説明

燃料電池

【課題】ガス流路形成部の反応ガス流路内に滞留する水の排出を促進する。
【解決手段】セパレータは、ガス流路形成部に当接する面内において、前記ガス流路形成部の鉛直方向の下端部に対応する位置に、鉛直方向に垂直な方向に沿って配置され、前記ガス流路形成部に反応ガスを供給するための開口を有する複数のガス供給流路部と、前記面内において、前記ガス流路形成部の鉛直方向の上端部に対応する位置に、鉛直方向に垂直な方向に沿って配置され、前記ガス流路形成部から前記反応ガスを排出するための開口を有する複数のガス排出流路部と、を備える。前記複数のガス供給流路部の開口は、前記排水ドレインの配置位置から遠くに位置する開口ほど開口面積が大きく、近くに位置する開口ほど開口面積が小さくなるように形成されている。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、燃料電池において、多孔質部材によって構成される反応ガス流路内に滞留する水の排出を促進する技術に関する。
【背景技術】
【0002】
近年、水素と酸素の電気化学反応によって発電する燃料電池がエネルギ源として注目されている。このような燃料電池は、一般に、電解質膜と電解質膜上に設けられた電極(酸素極および水素極。酸素極を以下では、カソードと呼び、水素極を以下では、アノードと呼ぶ。)と、を備える単セルを、セパレータにより挟持することにより構成される(特許文献1参照)。
【0003】
電気化学反応に供される反応ガス(燃料ガスまたは酸化ガス)の電極に対しての給排は、単セルを挟持するセパレータに設けられた反応ガス流路溝により構成される反応ガス流路を介して行われ、あるいは、ガス拡散性あるいは集電性を確保するために、電極とセパレータとの間に設けられた多孔質な導電性部材から成る層(以下では、ガス流路形成部とも呼ぶ。)により構成される反応ガス流路を介して行われる。
【0004】
【特許文献1】特開2001−148252号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
ところで、燃料電池では、水素と酸素の電気化学反応によって、カソードにおいて水が生成される。この生成水のうち、反応ガス中に水蒸気として含むことができる飽和水蒸気量以下の水は、反応ガスとともに排出され、飽和水蒸気量よりも多い水は、水の排出流路としても機能する反応ガス流路中を反応ガスによって押し出されることにより排出される。従って、反応ガスによって押し出すことができなかった水は、反応ガス流路に溜まって反応ガス流路を閉塞する場合がある。
【0006】
例えば、上記のように、反応ガス流路が反応ガス流路溝によって構成される場合には、水の排出流路が反応ガス流路溝によって構成される反応ガス流路に制限されるので、反応ガス流路溝に水が溜まりやすく、反応ガス流路を閉塞する場合がある。
【0007】
また、多孔質な導電性部材から成るガス流路形成部により構成される反応ガス流路の場合には、反応ガス流路溝のような反応ガス流路の制限がないので、反応ガス流路の制限による反応ガス流路の閉塞の可能性は低い。しかしながら、ガス流路形成部は内部に形成される多くの細孔からなる空間に水が滞留しやすいため、反応ガス流路内に滞留する水の量は、反応ガス流路溝による反応ガス流路の場合に比べて非常に多くなり、結果として、反応ガス流路やガス流路形成部に反応ガスを供給するためのガス供給孔を閉塞する場合がある。
【0008】
特に、ガス流路形成部の下端部から供給された反応ガスが、ガス流路形成部内を上方向に向かって流れ、ガス流路形成部の上端部から排出されるように反応ガス流路が構成された場合には、反応ガス流路内に滞留する水を反応ガスの流れによって押し上げて排出することになるため、押し上げることができない水が反応ガス流路内に滞留する可能性が高くなり、結果として、反応ガス流路や反応ガス供給孔が閉塞される可能性が高くなる。
【0009】
反応ガス流路や反応ガス供給孔が閉塞すると、反応ガスの給排が妨げられ、結果として、燃料電池の発電能力が低下し、さらには、発電停止となる可能性がある。なお、以下では、反応ガスの流れが妨げられることを、簡単に「ガス閉塞」とも呼ぶ。
【0010】
本発明は、上述した従来の課題を解決するためになされたものであり、燃料電池において、多孔質部材によって形成されたガス流路形成部に、ガス流路形成部の下端部から反応ガスを供給して上端部から排出するように、反応ガス流路が構成される場合に、ガス流路形成部によって構成される反応ガス流路内に滞留する水の排出を促進する技術を提供することを目的とする。
【課題を解決するための手段】
【0011】
上記目的の少なくとも一部を達成するために、本発明の燃料電池は、
電解質膜上に電極が形成された膜電極接合体と、導電性多孔質部材によって形成されるとともに、前記膜電極接合体上に積層して配置され、電気化学反応に供される反応ガスを前記電極に供給するための反応ガス流路を構成するガス流路形成部と、前記ガス流路形成部上に積層して配置されたセパレータと、を備え、前記セパレータが積層して配置される前記ガス流路形成部の面が鉛直方向を含む面となるように配置される燃料電池であって、
前記ガス流路形成部の鉛直方向の下端部よりも下側に配置され、前記ガス流路形成部からの排水を溜める排水ドレインを備え、
前記セパレータは、
前記ガス流路形成部に当接する面内において、前記ガス流路形成部の鉛直方向の下端部に対応する位置に、鉛直方向に垂直な方向に沿って配置され、前記ガス流路形成部に前記反応ガスを供給するための開口を有する複数のガス供給流路部と、
前記面内において、前記ガス流路形成部の鉛直方向の上端部に対応する位置に、鉛直方向に垂直な方向に沿って配置され、前記ガス流路形成部から前記反応ガスを排出するための開口を有する複数のガス排出流路部と、を備えており、
前記複数のガス供給流路部の開口は、前記排水ドレインの配置位置から遠くに位置する開口ほど開口面積が大きく、近くに位置する開口ほど開口面積が小さくなるように形成されている、
ことを特徴とする。
【0012】
上記構成の燃料電池によれば、複数のガス供給流路部の開口からガス流路形成部に供給された反応ガスを、ガス流路形成部内を通過して複数のガス排出流路部の開口から排出する場合において、ガス流路形成部内を通過する反応ガスに、鉛直方向の流れだけでなく、水平方向に傾いた流れを発生させ、全体として、排水ドレインが配置されている方向へ傾いた流れを発生させることができる。これにより、ガス流路形成部によって構成される反応ガス流路内に滞留する水を、反応ガスの傾いた流れによって排水ドレインの配置されている方向へ導き、排水ドレインへ排出することができるため、ガス流路形成部によって構成される反応ガス流路内に滞留する水の排出を促進することが可能となる。
【0013】
また、上記燃料電池において、さらに、
前記複数のガス排出流路部の開口は、前記排水ドレインの配置位置から遠くに位置する開口ほど開口面積が小さく、近くに位置する開口ほど開口面積が大きくなるように形成されているようにしてもよい。
【0014】
上記構成によれば、反応ガスの流れの水平方向への傾きをより大きく発生させることができるので、ガス流路形成部によって構成される反応ガス流路内に滞留する水を、排水ドレインの配置されている方向へさらに効果的に導き、排水ドレインへ排出することができる。これにより、ガス流路形成部によって構成される反応ガス流路内に滞留する水の排出をさらに促進することが可能となる。
【0015】
なお、本発明は、種々の態様で実現可能であり、例えば、本発明の燃料電池や、その燃料電池を備える燃料電池システム、その燃料電池システムを備える発電装置、その燃料電池システムを備える電気自動車等の態様で実現することが可能である。
【発明を実施するための最良の形態】
【0016】
以下では、本発明の実施の形態を実施例に基づいて以下の手順で説明する。
A.第1実施例:
A1.燃料電池の構成:
A2.燃料電池モジュールの構成:
A3.排水動作:
B.第2実施例:
C.変形例:
【0017】
A.第1実施例:
A1.燃料電池の構成:
図1は、第1実施例に係る燃料電池10の外観構成を示す説明図である。燃料電池10は、比較的小型で発電効率に優れる固体高分子型燃料電池である。燃料電池10は、スタック11と、エンドプレート30と、テンションプレート31と、インシュレータ33と、ターミナル34とを備えている。スタック11は、モジュール20が、設置面に対して垂直に複数個積層されて構成される。また、スタック11は、インシュレータ33およびターミナル34を挟んで、2枚のエンドプレート30によって挟持される。そして、燃料電池10は、テンションプレート31がボルト32によって各エンドプレート30に結合されることによって、スタック11(各モジュール20)を、積層方向に所定の力で締結する構造となっている。なお、設置面は、鉛直方向に垂直な方向(水平方向)に沿った面(水平面)である。
【0018】
燃料電池10には、電気化学反応に供される反応ガス(燃料ガスと酸化ガス)と、燃料電池10を冷却する冷却媒体が供給される。簡単に説明すると、燃料電池10のアノード(図1には図示せず)には、高圧水素を貯蔵した水素タンク410から、配管450を介して、燃料ガスとしての水素が供給される。水素タンク410の代わりに、アルコール、炭化水素などを原料とする改質反応によって水素を生成しても良い。配管450には、水素の供給を調整するため、シャットバルブ420および調圧バルブ430が配置されている。燃料電池10のアノードから排出された水素は、配管460を介して配管450に戻され、再び燃料電池10に循環される。配管460上には、循環のための循環ポンプ440が配置されている。なお、配管450,460は、燃料ガスとしての水素が燃料電池10のアノードの鉛直方向上端側から供給され、アノードの鉛直方向下端側から排出されるように、配設される。
【0019】
燃料電池10のカソード(図1には図示せず)には、エアポンプ510から、配管520を介して、酸化ガスとしての空気が供給される。燃料電池10のカソードから排出された空気は、配管530を介して大気中に放出される。なお、配管520,530は、酸化ガスとしての空気が燃料電池10のカソードの鉛直方向下端側から供給され、アノードの鉛直方向上端側から排出されるように、配設される。
【0020】
燃料電池10には、ラジエータ550から、配管560を介して、冷却媒体が供給される。冷却媒体としては、水、エチレングリコール等の不凍水、空気等を用いることができる。燃料電池10から排出された冷却媒体は、配管570を介して、ラジエータ550に送られ、再び燃料電池10に循環される。配管570上には、循環のための循環ポンプ540が配置されている。
【0021】
燃料電池10からは、配管470を介して、電気化学反応によって生成され、排水ドレイン(図1には図示せず)に溜められた水(生成水)が排出される。配管470には、排水バルブ480が配置されている。なお、排水ドレインに溜められた生成水の排出は、例えば、燃料電池の起動時の実行や停止時の実行、定期的な実行、排水ドレインの状態を監視し、所定量を超えた場合における実行等種々の排出が考えられる。
【0022】
A2.燃料電池モジュールの構成:
図2は、燃料電池10を構成するモジュール20の概略構成を示す説明図である。モジュール20は、図2(a)に示すように、単セル26とセパレータ21とを交互に積層して構成される。なお、以下では、単セル26とセパレータ21とを積層する方向(x方向)を積層方向とも呼び、単セル26のセパレータ21を積層する面に平行な方向(y方向)を面方向とも呼ぶ。また、図2では、面方向は鉛直方向となっており、面方向下向きが重力方向となっている。
【0023】
単セル26は、MEA(膜電極接合体、Membrance Electrode Assembly)27と、MEA27の外側に配設されたガス流路形成部28,29と、シール部25と、を備える。ここで、MEA27は、図2(b)に示すように、電解質膜291と、電解質膜291を間に挟んでその表面に形成された触媒電極であるカソード292およびアノード293と、上記触媒電極のさらに外側に配設されたガス拡散層294,295と、を備えている。
【0024】
電解質膜291は、固体高分子材料、例えばパーフルオロカーボンスルホン酸を備えるフッ素系樹脂により形成されたプロトン伝導性のイオン交換膜であり、湿潤状態で良好な電気伝導性を示す。カソード292およびアノード293は、電気化学反応を促進する触媒、例えば、白金、あるいは白金と他の金属から成る合金を備えている。ガス拡散層294,295は、例えばカーボン製の多孔質部材である。なお、ガス拡散層は、触媒電極に対するガス供給効率を向上させるとともに、ガス流路形成部と触媒電極との間の集電性を高め、電解質膜を保護する働きを有するが、ガス流路形成部の構成材料やガス流路形成部の気孔率によっては、ガス拡散層を設けないこととしてもよい。
【0025】
ガス流路形成部28,29は、発砲金属や金属メッシュなどの金属製多孔質体によって形成されており、本実施例では、チタン(Ti)製の多孔質体を用いている。ガス流路形成部28,29は、MEA27とセパレータ21との間に形成される空間全体を占めるように配設されており、内部に形成される多数の細孔から成る空間は、電気化学反応に供されるガス(反応ガス、すなわち、燃料ガスまたは酸化ガス)が通過する単セル内ガス流路として機能する。記述したガス拡散層においても、内部に形成される空間をガスが通過するが、本実施例では、ガス流路形成部28,29は、単セル26に供給されたガスが通過する主たる空間を形成する。この場合、特に、ガス流路形成部28を酸化ガス流路形成部とも呼び、ガス流路形成部28内に形成される単セル内ガス流路を酸化ガス流路とも呼ぶ。また、ガス流路形成部29を燃料ガス流路形成部とも呼び、ガス流路形成部29内に形成される単セル内ガス流路を燃料ガス流路とも呼ぶ。なお、ガス流路形成部28,29は、整流壁のようなガス流路形成部内におけるガスの流れを規定するものを備えないものである。
【0026】
シール部25は、隣り合うセパレータ21間であって、MEA27およびガス流路形成部28,29の外周部に設けられている。このシール部25は、例えば、シリコンゴム、ブチルゴム、フッ素ゴムなどの絶縁性ゴム材料によって形成されると共に、MEA27およびと一体で形成されている。
【0027】
図3は、MEAと一体形成されたシール部25の概略構成を表わす平面図である。図3に示すように、シール部25は、略四角形状の薄板状部材である。シール部25は、中央部に設けられた、MEA27が組み込まれている略四角形の穴部255と、外側の外周部に設けられた、燃料ガス供給マニホールドを形成するための燃料ガス供給マニホールド形成孔部251aと、燃料ガス排出マニホールドを形成するための燃料ガス排出マニホールド形成孔部251bと、酸化ガス供給マニホールドを形成するための酸化ガス供給マニホールド形成孔部252aと、酸化ガス排出マニホールドを形成するための酸化ガス排出マニホールド形成孔部252bと、冷却媒体供給マニホールドを形成するための冷却媒体供給マニホールド形成孔部253aと、冷却媒体排出マニホールドを形成するための冷却媒体排出マニホールド形成孔部253bと、排水ドレインを形成するための排水ドレイン形成孔部254と、を備えている。
【0028】
シール部25は、弾性を有する樹脂材料から成るため、燃料電池10内で積層方向に平行な方向に押圧力が加えられることにより、反応ガスや冷却媒体の漏れを防止するためのシール構造を構成する。
【0029】
なお、図3では、シール部25と一体化されたMEA27の部分(以下では、「集電領域DA」と呼ぶ。)を、ハッチを付して示している。また、図3では図示を省略するが、ガス流路形成部28,29は上記集電領域DAと略同一形状に形成されており、集電領域DAにおいてシール部25に嵌め込まれている。
【0030】
セパレータ21(図2)は、3枚のプレートから形成され、いわゆる、三層積層セパレータとなっている。セパレータ21は、図2(a)に示すように、ガス流路形成部28と接するカソード側プレート22と、ガス流路形成部29と接するアノード側プレート23と、カソード側プレート22およびアノード側プレート23に挟持される中間プレート24と、を備えている。これら3枚のプレートは、導電性材料、例えばステンレス鋼あるいはチタンやチタン合金といった金属によって形成される薄板状部材であり、図2(a)に示すように、カソード側プレート22、中間プレート24、アノード側プレート23の順に重ね合わされて、例えば拡散接合により接合されている。これら3種のプレートは、いずれも凹凸のない平坦な表面を有すると共に、各々、所定の位置に所定形状の穴部を有している。
【0031】
図4は、カソード側プレート22の形状を示す説明図である。図5は、アノード側プレート23の形状を示す説明図である。図6は、中間プレート24の形状を示す説明図である。
【0032】
カソード側プレート22は、シール部25と同じ大きさの略四角形の金属製の薄板である。カソード側プレート22は、シール部25(図3)の外周部と同様の位置に、集電領域DAに対応する領域(図中点線で示す領域)の外側の外周部に、燃料ガス供給マニホールド形成孔部221aと、燃料ガス排出マニホールド形成孔部221bと、酸化ガス供給マニホールド形成孔部222aと、酸化ガス排出マニホールド形成孔部222bと、冷却媒体供給マニホールド形成孔部223aと、冷却媒体排出マニホールド形成孔部223bと、排水ドレイン形成孔部224と、を備えている。
【0033】
カソード側プレート22は、さらに、排水孔227と、複数個(本実施例では5個)の酸化ガス供給孔225と、複数個(本実施例では6個)の酸化ガス排出孔226と、を有している。排水孔227は略矩形状の孔であり、集電領域DAの図4における下端部の、排水ドレイン形成孔部224に対応する位置に配置されている。複数個の酸化ガス供給孔225は、それぞれ大きさが異なる5個の孔225a〜225eにより構成されており、集電領域DAの下端部に、集電領域DAの右端から、排水孔227の近傍までに亘って、開口の大きい酸化ガス供給孔225aから小さい酸化ガス供給孔225eまでの順に並んで配置されている。複数個の酸化ガス排出孔226は、集電領域DAの酸化ガス供給孔225とは反対側の端部、つまり、集電集電領域DAの上端部に、集電領域DAの左端から右端までに亘って、並んで配置されている。また、酸化ガス供給孔や酸化ガス排出孔、排水孔等の形状は、円形、楕円、矩形等いずれの形状でもよいが、本実施例では、酸化ガス供給孔および酸化ガス排出孔は楕円形状とし、排水孔は略矩形状とした。
【0034】
アノード側プレート23は、カソード側プレート22と同じ大きさの略四角形の金属製の薄板である。アノード側プレート23は、図5に示すように、カソード側プレート22と同じ位置に、燃料ガス供給マニホールド形成孔部231aと、燃料ガス排出マニホールド形成孔部231bと、酸化ガス供給マニホールド形成孔部232aと、酸化ガス排出マニホールド形成孔部232bと、冷却媒体供給マニホールド形成孔部233aと、冷却媒体排出マニホールド形成孔部233bと、排水ドレイン形成孔部234と、を有している。アノード側プレート23は、さらに、複数個(本実施例では2個)の燃料ガス供給孔237と、複数個(本実施例では2個)の燃料ガス排出孔238と、を有している。複数個の燃料ガス供給孔237は、集電領域DAの図5における左端部の上部に、並んで配置されている。複数個の燃料ガス排出孔238は、集電領域DAの燃料ガス供給孔237とは反対側の端部、つまり、集電集電領域DAの右端部の下部に、並んで配置されている。なお、燃料ガス供給孔および燃料ガス排出孔の形状は、円形、楕円、矩形等いずれの形状でもよいが、本実施例では、円形状とした。
【0035】
中間プレート24は、カソード側プレート22およびアノード側プレート23と同じ大きさの略四角形の金属製の薄板である。材料もカソード側プレート22およびアノード側プレート23と同じものを用いることができる。中間プレート24は、図6に示すように、カソード側プレート22およびアノード側プレート23と同じ位置に、燃料ガス供給マニホールド形成孔部241aと、燃料ガス排出マニホールド形成孔部241bと、酸化ガス供給マニホールド形成孔部242aと、酸化ガス排出マニホールド形成孔部242bと、排水ドレイン形成孔部244と、を有している。
【0036】
中間プレート24には、図6に示すように、酸化ガス供給マニホールド形成孔部242aと一端が連通し、セパレータ形成時にカソード側プレート22に形成された酸化ガス供給孔225と他端が連通する長孔である酸化ガス供給流路形成部245が複数個並んで形成されている。酸化ガス供給流路形成部245は、酸化ガス供給孔225と1対1で対応するように、酸化ガス供給孔225と同数形成されている。そして、複数個の酸化ガス供給流路形成部245は、それぞれが互いに平行に、集電領域DAの下辺に対して垂直に、酸化ガス供給マニホールド形成孔部242aに対応する範囲に亘って配置されている。なお、複数個の酸化ガス供給流路形成部245は、具体的には、それぞれ大きさが異なる酸化ガス供給流路形成部245a〜245eで構成されている。
【0037】
また、中間プレート24は、酸化ガス供給流路形成部245と同様な形状を有する長孔として、酸化ガス排出マニホールド形成孔部242bと一端が連通し、セパレータ形成時にカソード側プレート22に形成された酸化ガス排出孔226と他端が連通する酸化ガス排出流路形成部246が形成されている。
【0038】
同様に、中間プレート24には、燃料ガス供給マニホールド形成孔部241aと一端が連通し、アノード側プレート23の燃料ガス供給孔237と他端が連通する燃料ガス供給流路形成部247と、燃料ガス排出マニホールド形成孔部241bと一端が連通し、アノード側プレート23の燃料ガス排出孔238と他端が連通する燃料ガス排出流路形成部248とが形成されている。また、中間プレート24には、排水ドレイン形成孔部244と一端が連通し、カソード側プレート22の排水孔227と他端が連通する排水流路形成部249が形成されている。
【0039】
さらに、中間プレート24は、中間プレート24の図6における右側端部近傍から左側端部近傍に至る長孔である冷却媒体流路形成部243を有している。冷却媒体流路形成部243は、図6における上下方向(y方向)に複数個(本実施例では5個)並んで形成されている。
【0040】
図7ないし図9は、モジュール20の断面構造を示す説明図である。図7は、図3ないし図6におけるA−A断面の位置に対応する断面図を示しており、図8は、図3ないし図6におけるB−B断面の位置に対応する断面図を示しており、図9は、図3ないし図6におけるC−C断面の位置に対応する断面図を示している。
【0041】
図7に示すA−A断面では、以下で説明するように、燃料電池10(モジュール20)の内部にける酸化ガスの供給および排出の様子が表されている。
【0042】
図7に示すように、燃料電池10の内部において、酸化ガス供給マニホールド40を流れる酸化ガスは、中間プレート24の酸化ガス供給流路形成部245およびカソード側プレート22の酸化ガス供給孔225により形成される酸化ガス供給流路部を介して、ガス流路形成部28内に形成される酸化ガス流路へと流入し、面方向(y方向)に流れると共に、積層方向(x方向)へとさらに拡散する。積層方向に拡散した酸化ガスは、ガス流路形成部28からガス拡散層294を介してカソード292に至り、電気化学反応に供される。このように電気化学反応に寄与しつつ酸化ガス流路を通過した酸化ガスは、ガス流路形成部28から、カソード側プレート22の酸化ガス排出孔226および中間プレート24の酸化ガス排出流路形成部246により形成される酸化ガス排出流路部を介して、酸化ガス排出マニホールド41へと排出される。
【0043】
なお、酸化ガス供給マニホールド40は、カソード側プレート22の酸化ガス供給マニホールド形成孔部222aと、アノード側プレート23の酸化ガス供給マニホールド形成孔部232aと、中間プレート24の酸化ガス供給マニホールド形成孔部242aと、シール部25の酸化ガス供給マニホールド形成孔部252aと、によって形成される。また、酸化ガス排出マニホールド41は、カソード側プレート22の酸化ガス排出マニホールド形成孔部222bと、アノード側プレート23の酸化ガス排出マニホールド形成孔部232bと、中間プレート24の酸化ガス排出マニホールド形成孔部242bと、シール部25の酸化ガス排出マニホールド形成孔部252bと、によって形成される。
【0044】
図8に示すB−B断面では、以下で説明するように、燃料電池10(モジュール20)の内部にける燃料ガスの供給および排出の様子が表されている。
【0045】
図8に示すように、燃料電池10の内部において、燃料ガス供給マニホールド50を流れる燃料ガスは、中間プレート24の燃料ガス供給流路形成部247およびアノード側プレート23の燃料ガス供給孔237により形成される燃料ガス供給流路部を介して、ガス流路形成部29内に形成される燃料ガス流路へと流入し、面方向(y方向)に流れると共に、積層方向(x方向)へとさらに拡散する。積層方向に拡散した燃料ガスは、ガス流路形成部29からガス拡散層295を介してアノード293に至り、電気化学反応に供される。このように電気化学反応に寄与しつつ燃料ガス流路を通過した燃料ガスは、ガス流路形成部29から、アノード側プレート23の燃料ガス排出孔238および中間プレート24の燃料ガス排出流路形成部248により形成される燃料ガス排出流路部を介して、燃料ガス排出マニホールド51へと排出される。
【0046】
なお、燃料ガス供給マニホールド50は、カソード側プレート22の燃料ガス供給マニホールド形成孔部221aと、アノード側プレート23の燃料ガス供給マニホールド形成孔部231aと、中間プレート24の燃料ガス供給マニホールド形成孔部241aと、シール部25の燃料ガス供給マニホールド形成孔部251aと、によって形成される。また、燃料ガス排出マニホールド51は、カソード側プレート22の燃料ガス排出マニホールド形成孔部221bと、アノード側プレート23の燃料ガス排出マニホールド形成孔部231bと、中間プレート24の燃料ガス排出マニホールド形成孔部241bと、シール部25の燃料ガス排出マニホールド形成孔部251bと、によって形成される。
【0047】
図9のC−C断面では、カソード292(図2)において、電気化学反応によって生成された水が、ガス流路形成部28から排出される様子が表されている。
【0048】
カソード292(図2)では、電気化学反応により水が生成される。この生成水は、ガス流路形成部28の毛管吸引力により酸化ガス流路(ガス流路形成部28)中に拡散する。このように拡散した生成水のうち、酸化ガスの飽和水蒸気量以下の生成水は、水蒸気として、図7に示したガス流路形成部28を通過する酸化ガスとともに排出される。また、飽和水蒸気量以上の生成水は、凝縮してガス流路形成部28内に滞留する。このような生成水は、図9に示すように、ガス流路形成部28を通過する酸化ガスに押し出されて、ガス流路形成部28から、カソード側プレート22の排水孔227および中間プレート24の排水流路形成部249により形成される排水流路部を介して、カソード側プレート22の排水ドレイン形成孔部224と、アノード側プレート23の排水ドレイン形成孔部234と、中間プレート24の排水ドレイン形成孔部244と、シール部25の排水ドレイン形成孔部254と、によって形成される排水ドレイン60へと排出される。この生成水の排水ドレイン60への排出については、後で詳述する。
【0049】
なお、図示は省略するが、中間プレート24(図6)の冷却媒体流路形成部243の端部は、セパレータの形成時において、カソード側プレート22(図4)の冷却媒体供給マニホールド形成孔部223a、アノード側プレート23(図5)の冷却媒体供給マニホールド形成孔部233a、および、シール部25(図3)の冷却媒体供給マニホールド形成孔部253aによって形成される冷却媒体供給マニホールドと、カソード側プレート22の冷却媒体排出マニホールド形成孔部223b、アノード側プレート23の冷却媒体排出マニホールド形成孔部233b、および、シール部25の冷却媒体排出マニホールド形成孔部253bによって形成される冷却媒体排出マニホールドと、重なり合い、冷媒が流れるためのセル間冷媒流路をセパレータ21内で形成する。すなわち、燃料電池の内部において、冷媒供給マニホールドを流れる冷媒は、上記冷却媒体流路形成部243によって形成されるセル間冷媒流路に分配され、セル間冷媒流路から排出される冷媒は、冷媒排出マニホールドに排出される。
【0050】
A3.排水動作:
図10は、電気化学反応による生成水をガス流路形成部から排出する動作について示す説明図である。図10(a)は、ガス流路形成部28の酸化ガスの流れを示す模式図であり、図10(b)は、生成水の移動を示す模式図である。なお、図中に破線示した楕円は、5個の酸化ガス供給孔225a〜225fおよび6個の酸化ガス排出孔226に対応する領域を示し、破線で示した略矩形は、排水孔227、排水流路形成部249、および、排水ドレイン60に対応する領域を示している。また、図10(a)に示す白抜の矢印は、矢印の方向が酸化ガスの流れの方向を示し、矢印の幅がガス流量の大きさを示している。
【0051】
ここで、複数の酸化ガス供給孔の開口面積の総和Ssiおよび複数の酸化ガス排出孔の開口面積の総和Ssoは、最大ガス流量と、酸化ガス流路を通過する際に利用される酸化ガス量等の損失との関係により決定され、通常、Ssi≧Ssoとなるように設定される。また、複数の酸化ガス排出孔として設けられた6個の酸化ガス排出孔226の開口は、それぞれ同じ大きさとなるように設定される。なお、1つの酸化ガス排出孔226の開口面積をSoとする。さらに、複数の酸化ガス供給孔として設けられた5個の酸化ガス供給孔225a〜225eの開口は、5個の酸化ガス供給孔225a〜225eそれぞれの開口面積をSia〜Sieとすると、Sia>Sib>Sic>Sid>Sieとなるように設定される。すなわち、5個の酸化ガス供給孔225a〜225eの開口は、排水ドレイン60から遠いものほど大きく、近いものほど小さくなるように、225a、225b,225c,225d,225eの順に小さくなるように設定される。このとき、複数の酸化ガス供給孔の開口面積の総和Ssiは(Sia+Sib+Sic+Sid+Sie)で表され、複数の酸化ガス排出孔の開口面積の総和Ssoは(6・So)で表される。従って、複数の酸化ガス供給孔のうち、いずれか一部は、1つの酸化ガス排出孔よりも排水ドレインから遠いほど開口が大きくなるように設定され、残りは、1つの酸化ガス排出孔よりも排水ドレインに近いほど開口が小さく設定されることになる。例えば、本実施例では、右端から3番目の酸化ガス供給孔225cを酸化ガス排出孔226と同じ開口の大きさとし、それより右側の2つの酸化ガス供給孔225b,225aは開口が大きく、それより左側の2つの酸化ガス供給孔225d,225eは開口が小さくなるように設定されている。なお、酸化ガス供給孔と酸化ガス供給マニホールドとを連通する酸化ガス供給流路形成部の空間も、酸化ガス供給孔の開口の大きさの変化と同様に、酸化ガス供給孔の開口の大きさの変化に応じて変化するように設定される。
【0052】
上記のように複数の酸化ガス供給孔および複数の酸化ガス排出孔を配置した場合には、以下で説明するように、酸化ガスの流れが発生する。
【0053】
図10(a)に示すように、右端の酸化ガス供給孔225aの開口は、対向する右端の酸化ガス排出孔226の開口よりも大きいので、この右端の酸化ガス供給孔225aから供給された酸化ガスの全てを、右端の酸化ガス排出孔226のみから排出することができない。このため、右端の酸化ガス供給孔225aから供給された酸化ガスの流れには、右端の酸化ガス排出孔226の方向への酸化ガスの流れだけでなく、右端から2番目および3番目の酸化ガス排出孔226の方向への流れも発生する。そして、右端から2番目の酸化ガス供給孔225bから供給された酸化ガスは、1番目の酸化ガス供給孔225aから2番目および3番目の酸化ガス排出孔226の方向へ流れる酸化ガスの流れによって、2番目および3番目の酸化ガス排出孔226の方向へ流れることはできず、右端から4番目の酸化ガス排出孔226の方向へ流れることになる。
【0054】
ここで、右端から2番目の酸化ガス供給孔226bに対して上方向の対向する位置に配置されている酸化ガス排出孔は、右端から2番目の酸化ガス排出穴226であり、右端から2番目の酸化ガス供給孔226bから供給された酸化ガスは、通常は、この右から2番目の酸化ガス排出孔226の方向へ流れた排出される。しかしながら、上記したように、この右端から2番目の酸化ガス排出孔226には、右端の酸化ガス供給孔225aからの酸化ガスが流れるため、右端から2番目の酸化ガス供給孔226bからの酸化ガスが流れて排出されることはできない。また、右端から3番目の酸化ガス排出孔226も同様である。
【0055】
従って、右端から2番目の酸化ガス供給孔225bの開口から供給された酸化ガスは、右端から4番目の酸化ガス排出孔226の方向へ流れることになる。さらに、2番目の酸化ガス供給孔225bの開口も、酸化ガス排出孔226の開口よりも大きいので、右端から2番目の酸化ガス供給孔225bから供給された酸化ガスの全てを、右端から4番目の酸化ガス排出孔226のみから排出することができず、右端から4番目の酸化ガス排出孔226の方向への酸化ガスの流れだけでなく、右端から5番目の酸化ガス排出孔226の方向への流れも発生する。
【0056】
同様にして、右端から3番目ないし5番目の酸化ガス供給孔225c〜225eから供給された酸化ガスも、図10(a)に示すように、斜め方向への流れが発生する。
【0057】
以上説明したように、ガス流路形成部28中を流れる酸化ガスには、鉛直上方向(y方向)の流れだけでなく、水平方向(z方向)に傾いた流れが発生し、この結果、全体として、左斜め上方向(排水ドレインが配置されている側に傾いた方向)の流れが発生する。そして、このような酸化ガスの流れが発生すると、ガス流路形成部28に滞留する生成水には、以下で説明するような流れが発生する。
【0058】
図10(b)に示すように、ガス流路形成部28中に滞留する生成水Ar(図中クロスハッチで示す)には、その位置を流れようとする酸化ガスの流れにより発生する力のベクトルVgasと、重力により発生するベクトルVgrの合成ベクトルVcの方向に力が働くことになる。これにより生成水Arは、破線で示す矢印の方向、すなわち、排水ドレイン60の方向に移動することになる。そして、最終的には、排水孔227および排水流路形成部249により形成される排水流路部を介して排水ドレイン60に排出される。
【0059】
以上のように、本実施例の燃料電池10では、図10(a)に示すように、ガス流路形成部28の下端部に対応する位置に配置された複数の酸化ガス供給孔225から酸化ガスが供給され、ガス流路形成部28の上端部に対応する位置に配置された複数の酸化ガス排出孔226から酸化ガスが排出される場合に、ガス流路形成部28を流れる酸化ガスの流れに、鉛直上方向ではなく、ガス流路形成部28の下端部の外周部の左端側に配置された排水ドレイン60の方向に向かう水平方向に傾いた流れが発生し、全体として排水ドレイン60の側に傾いた流れとなるので、この傾いた酸化ガスの流れによって、ガス流路形成部28に滞留する生成水を排水ドレイン60の方向に移動させて、排水ドレイン60に排出することができる。また、排水ドレイン60に近い酸化ガス供給孔225ほど開口を小さくすることで、排水ドレインから遠い酸化ガス流量の方が多くなるため、生成水が排水ドレインから遠い方へ逆流することも抑制可能である。以上のことから、ガス流路形成部28の酸化ガス流路内に滞留する生成水の排出を促進することができる。この結果、ガス流路形成部28の酸化ガス流路内に滞留する生成水が自重によりガス流路形成部28の下端部に移動し、酸化ガス供給孔を閉塞することを抑制することができる。
【0060】
また、ガス流路形成部内に滞留する生成水を酸化ガス排出孔から排出するためには、通常、この滞留する生成水を酸化ガス排出孔まで押し上げるために多量の酸化ガスをガス流慮形成部内に供給することが必要となるが、酸化ガス量を抑制することが可能となる。
【0061】
なお、図10(a)に示したガス流れは一例であり、酸化ガス供給孔や酸化ガス排出孔の数や、開口の大きさ等の種々の設定によって変化するものである。
【0062】
また、多孔質部材で構成されたガス流路形成部に整流壁等の酸化ガスの流れを規定するものを備えるガス流路形成部もあるが、このようなガス流路形成部の場合には、上記のようなガス流れを発生させることができないので、本発明は、整流壁等の酸化ガスの流れを規定するものを備えないガス流路形成部の場合に有効な構成である。
【0063】
B.第2実施例:
図11は、図10(a)と同様に、第2実施例におけるガス流路形成部の酸化ガスの流れを示す模式図である。第1実施例では、図10(a)に示すように、ガス流路形成部28の下端部に対応する位置に配置される複数の酸化ガス供給孔225を、排水ドレイン60よりも遠いものほど大きな開口とし、近いものほど小さな開口となるように設定した場合を説明したが、図11に示すように、更に、ガス流路形成部28の上端部に対応する位置に配置される複数の酸化ガス排出孔226を、酸化ガス供給孔225とは逆に、排水ドレイン60から遠いものほど小さな開口とし、近いものほど大きな開口となるように設定するようにしてもよい。図11の例では、排水ドレイン60から最も遠い右端の酸化ガス排出孔を、最も小さな開口を有する酸化ガス排出孔226fとし、配すドレイン60に最も近い左端の酸化ガス排出孔を最も大きな開口を有する酸化ガス排出孔226aとして、排水ドレイン60に近くなる順に大きな開口を有する6つの酸化ガス排出孔226f〜226aが設定されている。なお、図示は、省略するが、これら酸化ガス排出孔の開口の変化に対応して、中間プレートの酸化ガス排出流路形成部の大きさも変化するように設定される。
【0064】
図11に示すように、酸化ガス排出孔の開口の変化を酸化ガス供給孔の開口の変化とは逆の関係になるように設定した場合には、図10と図11を比較すればわかるように、例えば、図10における右端の酸化ガス供給孔225aから供給された酸化ガスが排出される3つの酸化ガス排出孔226に対応する図11における3つの酸化ガス排出孔226f〜226dの開口は、図10における3つの酸化ガス排出孔226の開口よりも更に小さくなっている。このため、右端の酸化ガス供給孔225aから供給された酸化ガスの全てが、これら3つの酸化ガス排出孔226f〜226dのみから排出されることができなくなり、さらに、右端から4番目の酸化ガス排出孔226cおよび5番目の酸化ガス排出孔226bの方向へも流れることになる。この結果、図10に示した酸化ガスの流れよりも、さらに、排水ドレイン側に傾いた方向の流れが発生することになる。これにより、ガス流路形成部28内に滞留する生成水をより鉛直方向に垂直な方向(水平方向)に移動させる力が大きくなるため、排水ドレインの方向に移動させる効果を大きくすることが可能となり、ガス流路形成部28の酸化ガス流路内に滞留する生成水の排出をより促進することができる。
【0065】
C.変形例:
なお、本発明では、上記した実施の形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様にて実施することが可能である。
【0066】
C1.変形例1:
上記第1実施例では、ガス流路形成部28に対して排水ドレイン60を下端部の左端側に配置した場合を例に説明したが、これに限定されるものではなく、排水ドレインの配置位置を実施例とは逆の右端側とするようにしてもよい。また、排水ドレインを中心側に配置して、この排水ドレインの位置から右端および左端の両方向に遠い位置に配置された酸化ガス供給孔ほど開口が大きく、排水ドレインに近い位置に配置された酸化ガス供給孔ほど開口が小さくなるように設定するようにしてもよい。さらに、排水ドレインを中心側に配置し、第2実施例のように、酸化ガス排出孔の開口の大きさも変化させる場合には、排水ドレインの位置から右端および左端の両方向に遠い位置に配置された酸化ガス排出孔ほど開口が小さく、排水ドレインに近い位置に配置された酸化ガス排出孔ほど開口が大きくなるように設定するようにしてもよい。
【0067】
C2.変形例2:
上記実施例や変形例では、カソード側のガス流路形成部28の下端部に配置された複数の酸化ガス供給孔からガス流路形成部28に対して酸化ガスを供給し、ガス流路形成部28の上端部に配置された複数の酸化ガス排出孔からガス流路形成部28の酸化ガス流路を流れた酸化ガスを排出する場合における、複数の酸化ガス供給孔や複数の酸化ガス排出孔の構成を例に説明しているが、アノード側のガス流路形成部の下端部に複数の燃料ガス供給孔が配置されており、上端部に複数の燃料ガス排出孔が配置されている場合においても、適用することができる。
【図面の簡単な説明】
【0068】
【図1】第1実施例に係る燃料電池10の外観構成を示す説明図である。
【図2】燃料電池10を構成するモジュール20の概略構成を示す説明図である。
【図3】MEAと一体形成されたシール部25の概略構成を表わす平面図である。
【図4】カソード側プレート22の形状を示す説明図である。
【図5】アノード側プレート23の形状を示す説明図である。
【図6】中間プレート24の形状を示す説明図である。
【図7】モジュール20の断面構造を示す説明図である。
【図8】モジュール20の断面構造を示す説明図である。
【図9】モジュール20の断面構造を示す説明図である。
【図10】電気化学反応による生成水をガス流路形成部から排出する動作について示す説明図である。
【図11】第2実施例におけるガス流路形成部の酸化ガスの流れを示す模式図である。
【符号の説明】
【0069】
10…燃料電池
11…スタック
20…モジュール
21…セパレータ
22…カソード
23…アノード側プレート
24…中間プレート
25…シール部
26…単セル
27…MEA
28…ガス流路形成部
29…ガス流路形成部
30…エンドプレート
31…テンションプレート
32…ボルト
33…インシュレータ
34…ターミナル
40…酸化ガス供給マニホールド
41…酸化ガス排出マニホールド
50…燃料ガス供給マニホールド
51…燃料ガス排出マニホールド
60…排水ドレイン
221a…燃料ガス供給マニホールド形成孔部
221b…燃料ガス排出マニホールド形成孔部
222a…酸化ガス供給マニホールド形成孔部
222b…酸化ガス排出マニホールド形成孔部
223a…冷却媒体供給マニホールド形成孔部
223b…冷却媒体排出マニホールド形成孔部
224…排水ドレイン形成孔部
225…酸化ガス供給孔
225a〜225e…酸化ガス供給孔
226…酸化ガス排出孔
226a〜226f…酸化ガス排出孔
227…排水孔
231a…燃料ガス供給マニホールド形成孔部
231b…燃料ガス排出マニホールド形成孔部
232a…酸化ガス供給マニホールド形成孔部
232b…酸化ガス排出マニホールド形成孔部
233a…冷却媒体供給マニホールド形成孔部
233b…冷却媒体排出マニホールド形成孔部
234…排水ドレイン形成孔部
237…燃料ガス供給孔
238…燃料ガス排出孔
241a…燃料ガス供給マニホールド形成孔部
241b…燃料ガス排出マニホールド形成孔部
242a…酸化ガス供給マニホールド形成孔部
242b…酸化ガス排出マニホールド形成孔部
243…冷却媒体流路形成部
244…排水ドレイン形成孔部
245…酸化ガス供給流路形成部
245a〜245e…酸化ガス供給流路形成部
246…酸化ガス排出流路形成部
247…燃料ガス供給流路形成部
248…燃料ガス排出流路形成部
249…排水流路形成部
251a…燃料ガス供給マニホールド形成孔部
251b…燃料ガス排出マニホールド形成孔部
252a…酸化ガス供給マニホールド形成孔部
252b…酸化ガス排出マニホールド形成孔部
253a…冷却媒体供給マニホールド形成孔部
253b…冷却媒体排出マニホールド形成孔部
254…排水ドレイン形成孔部
255…穴部
291…電解質膜
292…カソード
293…アノード
294…ガス拡散層
295…ガス拡散層
410…水素タンク
420…シャットバルブ
430…調圧バルブ
440…循環ポンプ
450…配管
460…配管
470…配管
480…排水バルブ
510…エアポンプ
520…配管
530…配管
540…循環ポンプ
550…ラジエータ
560…配管
570…配管
DA…集電領域

【特許請求の範囲】
【請求項1】
電解質膜上に電極が形成された膜電極接合体と、導電性多孔質部材によって形成されるとともに、前記膜電極接合体上に積層して配置され、電気化学反応に供される反応ガスを前記電極に供給するための反応ガス流路を構成するガス流路形成部と、前記ガス流路形成部上に積層して配置されたセパレータと、を備え、前記セパレータが積層して配置される前記ガス流路形成部の面が鉛直方向を含む面となるように配置される燃料電池であって、
前記ガス流路形成部の鉛直方向の下端部よりも下側に配置され、前記ガス流路形成部からの排水を溜める排水ドレインを備え、
前記セパレータは、
前記ガス流路形成部に当接する面内において、前記ガス流路形成部の鉛直方向の下端部に対応する位置に、鉛直方向に垂直な方向に沿って配置され、前記ガス流路形成部に前記反応ガスを供給するための開口を有する複数のガス供給流路部と、
前記面内において、前記ガス流路形成部の鉛直方向の上端部に対応する位置に、鉛直方向に垂直な方向に沿って配置され、前記ガス流路形成部から前記反応ガスを排出するための開口を有する複数のガス排出流路部と、を備えており、
前記複数のガス供給流路部の開口は、前記排水ドレインの配置位置から遠くに位置する開口ほど開口面積が大きく、近くに位置する開口ほど開口面積が小さくなるように形成されている、
燃料電池。
【請求項2】
請求項1記載の燃料電池であって、さらに、
前記複数のガス排出流路部の開口は、前記排水ドレインの配置位置から遠くに位置する開口ほど開口面積が小さく、近くに位置する開口ほど開口面積が大きくなるように形成されている、
燃料電池。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2008−27804(P2008−27804A)
【公開日】平成20年2月7日(2008.2.7)
【国際特許分類】
【出願番号】特願2006−200912(P2006−200912)
【出願日】平成18年7月24日(2006.7.24)
【出願人】(000003207)トヨタ自動車株式会社 (59,920)
【Fターム(参考)】