説明

生体高分子分析チップ

【課題】 走査機構を必要がなくても生体高分子を分析することができる生体高分子分析チップを提供すること。
【解決手段】 この生体高分子分析チップ1は、ダブルゲートトランジスタ20をマトリクス状に配列してなる固体撮像デバイス3と、固体撮像デバイス3の受光面に載置された光学伝送部としてのセルフォックレンズアレイ33と、セルフォックレンズアレイ33の入射面に成膜された励起光遮蔽膜32と、励起光遮蔽膜32の表面に沿ってマトリクス状に点在したスポット60,60,…と、を具備する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、生体高分子の構造を特定するために用いる生体高分子分析チップに関する。
【背景技術】
【0002】
近年、医療分野、農業分野等の幅広い分野で生物の遺伝子情報が利用されるようになってきているが、遺伝子の利用に際しては、DNAの構造解明が不可欠である。DNAは螺旋状によじれあった2本のポリヌクレオチド鎖を有し、それぞれのポリヌクレオチド鎖は4種の塩基(アデニン:A、グアニン:G、シトシン:C、チミン:T)が一次元的に並んだ塩基配列を有し、アデニンとチミン、グアニンとシトシンという相補性に基づいて一方のポリヌクレオチド鎖の塩基が他方のポリヌクレオチド鎖の塩基に結合している。
【0003】
DNAの構造解明とは、塩基配列を特定することであり、DNAの塩基配列を特定するためにDNAマイクロアレイ及びその読取装置が開発されており(特許文献1)、DNAマイクロアレイ及びその読取装置を用いて次のようにしてサンプルDNAの塩基配列を特定する。
【0004】
まず、既知の塩基配列を有した複数種類のcDNAをスライドガラス等の固体担体に整列固定させたDNAマイクロアレイを準備する。次に、被検出物であるサンプルDNAを一本鎖のDNAに変性して、変性したサンプルDNAに蛍光物質等を結合させる。
【0005】
次に、サンプルDNAをDNAマイクロアレイ上に添加すると、サンプルDNAがハイブリダイゼーションによってDNAマイクロアレイ上に固定される。つまり、サンプルDNAが複数種類のcDNAのうち相補的なcDNAと結合して、二本鎖が生じる。一方、サンプルDNAは、相補性を有しないcDNAとは結合しない。サンプルDNAに蛍光物質でマーキングを施しているため、サンプルDNAと結合したcDNAが蛍光を発することになる。例えば、TCGGGAAという塩基配列を有するサンプルDNAは、AGCCCTTという塩基配列を有するcDNAと結合し、そのcDNAが蛍光を発する。
【0006】
次いで、DNAマイクロアレイを読取装置にセッティングし、読取装置にて分析する。読取装置は、光源から発した励起光をコリメーターレンズによりビームとして収束し、ビームをDNAマイクロアレイに対して二次元走査し、ビームの二次元走査と共に集光レンズ及びフォトマルも二次元走査し、ビームにより発した蛍光を集光レンズでフォトマルに集光させ、蛍光強度をフォトマルで計測し、二次元走査によってDNAマイクロアレイの面内の蛍光強度分布を計測するようになっている。これにより、DNAマイクロアレイ上の蛍光強度分布が二次元の画像として出力される。出力された画像内で蛍光強度が大きい部分には、サンプルDNAの塩基配列と相補的な塩基配列を有したcDNAが含まれていることを表している。従って、二次元画像中のどの部分の蛍光強度が大きいかによってサンプルDNAの塩基配列を特定することができる。
【特許文献1】特開2000−131237号公報
【発明の開示】
【発明が解決しようとする課題】
【0007】
ところが、従来のDNAマイクロアレイを用いてDNAを分析するには、DNAマイクロアレイに対してビーム及びフォトマル等を走査する機構を必要とし、読取装置全体が大きいという問題がある。
【0008】
そこで、本発明は、上記のような問題点を解決しようとしてなされたものであり、走査機構を必要がなくても生体高分子を分析することができる生体高分子分析チップを提供することを目的とする。
【課題を解決するための手段】
【0009】
以上の課題を解決するために、本発明の生体高分子分析チップは、固体撮像デバイスと、一方の面から他方の面に像を伝送し、前記一方の面を前記固体撮像デバイスの受光面に対向するよう前記固体撮像デバイスの受光面上に載置された光学伝送部と、既知の生体高分子からなり、前記光学伝送部の他方の面に沿って点在した複数種のスポットと、を備える。
【0010】
また、本発明においては、前記光学伝送部が前記固体撮像デバイスの受光面に対して接離可能であることが好ましい。
【0011】
また、本発明においては、前記光学伝送部の他方の面に励起光遮蔽膜が成膜され、前記励起光遮蔽膜を介して前記複数種のスポットが前記光学伝送部の他方の面に沿って点在していることが好ましい。
【0012】
以上の生体高分子分析チップを用いる際には、標識されたサンプルを光学伝送部の他方の面上に塗布する。そうすると、サンプルが特異的な(例えば、相補的な)スポットには結合し、特異的でないスポットには結合しない。光学伝送部の他方の面に向かって励起光を照射すれば、光学伝送部の他方の面には蛍光強度分布が現れ、この蛍光強度分布が像として光学伝送部によって他方の面から一方の面に伝送される。そのため、固体撮像デバイスで撮像を行えば、サンプルに結合したスポットが付いた部分では蛍光により明るくなり、サンプルに結合していないスポットが付いた部分では暗くなる。以上のように製造された生体高分子分析チップを用いれば、ビーム等の走査を行わずとも固体撮像デバイスで撮像を行うだけで、二次元の画像が得られ、得られた画像からサンプルの分析を行うことができる。
【発明の効果】
【0013】
本発明によれば、走査を行わずとも固体撮像デバイスで撮像を行うだけで二次元の画像が得られ、生体高分子の分析を行うことができる。
【0014】
また、固体撮像デバイスに光学伝送部が載置されているから、生体高分子分析チップの使用後に光学伝送部を外せば、固体撮像デバイスをそのまま再利用することができる。
【発明を実施するための最良の形態】
【0015】
以下に、本発明を実施するための最良の形態について図面を用いて説明する。但し、以下に述べる実施形態には、本発明を実施するために技術的に好ましい種々の限定が付されているが、発明の範囲を以下の実施形態及び図示例に限定するものではない。
【0016】
〔1〕生体高分子分析チップの全体構成
図1は、本発明を適用した実施形態における生体高分子分析チップ1の概略平面図であり、図2は、図1の切断面II−IIの矢視断面図である。
【0017】
この生体高分子分析チップ1は、光電変換素子をマトリクス状に配列してなる固体撮像デバイス3と、固体撮像デバイス3の受光面に載置された光学伝送部としてのセルフォックレンズアレイ33と、セルフォックレンズアレイ33の入射面に成膜された励起光遮蔽膜32と、励起光遮蔽膜32の表面に沿ってマトリクス状に点在したスポット60,60,…と、を具備する。ここで、励起光とは、後述する蛍光物質、燐光材料又は光共鳴散乱物質を励起させる波長域の光であり、蛍光とは、励起光によって励起された蛍光物質、燐光材料又は光共鳴散乱物質が発する波長域の光であり、励起光の波長域は蛍光の波長域と異なる。具体的には、励起光とは紫外線波長域の光であり、蛍光とは可視光波長域の光である。
【0018】
〔2〕固体撮像デバイス
図1〜図4を用いて固体撮像デバイス3について詳細に説明する。ここで、図2は、固体撮像デバイス3の画素である光電変換素子の電極構造を示した平面図であり、図3は、固体撮像デバイス3の光電変換素子の断面図である。
【0019】
この固体撮像デバイス3においては、光電変換素子としてダブルゲート型電界効果トランジスタ(以下、ダブルゲートトランジスタという。)20が利用されている。複数のダブルゲートトランジスタ20,20,…が絶縁性基板17に沿ってマトリクス状に配列されている。
【0020】
絶縁性基板17は、光を透過する性質(以下、光透過性という。)を有するとともに電気的に絶縁性を有し、石英ガラス等といったガラス基板又はポリカーボネート、PMMA等といったプラスチック基板である。
【0021】
ダブルゲートトランジスタ20,20,…は何れも、受光部である半導体膜23と、ボトムゲート絶縁膜22を挟んで半導体膜23の下に形成されたボトムゲート電極21と、トップゲート絶縁膜29を挟んで半導体膜23の上に形成されたトップゲート電極30と、半導体膜23の一部に重なるよう形成された不純物半導体膜25と、半導体膜23の別の一部に重なるよう形成された不純物半導体膜26と、不純物半導体膜25に重なったソース電極27と、不純物半導体膜25に重なったドレイン電極28と、を備え、半導体膜23において受光した光量に従ったレベルの電気信号に変換するものである。
【0022】
ボトムゲート電極21がダブルゲートトランジスタ20ごとに形成され、複数のボトムゲート電極21が絶縁性基板17上にマトリクス状に配列されている。また、絶縁性基板17上には横方向に延在する複数本のボトムゲートライン41,41,…が形成されており、横方向に配列された同一の行のダブルゲートトランジスタ20,20,…のそれぞれのボトムゲート電極21が共通のボトムゲートライン41と一体となって形成されている。ボトムゲート電極21及びボトムゲートライン41は、導電性及び遮光性を有し、例えばクロム、クロム合金、アルミ若しくはアルミ合金又はこれらの合金からなる。
【0023】
ダブルゲートトランジスタ20,20,…のボトムゲート電極21及びボトムゲートライン41,41,…はボトムゲート絶縁膜22によってまとめて被覆されている。すなわち、ボトムゲート絶縁膜22は全てのダブルゲートトランジスタ20,20,…に共通して形成された膜である。ボトムゲート絶縁膜22は絶縁性及び光透過性を有し、例えば窒化シリコン(SiN)又は酸化シリコン(SiO2)からなる。
【0024】
ボトムゲート絶縁膜22上には、複数の半導体膜23がマトリクス状に配列されている。半導体膜23は、ダブルゲートトランジスタ20ごとに独立して形成されており、それぞれのダブルゲートトランジスタ20においてボトムゲート電極21に対して対向配置され、ボトムゲート電極21との間にボトムゲート絶縁膜22を挟んでいる。半導体膜23は、平面視して略矩形状を呈しており、受光した蛍光の光量に応じた量の電子−正孔対を生成するアモルファスシリコン又はポリシリコンで形成された層である。
【0025】
半導体膜23上には、チャネル保護膜24が形成されている。チャネル保護膜24は、ダブルゲートトランジスタ20ごとに独立してパターニングされており、それぞれのダブルゲートトランジスタ20において半導体膜23の中央部上に形成されている。チャネル保護膜24は、絶縁性及び光透過性を有し、例えば窒化シリコン又は酸化シリコンからなる。チャネル保護膜24は、パターニングに用いられるエッチャントから半導体膜23の界面を保護するものである。半導体膜23に光が入射すると、入射した光量に従った量の電子−正孔対がチャネル保護膜24と半導体膜23との界面付近を中心に発生するようになっている。この場合、半導体膜23側にはキャリアとして正孔が発生し、チャネル保護膜24側には電子が発生する。
【0026】
半導体膜23の一端部上には、不純物半導体膜25が一部チャネル保護膜24に重なるようにして形成されており、半導体膜23の他端部上には、不純物半導体膜26が一部チャネル保護膜24に重なるようにして形成されている。不純物半導体膜25,26は、ダブルゲートトランジスタ20ごとに独立してパターニングされている。不純物半導体膜25,26は、n型の不純物イオンを含むアモルファスシリコン(n+シリコン)からなる。
【0027】
不純物半導体膜25上には、ソース電極27が形成され、不純物半導体膜26上には、ドレイン電極28が形成されている。ソース電極27及びドレイン電極28はダブルゲートトランジスタ20ごとに形成されている。縦方向に延在する複数本のソースライン42,42,…及びドレインライン43,43,…がボトムゲート絶縁膜22上に形成されている。縦方向に配列された同一の列のダブルゲートトランジスタ20,20,…のソース電極27は共通のソースライン42と一体に形成されており、縦方向に配列された同一の列のダブルゲートトランジスタ20,20,…のドレイン電極28は共通のドレインライン43と一体に形成されている。ソース電極27、ドレイン電極28、ソースライン42及びドレインライン43は、導電性及び遮光性を有しており、例えばクロム、クロム合金、アルミ若しくはアルミ合金又はこれらの合金からなる。
【0028】
ダブルゲートトランジスタ20,20,…のソース電極27及びドレイン電極28並びにソースライン42,42,…及びドレインライン43,43,…は、トップゲート絶縁膜29によってまとめて被覆されている。すなわち、トップゲート絶縁膜29は全てのダブルゲートトランジスタ20,20,…に共通して形成された膜である。トップゲート絶縁膜29は、絶縁性及び光透過性を有し、例えば窒化シリコン又は酸化シリコンからなる。
【0029】
トップゲート絶縁膜29上には、複数のトップゲート電極30マトリクス状に配列されている。トップゲート電極30は、ダブルゲートトランジスタ20ごとに独立して形成されており、それぞれのダブルゲートトランジスタ20において半導体膜23に対して対向配置され、半導体膜23との間にトップゲート絶縁膜29を挟んでいる。また、トップゲート絶縁膜29上には横方向に延在する複数本のトップゲートライン44,44,…が形成されており、横方向に配列された同一の行のダブルゲートトランジスタ20,20,…のトップゲート電極30は共通のトップゲートライン44と一体に形成されている。トップゲート電極30及びトップゲートライン44は、導電性及び光透過性を有し、例えば、酸化インジウム、酸化亜鉛若しくは酸化スズ又はこれらのうちの少なくとも一つを含む混合物(例えば、錫ドープ酸化インジウム(ITO)、亜鉛ドープ酸化インジウム)で形成されている。
【0030】
ダブルゲートトランジスタ20,20,…のトップゲート電極30及びトップゲートライン44,44,…は保護絶縁膜31によってまとめて被覆され、保護絶縁膜31は全てのダブルゲートトランジスタ20,20,…に共通して形成された膜である。保護絶縁膜31は、絶縁性及び光透過性を有し、窒化シリコン又は酸化シリコンからなる。
【0031】
以上のように構成された固体撮像デバイス3は、保護絶縁膜31の表面を受光面としており、それぞれのダブルゲートトランジスタ20の半導体膜23に入射した光量を電気信号のレベルに変換するように設けられている。
【0032】
〔3〕セルフォックレンズアレイ
セルフォックレンズアレイ33は、円柱状の複数のセルフォックレンズ34の中心軸を互いに平行とするようこれらセルフォックレンズ34を配列した光学系であって、複数のセルフォックレンズ34全体で一つの連続した像を形成する光学系である。セルフォックレンズ34の屈折率は、セルフォックレンズ34の中心軸からセルフォックレンズ34の円柱面にかけて半径方向に沿って連続的に変化している。
【0033】
セルフォックレンズアレイ33は、出射面(セルフォックレンズ34の円形下面の集合)を固体撮像デバイス3の受光面に対向させ且つ当接させるよう固体撮像デバイス3の受光面に載置されている。このように載置されたセルフォックレンズアレイ33においては、セルフォックレンズ34の中心軸が固体撮像デバイス3の受光面に対して垂直になっている。セルフォックレンズアレイ33は、固体撮像デバイス3の受光面に対して接離可能である。
【0034】
〔4〕励起光遮蔽膜
セルフォックレンズアレイ33の入射面(セルフォックレンズ34の円形上面の集合)には、励起光を遮蔽するとともに蛍光を透過する励起光遮蔽膜32が成膜されている。励起光遮蔽膜32は例えばTiO2からなる。
【0035】
〔5〕スポット
図1、図2、図4に示すように、複数種のスポット60,60,…が励起光遮蔽膜32に直接点着され、励起光遮蔽膜32を介してセルフォックレンズアレイ33の受光面に沿って点在している。これらスポット60,60,…は互いに離間してマトリクス状に配列されている。スポット60は一本鎖プローブDNA61が多数集まった群集であり、1つのスポット60に含まれる多数の一本鎖プローブDNA61は同じ塩基配列(ヌクレオチド配列)を有する。また、スポット60ごとに一本鎖プローブDNA61の塩基配列が異なる配列となっている。何れのスポット60も、塩基配列が既知のものである。
【0036】
図1に示すように、1つのスポット60につき1つのダブルゲートトランジスタ20が重なるように、スポット60,60,…が配列されている。なお、1つのスポット60につき隣り合う幾つかのダブルゲートトランジスタ20,20,…が重なっても良いが、この場合には何れのスポット60でも重なったダブルゲートトランジスタ20の数が同じである。
【0037】
〔6〕DNA分析方法及び分析支援装置
次に、生体高分子分析チップ1を用いてDNAの塩基配列を分析する方法について説明する。
【0038】
図5,6に示された分析支援装置70に生体高分子分析チップ1をセッティングして生体高分子分析チップ1を用いるので、まず分析支援装置70について説明する。図5は、分析支援装置70の構成を示したブロック図であり、図6は、分析支援装置70に生体高分子分析チップ1をセッティングした場合の側面図である。図6において、生体高分子分析チップ1は破断して示されている。
【0039】
分析支援装置70は、生体高分子分析チップ1がセッティングされる分析台71と、固体撮像デバイス3の受光面の上から受光面に向けて励起光を照射する励起光照射装置72と、固体撮像デバイス3を駆動するトップゲートドライバ74、ボトムゲートドライバ75及びドレインドライバ76と、励起光照射装置72、トップゲートドライバ74、ボトムゲートドライバ75及びドレインドライバ76を制御するコントローラ73と、コントローラ73から出力された信号により出力(表示又はプリント)を行う出力装置77と、を備えて構成されている。
【0040】
生体高分子分析チップ1は分析台71に対して着脱可能である。生体高分子分析チップ1が分析台71にセッティングされた場合には、固体撮像デバイス3のトップゲートライン44,44,…がトップゲートドライバ74の端子にそれぞれ接続される。同様に、固体撮像デバイス3のボトムゲートライン41,41,…がボトムゲートドライバ75の端子にそれぞれ接続され、固体撮像デバイス3のドレインライン43,43,…がドレインドライバ76の端子にそれぞれ接続される。また、生体高分子分析チップ1が分析台71にセッティングされた場合、固体撮像デバイス3のソースライン42,42,…が一定電圧源に接続され、この例ではソースライン42,42,…が接地されるようになっている。
【0041】
励起光照射装置72は分析台71との間に所定間隔をあけて分析台71に対向している。分析台71に生体高分子分析チップ1が搭載された場合に、励起光照射装置72が励起光を面状に生体高分子分析チップ1に照射する。励起光照射装置72から出射する励起光は、後述する蛍光物質、燐光材料又は光共鳴散乱物質を励起させる波長域の光である。なお、励起光照射装置72は、出射する励起光の波長域を可変可能であっても良い。
【0042】
出力装置77はプロッタ、プリンタ又はディスプレイである。
【0043】
トップゲートドライバ74、ボトムゲートドライバ75及びドレインドライバ76は、協同して固体撮像デバイス3を駆動するものである。トップゲートドライバ74は、シフトレジスタである。つまり、図7に示すように、トップゲートドライバ74はトップゲートライン44,44,…にリセットパルスを順次出力する。リセットパルスのレベルは+5〔V〕のハイレベルである。一方、トップゲートドライバ74は、リセットパルスを出力しない時にローレベルの−20〔V〕の電位をそれぞれのトップゲートライン44に印加する。
【0044】
ボトムゲートドライバ75は、シフトレジスタである。つまり、図7に示すように、ボトムゲートライン41,41,…にリードパルスを順次出力する。リードパルスのレベルは+10〔V〕のハイレベルであり、リードパルスが出力されていない時のレベルは±0〔V〕のローレベルである。
【0045】
トップゲートドライバ74が何れかの行のトップゲートライン44にリセットパルスを出力した後にキャリア蓄積期間を経てボトムゲートドライバ75が同じ行のボトムゲートライン41にリードパルスを出力するように、トップゲートドライバ74及びボトムゲートドライバ75が出力信号をシフトする。つまり、各行では、リードパルスが出力されるタイミングは、リセットパルスが出力されるタイミングより遅れている。また、何れかの行のトップゲートライン44へのリセットパルスの入力が開始してから、同じ行のボトムゲートライン41へのリードパルスの入力が終了するまでの期間は、その行の選択期間である。リセットパルスのレベルは+5〔V〕のハイレベルであり、リセットパルスが出力されていない時のレベルは−20〔V〕のローレベルである。
【0046】
図7に示すように、ドレインドライバ76は、それぞれの行の選択期間において、リセットパルスが出力されてからリードパルスが出力されるまでの間に、全てのドレインライン43,43,…にプリチャージパルスを出力する。プリチャージパルスのレベルは+10〔V〕のハイレベルであり、プリチャージパルスが出力されていない時のレベルは±0〔V〕のローレベルである。また、ドレインドライバ76は、プリチャージパルスの出力後にドレインライン43,43,…の電圧を増幅してコントローラ73に出力する。
【0047】
コントローラ73は励起光照射装置72を点灯させる機能を有する。また、コントローラ73は、トップゲートドライバ74、ボトムゲートドライバ75及びドレインドライバ76に制御信号を出力することによって、トップゲートドライバ74、ボトムゲートドライバ75及びドレインドライバ76に固体撮像デバイス3の駆動動作を行わせる機能を有する。また、コントローラ73はドレインドライバ76から入力した電気信号をA/D変換することで、固体撮像デバイス3の受光面に沿った蛍光強度分布を二次元の画像データとして取得する機能を有する。また、コントローラ73は入力した二次元の画像データ画像データに従った画像を出力装置77に出力させる機能を有する。
【0048】
生体高分子分析チップ1及び分析支援装置70の動作並びにDNAの分析方法(同定方法)について説明する。
【0049】
まず、作業者が検体からDNAを採取して、採取した二本鎖DNAを一本鎖DNAに変性してから場合によってPCR増幅を行い、得られた一本鎖DNAに蛍光物質、燐光材料又は光共鳴散乱物質を結合させ、一本鎖DNAを蛍光物質、燐光材料又は光共鳴散乱物質で標識する。蛍光物質、燐光材料又は光共鳴散乱物質は、分析支援装置70の励起光照射装置72から出射される励起光で励起されるものを選択するが、蛍光物質としては、例えばCyDyeのCy2(アマシャム社製)がある。得られた一本鎖DNAは、溶液中に含まれている。以下では、この一本鎖DNAをサンプルDNAという。
【0050】
次いで、作業者が、サンプルDNAを含有した溶液を生体高分子分析チップ1の表面(励起光遮蔽膜32の表面)に塗布する。ここで、生体高分子分析チップ1にサンプルDNAを分布させるために、サンプルDNAを電気泳動させても良い。なお、サンプルDNAを含有した溶液をスポット60,60,…に順次又は同時に滴下しても良い。このとき、一本鎖が二本鎖とならないようにサンプルDNAを含有した溶液を加熱する。
【0051】
その後、サンプルDNAのハイブリダイゼーションを引き起こすために、生体高分子分析チップ1を所定の温度に冷却する。これにより、スポット60,60,…のなかにサンプルDNAと相補的なものがあれば、サンプルDNAが相補的なスポット60のプローブDNA61とハイブリダイゼーションにより結合する。一方、スポット60,60,…のなかにサンプルDNAと相補的なものがなければ、サンプルDNAはどのスポット60,60,…にも結合しない。
【0052】
その後、生体高分子分析チップ1の表面に塗布したサンプルDNAのうちハイブリダイゼーションしなかったものは洗い流す際に除去され、ハイブリダイゼーションしたものは、固体撮像デバイス3上に残存する。
【0053】
次いで、作業者が生体高分子分析チップ1を分析台71にセッティングし、励起光照射装置72に生体高分子分析チップ1を対向させ、トップゲートドライバ74、ボトムゲートドライバ75及びドレインドライバ76に生体高分子分析チップ1を接続する。
【0054】
その後、コントローラ73を起動すると、コントローラ73が励起光照射装置72を制御して励起光照射装置72を点灯させると、励起光照射装置72から生体高分子分析チップ1の表面に向けて励起光が出射する。
【0055】
サンプルDNAが標識されているので、スポット60,60,…のうちサンプルDNAとハイブリダイゼーションしたスポット60からは蛍光が発し、サンプルDNAと結合しなかったスポット60からは蛍光が発しない。スポット60,60,…がセルフォックレンズアレイ33の入射面上において点在し、これらのうち蛍光を発するスポット60と蛍光を発しないスポット60が存在するから、セルフォックレンズアレイ33の入射面には蛍光強度の分布が現れる。この蛍光強度の分布が像としてセルフォックレンズアレイ33によって出射面に伝送され、固体撮像デバイス3の受光面に結像される。なお、サンプルDNAに燐光材料を結合させた場合、励起光照射装置72が消灯しても、サンプルDNAとハイブリダイゼーションしたスポット60からは蛍光の残光(燐光)が発し続ける。
【0056】
その後、蛍光物質又は光共鳴散乱物質をサンプルDNAに結合した場合には励起光照射装置72が点灯した状態で、燐光材料をサンプルDNAに結合した場合には励起光照射装置72が点灯後に消灯した状態で、コントローラ73がトップゲートドライバ74、ボトムゲートドライバ75及びドレインドライバ76を制御することにより、固体撮像デバイス3に撮像動作を行わせる。これにより、固体撮像デバイス3がダブルゲートトランジスタ20,20,…のそれぞれで光強度又は光量を検知し、受光面に沿った蛍光強度分布を二次元の画像データとして取得する。コントローラ73は、固体撮像デバイス3で取得された画像データを入力し、その画像を出力装置77に出力する。そして、コントローラの処理が終了する。
【0057】
作業者は、出力装置77により出力された画像データからハイブリダイゼーションの有無を確認し、ハイブリダイゼーションが起きていればサンプルDNAの塩基配列を特定する。即ち、サンプルDNAの塩基配列は、画像の中でハイブリダイゼーションによって蛍光を発した画素に重なったスポット60と相補的な配列であるので、出力された画像データ中のどの部分が蛍光を発したかによってサンプルDNAの塩基配列を特定することができる。
【0058】
ここで、トップゲートドライバ74、ボトムゲートドライバ75及びドレインドライバ76による固体撮像デバイス3の動作について説明する。
トップゲートドライバ74が1行目のトップゲートライン44から最終行目のトップゲートライン44へと順次リセットパルスを出力し、ボトムゲートドライバ75がボトムゲートライン41,41,41,…に順次リードパルスを出力する。その際、ドレインドライバ76が各行でリセットパルスが出力されているリセット期間と各行でリードパルスが出力されている期間との間に、プリチャージパルスを全てのドレインライン43,43,…に出力する。
【0059】
1行目から最終行目までのうちの任意のi行目の各ダブルゲートトランジスタ20の動作について詳細に説明する。図7に示すように、トップゲートドライバ74がi行目のトップゲートライン44にリセットパルスを出力すると、i行目のトップゲートライン44がハイレベルになる。i行目のトップゲートライン44がハイレベルになっている間(この期間をリセット期間という。)、i行目の各ダブルゲートトランジスタ20では、半導体膜23内や半導体膜23とチャネル保護膜24との界面近傍に蓄積されたキャリア(ここでは、正孔である。)が、トップゲート電極30の電圧により反発して吐出される。
【0060】
次に、トップゲートドライバ74がi行目のトップゲートライン44にリセットパルスを出力することを終了する。i行目のトップゲートライン44のリセットパルスが終了してから、i行目のボトムゲートライン41にリードパルスが出力されるまでの間(この期間をキャリア蓄積期間という。)、光量に従った量の電子−正孔対が半導体膜23内で生成されるが、そのうちの正孔がトップゲート電極30の電界により半導体膜23内や半導体膜23とチャネル保護膜24との界面近傍に蓄積される。
【0061】
次に、キャリア蓄積期間中に、ドレインドライバ76が全てのドレインライン43,43,…にプリチャージパルスを出力する。プリチャージパルスが出力されている間(プリチャージ期間という。)では、i行目の各ダブルゲートトランジスタ20においては、トップゲート電極30に印加されている電位が−20〔V〕であり、ボトムゲート電極21に印加されている電位が±0〔V〕であるため、たとえ半導体膜23内や半導体膜23とチャネル保護膜24との界面近傍に蓄積された正孔の電荷だけではゲート−ソース間電位が低いので半導体膜23にはチャネルが形成されず、ドレイン電極28とソース電極27との間に電流は流れない。プリチャージ期間において、ドレイン電極28とソース電極27との間に電流が流れないため、ドレインライン43,43,…に出力されたプリチャージパルスによってi行目の各ダブルゲートトランジスタ20のドレイン電極28に電荷がチャージされる。
【0062】
次に、ドレインドライバ76がプリチャージパルスの出力を終了するとともに、ボトムゲートドライバ75がi行目のボトムゲートライン41にリードパルスを出力する。ボトムゲートドライバ75がi行目のボトムゲートライン41にリードパルスを出力している間(この期間を、リード期間という。)では、i行目の各ダブルゲートトランジスタ20のボトムゲート電極21に+10〔V〕の電位が印加されているため、i行目の各ダブルゲートトランジスタ20がオン状態になる。
【0063】
リード期間においては、キャリア蓄積期間において蓄積されたキャリアがトップゲート電極30の負電界を緩和するように働くため、ボトムゲート電極21の正電界により半導体膜23にnチャネルが形成されて、ドレイン電極28からソース電極27に電流が流れるようになる。従って、リード期間では、ドレインライン43,43,…の電圧は、ドレイン−ソース間電流によって時間の経過とともに徐々に低下する傾向を示す。
【0064】
ここで、キャリア蓄積期間において半導体膜23に入射した光量が多くなるにつれて、蓄積されるキャリアも多くなり、蓄積されるキャリアが多くなるにつれて、リード期間においてドレイン電極28からソース電極27に流れる電流のレベルも大きくなる。従って、リード期間におけるドレインライン43,43,…の電圧の変化傾向は、キャリア蓄積期間で半導体膜23に入射した光量に深く関連する。そして、i行目のリード期間から次のi+1行目(但し、i行目が最終行目の場合には、i+1行目は1行目である。)のプリチャージ期間までの間に、ドレインドライバ76を介して、リード期間が開始してから所定の時間経過後のドレインライン43,43,…の電圧を検出してA/D変換する。これにより、光の強度に換算される。なお、i行目のリード期間から次の(i+1)行目のプリチャージ期間までの間に、ドレインドライバ76を介して、所定の閾値電圧に至るまでの時間を検出しても良い。この場合でも、光の強度に換算される。また、図7では、トップゲートドライバ74の(i+1)行目のリセットパルスの立ち上がり時期は、ボトムゲートドライバ75のi行目のリードパルスが立ち下がってからであるが、これに限らず、トップゲートドライバ74の(i+1)行目のリセットパルスの立ち上がり時期は、トップゲートドライバ74のi行目のリセットパルスの立ち下がり直後からボトムゲートドライバ75のi行目のリードパルスの立ち下がりまでの間であってもよい。ただし、(i+1)行目のダブルゲートトランジスタ20のためにドレインライン43,43,…に出力されたプリチャージパルスの出力は、ボトムゲートドライバ75のi行目のリードパルスの立ち下がり以降になるように設定されている。
【0065】
上述した一連の画像読み取り動作を1サイクルとして、全ての行の各ダブルゲートトランジスタ20にも同等の処理手順を繰り返すことにより、生体高分子分析チップ1上の光の強度分布が画像として取得される。そして、蛍光強度分布を表した画像は、コントローラに入力される。
【0066】
以上のように、本実施形態によれば、固体撮像デバイス3に載置されたセルフォックレンズアレイ33上にスポット60,60,…が点在しているから、走査を行わずとも固体撮像デバイス3で撮像を行うだけで二次元の画像が得られる。更に、分析支援装置70にレンズを設けなくとも、固体撮像デバイス3で鮮明な像を得ることができるので、分析支援装置70の小型化を図ることができる。更に、セルフォックレンズアレイ33上にスポット60,60,…が点在しているため、スポット60から発した光が殆ど減衰せずに固体撮像デバイス3の受光面に入射する。そのため、固体撮像デバイス3の感度が高くなくても済む。
【0067】
また、固体撮像デバイス3にセルフォックレンズアレイ33が載置されているから、生体高分子分析チップ1の使用後にセルフォックレンズアレイ33を外せば、固体撮像デバイス3を再利用することができる。
【0068】
〔変形例1〕
上記生体高分子分析チップ1では、光電変換素子としてダブルゲートトランジスタ20,20,…を画素として用いた固体撮像デバイス3を用いているが、別の種類の光電変換素子を画素として用いた固体撮像デバイスを生体高分子分析チップに用いても良い。例えば、フォトダイオードを画素として用いたCCDイメージセンサ、CMOSイメージセンサ等といった固体撮像デバイスを用いても良い。CCDイメージセンサにおいては、フォトダイオードが基板上にマトリクス状となって配列されており、それぞれのフォトダイオードの周囲には、フォトダイオードで光電変換された電気信号を転送するための垂直CCD、水平CCDが形成されている。CMOSイメージセンサにおいては、フォトダイオードが基板上にマトリクス状となって配列されており、それぞれのフォトダイオードの周囲にはフォトダイオードで光電変換された電気信号を増幅するためのCMOS回路が設けられている。
【0069】
〔変形例2〕
上記生体高分子分析チップ1では、スポット60が既知の塩基配列の一本鎖DNAからなるものであるが、その他の既知の生体高分子、例えば、既知のアミノ酸配列やペプチド配列のタンパク質、既知の細胞等からなるものでも良い。したがって、生体高分子分析チップ1によってタンパク質のアミノ酸配列やペプチド配列を分析することが可能となる。
【0070】
〔変形例3〕
また、上記実施形態では、励起光照射装置72から発する励起光を紫外線とし、励起光によってサンプルDNAから発する蛍光を可視光としたが、このような光の波長域に限定されない。但し、励起光照射装置72から発する励起光がサンプルDNAに結合させた標識物質を励起させる波長域の光であること、励起光によって標識物質から発した光の波長域が励起光の波長域と異なることが必要である。また、固体撮像デバイス3が標識物質から発した光に対して感度を示すことが必要である。
【0071】
〔変形例4〕
また、上記分析支援装置70では、コントローラ73が固体撮像デバイス3から入力した画像データに従った画像を出力装置77に出力し、作業者が出力された画像からサンプルDNAの配列を特定したが、コントローラ73がサンプルDNAの配列を特定しても良い。すなわち、コントローラが、特徴抽出処理によって画像データ中のどの部分が蛍光を発しているかを特定し、蛍光を発している部分に対応するスポット60を特定し、その特定したスポット60に相補的な塩基配列を出力装置から出力する。
【0072】
〔変形例5〕
また、セルフォックレンズアレイ33の入射面に励起光遮蔽膜32を成膜せず、スポット60,60,…をセルフォックレンズアレイ33の入射面に直接点着しても良い。その場合、セルフォックレンズアレイ33の各セルフォックレンズ34を励起光遮蔽性であって蛍光透過性の材料(例えば、TiO2)から形成すれば良い。
【図面の簡単な説明】
【0073】
【図1】本発明の実施の形態における生体高分子分析チップ1の概略平面図である。
【図2】図1の切断面IIに沿った断面図である。
【図3】固体撮像デバイス3の1つの画素の平面図である。
【図4】図3の切断面IVに沿った断面図である。
【図5】分析支援装置70の回路構成を示したブロック図である。
【図6】分析支援装置70の概略側面図である。
【図7】ドライバによって固体撮像デバイス3に出力される電気信号のレベルの推移を示したタイミングチャートである。
【符号の説明】
【0074】
1…生体高分子分析チップ
3…固体撮像デバイス
32…励起光遮蔽膜
33…セルフォックレンズアレイ(光学伝送部)
60…スポット

【特許請求の範囲】
【請求項1】
固体撮像デバイスと、
一方の面から他方の面に像を伝送し、前記一方の面を前記固体撮像デバイスの受光面に対向するよう前記固体撮像デバイスの受光面上に載置された光学伝送部と、
既知の生体高分子からなり、前記光学伝送部の他方の面に沿って点在した複数種のスポットと、を備えることを特徴とする生体高分子分析チップ。
【請求項2】
前記光学伝送部が前記固体撮像デバイスの受光面に対して接離可能であることを特徴とする請求項1に記載の生体高分子分析チップ。
【請求項3】
前記光学伝送部の他方の面に励起光遮蔽膜が成膜され、前記励起光遮蔽膜を介して前記複数種のスポットが前記光学伝送部の他方の面に沿って点在していることを特徴とする請求項1又は2に記載の生体高分子分析チップ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2006−71417(P2006−71417A)
【公開日】平成18年3月16日(2006.3.16)
【国際特許分類】
【出願番号】特願2004−254382(P2004−254382)
【出願日】平成16年9月1日(2004.9.1)
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.セルフォック
【出願人】(000001443)カシオ計算機株式会社 (8,748)
【Fターム(参考)】