製造の精度に起因する導電性多孔質体の厚みのばらつきや、ガスセパレータに生じるゆがみ等に起因して、導電性多孔質体から電極に掛かる面圧が不均一になる可能性があった。このように面圧が不均一になると、面圧が不十分となる領域では接触抵抗が増大して、電池性能の低下が引き起こされる。
【0005】
本発明は、上述した従来の課題を解決するためになされたものであり、電極に掛かる面圧が不均一になることに起因する電池性能の低下を防止することを目的とする。
【課題を解決するための手段】
【0006】
上記目的を達成するために、本発明の第1の燃料電池は、
電解質層と、
前記電解質層上に形成された触媒電極と、
前記触媒電極との間に空間を形成するように、前記触媒電極と所定の距離をおいて配置されるガスセパレータと、
前記空間を占めるように前記触媒電極と前記ガスセパレータとの間に設けられると共に、導電性粒子が移動可能に配置されて成るガス流路形成部と
を備えることを要旨とする。
【0007】
また、本発明の第2の燃料電池は、
電解質層と、
前記電解質層上に形成された触媒電極と、
前記触媒電極との間に空間を形成するように、前記触媒電極と所定の距離をおいて配置されるガスセパレータと、
前記空間内に導電性粒子を充填して成るガス流路形成部と
を備えることを要旨とする。
【0008】
以上のように構成された本発明の第1および第2の燃料電池によれば、ガス流路形成部に対して加えられる面圧が不均一になる場合には、ガス流路形成部を構成する導電性粒子が面圧に応じて移動することにより、面圧の不均一さが緩和され、触媒電極に掛かる面圧を均一化することができる。これにより、局所的に面圧が低く接触抵抗が大きい領域が生じることに起因する電池性能の低下を抑制することができる。
【0009】
本発明の第1または第2の燃料電池において、
前記導電性粒子は、略球状の粒子であることとしても良い。
【0010】
ガス流路形成部を構成する導電性粒子を略球状とすれば、面圧に応じた導電性粒子の移動が、より容易になる。
【0011】
本発明の第1または第2の燃料電池において、
前記ガスセパレータは、前記ガス流路形成部と接触する表面が平坦な面として形成されていることとしても良い。
【0012】
ガスセパレータの表面が平坦である場合には、面圧は比較的均一となるが、ガスセパレータに生じたゆがみ等により面圧において比較的小さな不均一が生じる場合であっても、導電性粒子が移動することにより、上記面圧の不均一さを緩和することができる。
【0013】
本発明の第1または第2の燃料電池において、さらに、
前記電解質層、前記触媒電極、前記ガスセパレータおよび前記ガス流路形成部の積層方向に平行に設けられ、前記ガス流路形成部に対して給排するガスの流路となるガスマニホールドを備え、
前記ガスセパレータは、
前記ガス流路形成部と接触する表面において開口部を有すると共に、前記ガス流路形成部と前記ガスマニホールドとを接続する接続流路を備え、
前記開口部の径は、前記導電性粒子の平均粒径よりも小さく形成されていることとしても良い。
【0014】
このような構成とすれば、導電性粒子の、開口部を介したガス流路形成部からの流出を防止することができる。
【0015】
本発明は、上記以外の種々の形態で実現可能であり、例えば、燃料電池における面圧の均一化方法や、燃料電池の製造方法などの形態で実現することが可能である。
【発明を実施するための最良の形態】
【0016】
次に、本発明の実施の形態を実施例に基づいて説明する。
【0017】
図1は、本発明の実施例としての燃料電池の概略構成を表わす断面図である。本実施例の燃料電池は、単セルを複数積層したスタック構造を有している。すなわち、本実施例の燃料電池は、図1に示すように、複数の単セル20を備えると共に、各々の単セル20間にガスセパレータ30を介在させつつ単セル20を積層させた構造を有している。
【0018】
単セル20は、電解質膜を含むMEA(膜−電極接合体、Membrane Electrode Assembly)22と、MEA22の両側に配設された導電性多孔質体から成るガス拡散層24,25と、ガス拡散層24,25とガスセパレータ30との間に設けられたガス流路形成部26,27と、を備えている。
【0019】
MEA22は、電解質層と、電解質層の両面に形成された触媒電極(アノードおよびカソード)とを備えている。本実施例の燃料電池は、固体高分子型燃料電池であり、電解質層は、固体高分子材料、例えばパーフルオロカーボンスルホン酸を備えるフッ素系樹脂から成るプロトン伝導性のイオン交換膜によって形成することができる。触媒電極は、電気化学反応を促進する触媒、例えば、白金、あるいは白金と他の金属から成る合金を備えている。
【0020】
ガス拡散層24,25は、多孔質層であり、導電性及びガス透過性を有する部材によって構成されている。ガス拡散層24,25としては、例えば、カーボン製多孔質体を用いることができ、本実施例ではカーボンペーパを用いている。特に、本実施例のガス拡散層24,25では、MEA22と接する側の表面に対して、撥水化処理を施している。撥水化処理は、撥水性物質であるフッ素樹脂の分散液とカーボン粉末と溶媒とを混合して得た混合液を、カーボンペーパ上に塗布し、その後熱処理することにより行なうことができる。このようにガス拡散層の表面を撥水化処理することにより、触媒電極に対するガス供給を確保すると共に、ガス拡散層側から触媒電極への水の移動を抑制することができる。また、ガス拡散層24,25を設けることにより、ガス流路形成部26,27を構成する後述する導電性粒子が電解質層側に接触する際に電解質層において局所的に加わる力を、分散・抑制することができる。さらに、ガス流路形成部26,27を設けることにより、ガス流路形成部26,27における毛管現象を利用して、触媒電極から液水を除去する働きを高めることができる。
【0021】
ガス流路形成部26,27は、それぞれ、導電性粒子によって構成されている。導電性粒子は、例えば金属性粒子とすることができ、本実施例では、略球状のチタン粒子を用いている。このようなガス流路形成部26,27は、ガス拡散層24,25とガスセパレータ30との間に形成される空間に、導電性粒子を充填することによって形成することができる。このように、相互に非結合状態にある導電性粒子によって形成されることにより、ガス流路形成部26,27に対して不均一な面圧が加えられると、より強い面圧を加えられた領域に充填されている導電性粒子が、より弱い面圧を加えられた領域側へと移動する。すなわち、本実施例の燃料電池は、ガス流路形成部26,27に対して加えられる不均一な面圧に応じて、ガス流路形成部26,27を構成する導電性粒子が移動することを特徴としている。そのため、不均一な面圧が加えられたときに、内部で導電性粒子が移動可能なように、用いる導電性粒子の粒径は、触媒電極とガスセパレータ30との間の距離に比べて充分に小さく形成されている。
【0022】
また、MEA22、ガス拡散層24,25、およびガス流路形成部26,27の外周部には、シール部28が設けられている。シール部28は、例えば、シリコンゴム、ブチルゴム、フッ素ゴムなどの絶縁性樹脂材料によって形成されると共に、MEA22と一体で形成されている。このようなシール部28は、例えば、シール部28に対応する形状の金型のキャビティ内にMEA22の外周部が収まるようにMEA22を配設し、上記樹脂材料を射出成形することによって形成できる。これにより、MEA22とシール部28とが隙間なく接合される。あるいは、シール部28は、MEA22と一体形成するだけでなく、予めMEA22とガス拡散層24,25とを接合しておき、MEA22およびガス拡散層24,25と一体形成しても良い。
【0023】
図2は、MEA22と一体形成されたシール部28の概略構成を表わす平面図である。図2に示すように、シール部28は、略四角形状の薄板状部材であり、外周部において辺に沿って細長く形成される複数の穴部(穴部40〜45)と、中央部に設けられてMEA22が組み込まれている略四角形の穴部とを有している。上記辺に沿って設けられた複数の穴部は、ガスセパレータ30および単セル20を積層して燃料電池を組み立てたときに、燃料電池内部を積層方向に貫通し、内部を所定の流体が流れるマニホールドを形成する。
【0024】
なお、シール部28は、図1の断面図に示すように所定の凹凸形状を有しており、燃料電池内では、上記複数の穴部および略四角形の穴部を取り囲む位置に設けられた凸部において、隣接するガスセパレータ30と接触する。上記凸部によるシール部28とガスセパレータ30との接触位置(図1において一点鎖線でシール線SLと示す)を、図2の平面図においてシール線SLとして示している。シール部28は、弾性を有する樹脂材料から成るため、燃料電池内で積層方向に平行な方向に押圧力が加えられることにより、上記シール線SLの位置においてガスセパレータ30との間でガスシール性を実現可能となる。
【0025】
また、図2では、シール部28と一体化されたMEA22における露出している部分を、ハッチを付して示している。この、MEA22における露出している部分は、酸化ガスおよび燃料ガスの供給を受けて、MEA22が備える触媒電極で電気化学反応が進行する領域であるということができる。そこで、燃料電池内部において、上記MEA22における露出している部分に重なる領域を、以下、発電領域と呼ぶ。ガス拡散層24,25は、発電領域と略同一形状に形成されており、この領域と重なるようにMEA22上に配設されている。
【0026】
ガスセパレータ30は、外周の大きさがシール部28とほぼ等しい板状部材であり、図1に示すように、内部には、冷媒流路34が形成されている。このガスセパレータ30は、図1に示すように、ガス流路形成部26に接するカソード側プレート31と、ガス流路形成部27に接するアノード側プレート33と、カソード側プレート31およびアノード側プレート33に挟持される中間プレート32と、を備えている。図3は、ガスセパレータ30を構成する各プレートの概略構成を表わす説明図である。図3(A)は、カソード側プレート31の形状を示す平面図であり、図3(B)は、中間プレート32の形状を示す平面図であり、図3(C)は、アノード側プレート33の形状を示す平面図である。
【0027】
各プレートの対応する所定の1辺である辺70(重力方向上方の辺であり、重力方向は、図3(A)において矢印Aで示す)の近傍には、この辺70に沿って、複数(本実施例では3個)の穴部40が設けられている。燃料電池において穴部40は、電気化学反応に供するための酸化ガスが流れる酸化ガス供給マニホールドを形成する(図中、O2 inと表わす)。また、各プレートの上記辺70に対向する辺72(重力方向下方の辺)の近傍には、この辺72に沿って、複数(本実施例では3個)の穴部41が設けられている。燃料電池において穴部41は、電気化学反応に供された後の酸化ガスが流入する酸化ガス排出マニホールド(図中、O2 outと表わす)を形成する。
【0028】
また、カソード側プレート31およびアノード側プレート33のさらに他の1辺である辺74の近傍には、この辺74に沿って2つの穴部が設けられている。すなわち、辺70側には穴部42が設けられ、辺72側には穴部43が設けられている。燃料電池において、穴部42は、ガスセパレータ30内の冷媒流路34へと分配される冷媒が流れる冷媒供給マニホールドを形成する(図中、水 inと表わす)。また、穴部43は、電気化学反応に供された後の燃料ガスが流入する燃料ガス排出マニホールドを形成する(図中、H2 outと表わす)。
【0029】
さらに、カソード側プレート31およびアノード側プレート33において、上記辺74に対向する辺76の近傍には、この辺76に沿って2つの穴部が設けられている。すなわち、辺70側には穴部44が設けられ、辺72側には穴部45が設けられている。穴部44は、電気化学反応に供するための燃料ガスが流れる燃料ガス供給マニホールドを形成する(図中、H2 inと表わす)。また、穴部45は、ガスセパレータ30内の冷媒流路34から排出された冷媒が流入する冷媒排出マニホールドを形成する(図中、水 outと表わす)。
【0030】
カソード側プレート31には、穴部40の近傍であって穴部40よりもプレート中央部寄りに、各穴部40よりも小さく、細長い穴部40に平行に配列された複数の穴部である連通孔50が形成されている。また、穴部41のプレート中央部寄り近傍には、同様に、細長い穴部41に平行に配列された複数の連通孔51が形成されている(図3(A)参照)。
【0031】
アノード側プレート33には、穴部43の近傍であって穴部43よりもプレート中央部寄りに、穴部43よりも小さく、細長い穴部43に平行に配列する複数の穴部である連通孔53が形成されている。また、穴部44のプレート中央部寄り近傍には、同様に、細長い穴部44に平行に配列された複数の連通孔54が形成されている(図3(C)参照)。
【0032】
中間プレート32においては、穴部40の形状が他のプレートとは異なっており、中間プレート32の穴部40は、この穴部40のプレート中央部側の辺が、プレート中央部方向へと突出する複数の突出部を備える形状となっている。穴部40が有する上記複数の突出部を、連通部55と呼ぶ。この連通部55は、中間プレート32とカソード側プレート31とが積層されたときに連通孔50と重なり合って、酸化ガス供給マニホールドと連通孔50とを連通させるように、各連通孔50に対応して設けられている。中間プレート32では、他の穴部41,43,44においても同様に、これらの穴部におけるプレート中央部側の辺からプレート中央部方向へと突出して、連通孔51,53,54のそれぞれに対応して設けられた複数の連通部56,57,58が形成されている(図3(B)参照)。
【0033】
また、中間プレート32には、さらに、ガス拡散層24,25と重なる領域に、互いに平行に形成された細長い複数の冷媒孔59が形成されている。冷媒孔59の端部は、中間プレート32を他のプレートと重ね合わせたときに、穴部42,45と重なるように形成されており、冷媒孔59は、カソード側プレート31とアノード側プレート33との間で、冷媒が流れるための冷媒流路34を形成する。なお、図3(B)では、ガス拡散層24が配置される位置を、中間プレート32上に重ねて示している。
【0034】
ガスセパレータ30を構成する上記3種のプレートは、導電性材料、例えばステンレス鋼あるいはチタンやチタン合金といった金属によって形成される薄板状部材である。そして、穴部40〜45、連通孔50,51,53,54および冷媒孔59は、打ち抜き加工によって形成されている。ガスセパレータ30を形成する際には、カソード側プレート31、中間プレート32、アノード側プレート33の順に、各穴部を位置合わせしつつ重ね合わせて、例えば拡散接合により接合させている。あるいは、中間プレート32を、シール層と耐熱性樹脂層とを備えるラミネート樹脂によって形成しても良い。この場合には、加熱接着により各プレート間をシール接合することができる。
【0035】
燃料電池を組み立てる際には、図2に示すようにMEA22と一体化されたシール部28を作製すると共に、このMEA22上の発電領域に、ガス拡散層24,25を配置する。そして、シール部28よる枠組みの内側であって、ガス拡散層上に形成される空間に、導電性粒子を充填し、単セル20の構造を得る。その後、このような単セル20とガスセパレータ30とを交互に積層することによって、燃料電池を作製することができる。
【0036】
図1に示した断面図は、図3(A)に示した1−1断面の断面図に相当する。図1では、酸化ガス供給マニホールドおよび酸化ガス排出マニホールド近傍における酸化ガスの流出入の様子を、矢印で示している。図1に示すように、燃料電池が発電する際には、燃料電池の内部において、穴部40が形成する酸化ガス供給マニホールドを流れる酸化ガスは、中間プレート32の連通部55が形成する空間と、カソード側プレート31の連通孔50とを介して、ガス流路形成部26内に形成される単セル内酸化ガス流路へと流入する。単セル内酸化ガス流路において酸化ガスは、ガス流路形成部26の面方向に平行に流れると共に、面方向に垂直な方向(積層方向)へとさらに拡散する。積層方向に拡散した酸化ガスは、触媒電極(カソード)に至り、電気化学反応に供される。このように電気化学反応に寄与しつつ単セル内酸化ガス流路を通過した酸化ガス(カソード排ガス)は、電気化学反応により生じた生成水と共に、ガス流路形成部26から、カソード側プレート31の連通孔51および中間プレート32の連通部56が形成する空間を介して、穴部41が形成する酸化ガス排出マニホールドへと排出される。
【0037】
同様に、燃料電池が発電する際には、穴部44が形成する燃料ガス供給マニホールドを流れる燃料ガスは、中間プレート32の連通部58が形成する空間と、アノード側プレート33の連通孔54とを介して、ガス流路形成部27内に形成される単セル内燃料ガス流路へと流入する。また、電気化学反応に供された後の燃料ガスは、ガス流路形成部27内から、アノード側プレート33の連通孔53および中間プレート32の連通部57が形成する空間とを介して、穴部43が形成する燃料ガス排出マニホールドへと排出される。
【0038】
また、燃料電池の内部において、穴部42が形成する冷媒供給マニホールドを流れる冷媒は、冷媒孔59によって形成される冷媒流路に分配され、冷媒流路を流れた冷媒は、穴部45が形成する冷媒排出マニホールドに排出される。
【0039】
以上のように構成された本実施例の燃料電池によれば、単セル内ガス流路を形成するガス流路形成部26,27を、導電性粒子を充填することによって形成しているため、燃料電池内部において、積層方向に掛かる力が積層方向に垂直な面内において不均一となる場合(面圧が不均一になる場合)に、個々の導電性粒子が不均一な面圧分布にしたがって移動することにより、面圧の不均一さを緩和することができる。このように、面圧を均一化することにより、面圧が不十分となって接触抵抗が増大する領域の発生を抑え、電池性能の低下を抑制することができる。面圧が不均一になることによる性能低下は、特に、触媒電極における面圧が不均一になることによる影響が大きいが、ガス流路形成部において面圧を均一化することにより、触媒電極に掛かる面圧を効果的に均一化できる。
【0040】
特に、導電性粒子を充填することによってガス流路形成部を形成する場合には、導電性多孔質体から成るガス流路形成部を用いる場合のように、製造時の精度に起因するガス流路形成部自身の厚みのばらつきが生じ難い。したがって、導電性多孔質体から成るガス流路形成部を用いる場合に比べて、面圧を不均一化する要因が少なくなり、面圧を均一化する効果を高めることができる。また、本実施例の燃料電池によれば、導電性粒子は、導電性多孔質体(例えば発泡金属)に比べて、焼成工程等が不要であることにより一般に製造コストが低いため、燃料電池全体の製造コストをより低減する効果が得られる。
【0041】
本実施例の燃料電池において、ガス流路形成部を構成する導電性粒子の粒径は、面圧の不均一さに応じて移動可能な程度に充分に小さければよいが、セパレータに設けられた連通孔50,51,53,54の径よりも大きいことが望ましい。このような構成とすれば、導電性粒子が、上記連通孔を介してガス流路形成部の外部に排出されることがない。
【0042】
ここで、連通孔50,51,53,54の径は、連通孔50,51,53,54に起因して単セル内のガス流れに生じる圧力損失が、ガス流路形成部に起因して単セル内のガス流れに生じる圧力損失に比べて小さくなるように形成することが望ましい。これは、連通孔によって生じる圧力損失の方が、ガス流路形成部によって生じる圧力損失に比べて、ばらつきを抑えやすいためである。このように、生じる圧力損失のばらつきを抑えやすい連通孔の径をより小さく形成して、連通孔によって生じる圧力損失をガス流れにおける律速とすることにより、各単セルに分配されるガス流量のばらつきを抑えることができる。導電性粒子によって形成されるガス流路形成部によって生じる圧力損失に比べて、連通孔によって生じる圧力損失を充分に小さくするために、連通孔50,51,53,54の径は、例えば、0.6mm程度とすることができる。この場合、導電性粒子の直径平均値は、0.6mm以上とすればよい。導電性多孔質体によってガス流路形成部を形成する場合には、一般に、細孔径の平均値を0.6mm程度とすることで、良好な性能を得ることができるが、導電性粒子の直径を0.6mm程度とすれば、上記良好な性能を示す導電性多孔質体と同等の細孔径を形成することができて望ましい。
【0043】
なお、連通孔50,51,53,54の径に比べて直径の小さな導電性粒子を用いてガス流路形成部を形成する場合には、例えば上記連通孔にメッシュを取り付けることによって、ガス流路形成部からの導電性粒子の排出を防止しても良い。
【0044】
なお、この発明は上記の実施例や実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
【0045】
変形例1:
実施例では、導電性粒子として金属製粒子を用いたが、カーボン粒子など、金属以外の導電性材料からなる粒子を用いても良い。実施例の構成において、金属製の導電性粒子に代えてカーボン粒子を用いるならば、導電性粒子と、これに接触するガス拡散層との構成材料が、同じカーボン材料になるため、ガス流路形成部とガス拡散層との間の接触抵抗を低減する効果が得られる。
【0046】
変形例2:
また、実施例では、カソード側のガス流路形成部26と、アノード側のガス流路形成部27を、共に、導電性粒子によって形成しているが、いずれか一方のガス流路形成部のみを導電性粒子によって形成することとしても良い。この場合には、他方のガス流路形成部は、導電性多孔質体によって形成することができる。このように、少なくとも一方のガス流路形成部を導電性粒子によって形成することで、面圧を均一化する効果が得られる。
【0047】
変形例3:
また、導電性粒子によってガス流路形成部を形成する際に、ガス流路形成部を、電解質面に平行な複数の層によって形成し、層ごとに、構成する導電性粒子の粒径を異ならせることとしても良い。例えば、電極側の層は、より粒径の小さな導電性粒子によって形成し、ガスセパレータ側の層は、より粒径の大きな導電性粒子によって形成することができる。このような構成とすれば、電極側の層を構成する粒子の粒径を小さくすることで、ガス流路形成部と電極側(ガス拡散層)との接点が多くなり、電解質層に掛かる圧力が分散されると共に、電極側からガス流路形成部への吸水性が向上する効果が得られる。電解質層に掛かる圧力を分散させることで、電解質層の耐久性を向上させることができる。また、ガスセパレータ側の層を構成する粒子の粒径を大きくすることで、ガス流路形成部におけるガス流れを良好に確保することができる。
【0048】
変形例4:
あるいは、ガス流路形成部を構成する複数の層ごとに、各層を構成する導電性粒子の性質を異ならせることとしても良い。例えば、電極側の層は、撥水化処理を施した導電性粒子によって形成し、ガスセパレータ側の層は、親水化処理を施した導電性粒子によって形成することができる。電極側の層が撥水性を備えることで、ガス流路形成部内の液水の電極側への移動を抑制すると共に、電極側へのガス供給を確保することができる。また、ガスセパレータ側の層が親水性を備えることで、電極側からガス流路形成部側へと排水する性能を向上させることができる。一般に、導電性多孔質体においては、層ごとに多孔率や性質を変更することは困難であるが、導電性粒子を充填してガス流路形成部を構成することで、層ごとの空隙率や性質の変更が、より容易になる。
【0049】
変形例5:
さらに、ガス流路形成部を構成する導電性粒子として、種々の粒径の粒子が混在する粒子を用いても良い。ガス流路形成部全体として、適当な細孔径が実現され、充分な空隙率が得られれば、ガス流路形成部を構成する導電性粒子は、均一な粒子でなくても良い。
【0050】
変形例6:
また、実施例では、ガスセパレータとして、平坦な3枚のプレートを積層して成り、内部にガスマニホールドと単セル内ガス流路とを接続する流路を形成した三層構造セパレータを用いたが、異なる構成としても良い。ガス流路形成部全体を、互いに移動可能な導電性粒子によって形成するならば、面圧を均一化する同様の効果が得られる。ここで、異なる形状のガスセパレータを用いる場合であっても、ガス流路形成部に対してガスを給排するためにガスセパレータに設けた穴部の直径が、導電性粒子の粒径よりも小さければ、ガス流路形成部からの導電性粒子の流出を防止することができる。
【0051】
変形例7:
あるいは、本発明は、実施例に示した燃料電池とは異なる種類の燃料電池に適用することもできる。すなわち、固体高分子型燃料電池以外の種類の燃料電池に対して本発明を適用しても良く、例えば、固体酸化物電解質型燃料電池に適用することができる。単セル内ガス流路全体を導電性粒子によって形成することができる燃料電池であれば、本発明を適用することで同様の効果が得られる。
【図面の簡単な説明】
【0052】
【図1】実施例の燃料電池の概略構成を表わす断面図である。
【図2】シール部28の概略構成を表わす平面図である。
【図3】ガスセパレータ30を構成する各プレートの概略構成を表わす説明図である。
【符号の説明】
【0053】
20…単セル
22…MEA
24,25…ガス拡散層
26,27…ガス流路形成部
28…シール部
30…ガスセパレータ
31…カソード側プレート
32…中間プレート
33…アノード側プレート
34…冷媒流路
40〜45…穴部
50,51,53,54…連通孔
55,56,57,58…連通部
59…冷媒孔
70,72,74,76…辺

【特許請求の範囲】
【請求項1】
燃料電池であって、
電解質層と、
前記電解質層上に形成された触媒電極と、
前記触媒電極との間に空間を形成するように、前記触媒電極と所定の距離をおいて配置されるガスセパレータと、
前記空間を占めるように前記触媒電極と前記ガスセパレータとの間に設けられると共に、導電性粒子が移動可能に配置されて成るガス流路形成部と
を備える燃料電池。
【請求項2】
燃料電池であって、
電解質層と、
前記電解質層上に形成された触媒電極と、
前記触媒電極との間に空間を形成するように、前記触媒電極と所定の距離をおいて配置されるガスセパレータと、
前記空間内に導電性粒子を充填して成るガス流路形成部と
を備える燃料電池。
【請求項3】
請求項1または2記載の燃料電池であって、
前記導電性粒子は、略球状の粒子である
燃料電池。
【請求項4】
請求項1ないし3いずれか記載の燃料電池であって、
前記ガスセパレータは、前記ガス流路形成部と接触する表面が平坦な面として形成されている
燃料電池。
【請求項5】
請求項1ないし4いずれか記載の燃料電池であって、さらに、
前記電解質層、前記触媒電極、前記ガスセパレータおよび前記ガス流路形成部の積層方向に平行に設けられ、前記ガス流路形成部に対して給排するガスの流路となるガスマニホールドを備え、
前記ガスセパレータは、
前記ガス流路形成部と接触する表面において開口部を有すると共に、前記ガス流路形成部と前記ガスマニホールドとを接続する接続流路を備え、
前記開口部の径は、前記導電性粒子の平均粒径よりも小さく形成されている
燃料電池。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate